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We introduce a new method, namely, the Optimal Iteration Perturbation Method (OIPM), to
solve nonlinear differential equations of oscillators with cubic and harmonic restoring force.
We illustrate that OIPM is very effective and convenient and does not require linearization or
small perturbation. Contrary to conventional methods, in OIPM, only one iteration leads to high
accuracy of the solutions. The main advantage of this approach consists in that it provides a
convenient way to control the convergence of approximate solutions in a very rigorous way
and allows adjustment of convergence regions where necessary. A very good agreement was
found between approximate and numerical solutions, which prove that OIPM is very efficient
and accurate.

1. Introduction

Mathematical modelling of many physical systems leads to nonlinear ordinary or partial
differential equations in various fields of physics, mathematics, or engineering. An effective
method is required to analyze the mathematical model which provides solutions conforming
to physical reality. In many cases, it is possible to replace a nonlinear differential equation
by a corresponding linear differential equation that approximates closely the original one to
give useful results. In general, the study of nonlinear differential equations is restricted to
a variety of special classes of equations and the method of solution usually involves one or
more techniques to achieve analytical approximations to the solutions. Solving the governing
equations of nonlinear oscillators has been one of the most time-consuming and difficult
affairs among researchers. Therefore, many researchers and scientists of both vibrations and
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mathematics have recently paid much attention to find and develop approximate solutions.
Perturbation methods are well established tools to study diverse aspects of nonlinear
problems [1–3]. However, the use of perturbation theory in many important practical
problems is invalid, or it simply breaks down for parameters beyond a certain specified range.
Therefore, new analytical techniques should be developed to overcome these shortcomings.
Such a new technique should work over a larger range of parameters and yield accurate
analytical approximate solutions beyond the coverage and ability of the classical perturbation
methods.

It is noted that several methods have been used to obtain approximate solutions
for strongly nonlinear oscillators. An interesting approach which combines the harmonic
balance method and linearization of nonlinear oscillation equation was proposed in [4].
There also exists a wide range of literature dealing with approximate periodic solutions
for nonlinear problems with large parameters by using a mixture of methodologies: the
variational iteration method [5–8], some linearization methods [9, 10], the optimal homotopy
asymptotic method [11], the optimal parametric iteration method [12], some modified
Lindstedt-Poincare methods [13, 14], or a simple approach [15].

In this paper, coupling the iteration perturbation method [16] with the least square
technology, a new approach, namely, the Optimal Iteration Perturbation Method (OIPM), is
proposed to find explicit analytical periodic solutions to nonlinear oscillators with cubic and
harmonic restoring force. Recently, in the same way, the variational iteration method [5] and
the homotopy perturbation method [17] have been coupled with the least square technology
resulting in two new powerful methods, namely, the optimal variational iteration method
(OVIM) [7] and the optimal homotopy perturbation method (OHPM) [18].

The efficiency of the present procedure is proved while an accurate solution is
explicitly analytically obtained in an iterative way after only one iteration. The proposed
method does not require a small parameter into the equation and provides a convenient
and rigorous way to optimally control the convergence of the solutions by means of a finite
number of unknown parameters.

2. Formulation and Solution Approach

In this work, we consider a nonlinear oscillator in the form

u′′ + f
(
u, u′, u′′) = 0, (2.1)

with initial conditions

u(0) = A, u′(0) = 0, (2.2)

where prime denotes derivative with respect to variable τ .
For (2.1) and (2.2)we propose the following iteration scheme:

u′′
n+1 + f

(
un, u

′
n, u

′′
n

)
= 0, n = 0, 1, 2, . . . , (2.3)
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where the initial approximation u0(τ) can be chosen in the general form

u0(τ) =
m∑

i=1

Cifi(τ), (2.4)

where Ci are unknown constants, m is a positive integer number, and the functions fi are
trigonometric functions sine or/and cosine in case of nonlinear oscillators.

Integrating (2.3) twice with respect to τ , we have, respectively,

(i) u′
n+1(τ) + Fn(τ, C1, C2, . . . , Cm) + C′ = 0,

(ii) un+1(τ) +Gn(τ, C1, C2, . . . , Cm) + C′τ + C′′ = 0,
(2.5)

where

Fn(τ, C1, C2, . . . , Cm) =
∫
f
(
un(τ), u′

n(τ), u
′′
n(τ)

)
dτ,

Gn(τ, C1, C2, . . . , Cm) =
∫
Fn(τ, C1, C2, . . . , Cm) dτ.

(2.6)

From the initial conditions (2.2), we consider

(i) Fn(0, C1, C2, . . . , Cm) = 0,

(ii) Gn(0, C1, C2, . . . , Cm) = −A
(2.7)

such that the integration constants C′ and C′′ into (2.7)(i) and (2.5)(ii) become C′ = C′′ = 0.
In this way, the approximate solution of n+1 order can be written in the form

un+1(τ) = −Gn(τ, C1, C2, . . . , Cm), (2.8)

where the constants C1, C2, . . . , Cm which are considered in the initial approximation (2.4)
can be identified via various methods, such as, for example, the least square method, the
Galerkin method, the Ritz method, and the collocation method. For example, imposing that
the residual functional given by

J(C1, C2, . . . , Cm) =
∫T

0

[
u′′
n + f

(
un, u

′
n, u

′′
n

)]2
dτ (2.9)

is minimum, one can obtain the optimal values of the unknown constants. Taking into
consideration (2.7), the constants Ci, i = 1, 2, . . . , m can be determined in this case from the
equations (conditioned minimum)

∂J

∂Cj
+ λ1

∂Fn(0, C1, C2, . . . , Cm)
∂Cj

+ λ2
∂Gn(0, C1, C2, . . . , Cm)

∂Cj
= 0, j = 3, 4, . . . , m, (2.10)
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where

λ1 =
(∂J/∂C1)(∂Gn/∂C2) − (∂J/∂C2)(∂Gn/∂C1)

(∂Gn/∂C1)(∂Fn/∂C2) − (∂Gn/∂C2)(∂Fn/∂C1)
,

λ2 =
(∂J/∂C1)(∂Fn/∂C2) − (∂J/∂C2)(∂Fn/∂C1)

(∂Fn/∂C1)(∂Gn/∂C2) − (∂Fn/∂C2)(∂Gn/∂C1)

(2.11)

and if (2.7)(i) is not identity. Now, if (2.7)(i) becomes identity, the constants Ci, i = 1, 2, . . . , m
then can be determined from (2.7)(ii) and from the following equations:

∂J

∂Cj
− ∂J/∂C1

∂Gn/∂C1

∂Gn

∂Cj
= 0, j = 2, 3, . . . , m. (2.12)

Therefore, the solution (2.8) with the known constants C1, C2, . . . , Cm is well deter-
mined.

In the present paper we consider a nonlinear oscillator with cubic and harmonic
restoring force

ü + u + au3 + b sinu = 0, (2.13)

where a and b are known constants and dot denotes derivative with respect to time t. The
initial conditions are given by

u(0) = A, u̇(0) = 0. (2.14)

If Ω is the frequency of the system described by (2.13) and introducing a new
independent variable

τ = Ωt (2.15)

then (2.13) becomes

u′′ + f(u) = 0, (2.16)

where ′ = d/dτ and

f(u) =
1
Ω2

(
u + au3 + b sinu

)
. (2.17)

The initial conditions (2.14) become

u(0) = A, u′(0) = 0. (2.18)
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We consider the initial approximation in the form

u0(τ) = C1 cos τ + 2C2 cos 3τ + 2C3 cos 5τ + 2C4 cos 7τ, (2.19)

where C1, C2, C3, and C4 are unknown constants at this moment.
For n = 0 into (2.3) we obtain the first iteration given by

u′′
1 + f(u0) = 0 (2.20)

but it is difficult to calculate f(u0) with u0 given by (2.19). Now, the function f can be
expanded in a series using the well-known formula

f(t0 + h) = f(t0) +
h

1!
fu(t0) + · · · , (2.21)

where fu = df/du. In the following, we consider

t0 = C1 cos τ, h = 2C2 cos 3τ + 2C3 cos 5τ + 2C4 cos 7τ (2.22)

such that, from (2.19), (2.21), and (2.22), we obtain

f(u0) = f(C1 cos τ) + (2C2 cos 3τ + 2C3 cos 5τ + 2C4 cos 7τ)fu(C1 cos τ). (2.23)

The first term in the right-hand side of (2.23) becomes

f(C1 cos τ) = − 1
Ω2

[

C1 cos τ +
aC3

1

4
(cos 3τ + 3 cos τ) + b sin(C1 cos τ)

]

. (2.24)

The last term in (2.24) can be expanded in the power series

sin(C1 cos τ) = C1 cos τ − 1
3!
C3

1cos
3τ +

1
5!
C5

1cos
5τ − 1

7!
C7

1cos
7τ +

1
9!
C9

1cos
9τ + · · · . (2.25)

Substituting (2.25) into (2.24), after some simple manipulations we obtain

f(C1 cos τ) = α1 cos τ + α3 cos 3τ + α5 cos 5τ + α7 cos 7τ + α9 cos 9τ + · · · , (2.26)
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where

α1 = −C1

Ω2

[

1 +
3
4
aC2

1 + b

(

1 − C2
1

8
+

C4
1

192
− C6

1

9216
+

C8
1

737280
+ · · ·

)]

;

α3 = −C3
1

Ω2

[
1
4
a − b

(
1
24

− C1

384
+

C4
1

15360
− C6

1

1105920
+ · · ·

)]

;

α5 = −bC
5
1

Ω2

(
1

1920
− C2

1

46080
+

C4
1

2580480
+ · · ·

)

;

α7 =
bC7

1

Ω2

(
1

322560
− C2

1

10321920
+ · · ·

)

; α9 = −bC
9
1

Ω2

(
1

92897280
+ · · ·

)
.

(2.27)

The last term in the right-side of (2.23) is

fu(C1 cos τ) = − 1
Ω2

[
1 + 3aC2

1cos
2τ + b cos(C1 cos τ)

]
. (2.28)

In (2.28), the last term can be written as

cos(C1 cos τ) = 1 − C2
1cos

2τ

2!
+
C4

1cos
4τ

4!
− C6

1cos
6τ

6!
+
C8

1cos
8τ

8!
+ · · · . (2.29)

Substituting (2.29) into (2.28), we obtain

fu(C1 cos τ) = β0 + β2 cos 2τ + β4 cos 4τ + β6 cos 6τ + β8 cos 8τ + · · · , (2.30)

where

β0 = − 1
Ω2

[

1 +
3
2
aC2

1 + b

(

1 − C2
1

4
+
C4

1

64
− C6

1

2304
+

C8
1

147456
+ · · ·

)]

;

β2 =
1
Ω2

[
3
2
aC2

1 −
1
4
C2

1

(

1 − C2
1

12
+

C4
1

384
− C6

1

23040
+ · · ·

)]

;

β4 =
bC4

1

192Ω2

(

1 − C2
1

20
+

C4
1

960
+ · · ·

)

;

β6 = − bC6
1

2304Ω2

(

1 − C2
1

28
+ · · ·

)

; β8 =
bC8

1

5160960Ω2 (1 + · · · ).

(2.31)



Journal of Applied Mathematics 7

Substituting (2.24) and (2.30) into (2.23), we obtain the expression

f(u0) =
[
α1 +

(
β2 + β4

)
C2 +

(
β4 + β6

)
C3 +

(
β6 + β8

)
C4

]
cos τ

+
[
α3 +

(
2β0 + β6

)
C2 +

(
β2 + β8

)
C3 + β4C4

]
cos 3τ

+
[
α5 +

(
β2 + β8

)
C2 + 2β0C3 + β2C4

]
cos 5τ

+
(
α7 + 2β4C2 + 2β2C3 + 2β0C4

)
cos 7τ

+
(
α9 + 2β6C2 + 2β4C3 + 2β2C4

)
cos 9τ + · · · .

(2.32)

Equation (2.5)(i) becomes

u′
1(τ) = −[α1 +

(
β2 + β4

)
C2 +

(
β4 + β6

)
C3 +

(
β6 + β8

)
C4

]
sin τ

− 1
3
[
α3 +

(
2β0 + β6

)
C2 +

(
β2 + β8

)
C3 + β4C4

]
sin 3τ

− 1
5
[
α5 +

(
β2 + β8

)
C2 + 2β0C3 + β2C4

]
sin 5τ

− 1
7
(
α7 + 2β4C2 + 2β2C3 + 2β0C4

)
sin 7τ

− 1
9
(
α9 + 2β6C2 + 2β4C3 + 2β2C4

)
sin 9τ + · · · .

(2.33)

Finally, (2.8) becomes

u1(τ) =
[
α1 +

(
β2 + β4

)
C2 +

(
β4 + β6

)
C3 +

(
β6 + β8

)
C4

]
cos τ

+
1
9
[
α3 +

(
2β0 + β6

)
C2 +

(
β2 + β8

)
C3 + β4C4

]
cos 3τ

+
1
25

[
α5 +

(
β2 + β8

)
C2 + 2β0C3 + β2C4

]
cos 5τ

+
1
49

(
α7 + 2β4C2 + 2β2C3 + 2β0C4

)
cos 7τ

+
1
81

(
α9 + 2β6C2 + 2β4C4 + 2β2C4

)
cos 9τ.

(2.34)
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t

u(t)

−1

−0.5

1

0.5

1 2 3

Figure 1: Comparison between the approximate solution (2.34) and numerical solution of (2.13) in Case a:
a = b = A = 1: dashed red line: numerical solution, dashed blue line approximate solution.

u(t)

−1.5

−1

−0.5

0.5

1

1.5

−1 −0.5 0.5 1

u′(t)

Figure 2: Comparison between the approximate solution (2.34) and numerical results of (2.13) in terms of
phase plane in Case a: a = b = A = 1: dashed red line: numerical solution, dashed blue line approximate
solution.

From (2.33) we obtain that (2.7)(i) becomes identity and (2.7)(ii) becomes

α1 +
1
9
α3 +

1
25

α5 +
1
49

α7 +
1
81

α9 + C2

(
2
9
β0 +

26
25

β2 +
51
49

β4 +
11
81

β6 +
1
25

β8

)

+ C3

(
2
25

β0 +
67
441

β2 +
83
81

β4 + β6 +
1
9
β8

)
+ C4

(
2
49

β0 +
131
2025

β2 +
1
9
β4 + β6 + β8

)
−A = 0.

(2.35)

The frequency Ω and the constants C1, C2, C3, and C4 are determined by means of a
collocation-type method.

3. Numerical Examples

We will illustrate the applicability, accuracy, and effectiveness of the proposed approach by
comparing the analytical approximate periodic solution with numerical integration results
obtained using a fourth-order Runge-Kutta method. The comparison is made in terms of
displacements and phase plane. The error of the solution has been also computed. The results
of these comparisons are presented in Figures 1–6 for several cases.
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t

Er(t)

−0.002

−0.001

0.001

0.002

0.003

1 2 3

Figure 3: The error between the numerical and approximate solution (2.34) in Case a: a = b = A = 1.

t

u(t)

−2
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1

2

0.5 1 1.5 2 2.5 3

Figure 4: Comparison between the approximate solution (2.34) and numerical solution of (2.13) in Case b:
a = b = 1, A = 2: dashed red line: numerical solution, dashed blue line approximate solution.

u(t)

−4

−2

2

4

−2 −1 1 2

u′(t)

Figure 5: Comparison between the approximate solution (2.34) and numerical results of (2.13) in terms of
phase plane in Case b: a = b = 1, A = 2: dashed red line: numerical solution, dashed blue line approximate
solution.
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Er(t)

−0.006

−0.004

−0.002

0.002

0.004

0.006

0.5 1 1.5 2 2.5 3
t

Figure 6: The error between the numerical and approximate analytical solution (2.34) in case b: a = b =
1, A = 2.

Case a. For a = 1, b = 1, A = 1, following the procedure described above we obtain the
approximate periodic solution of (2.13) in the form

u1(t) = 0.988394597 cosΩt + 0.011310241 cos 3Ωt + 0.000326978 cos 5Ωt

+ 0.000003994 cos 7Ωt − 0.00003581 cos 9Ωt,
(3.1)

where Ω = 1.61923. In Figure 1 is presented a comparison between the approximate solution
(3.1) and the solution obtained through numerical simulations. Moreover, Figure 2 presents
a comparison between the approximate solution (3.1) and the numerical results in terms of
phase plane. In order to provide a comprehensive evidence of the accuracy of the results, the
error of the solution has been computed:

Er(t) = uN(t) − u1(t), (3.2)

where uN(t) is the numerical result and u1(t) is the approximate solution given by (2.34). A
graphical representation of the error in the Case a is presented in Figure 3.

Case b. For a = 1, b = 1, A = 2, following the same procedure we obtain

u1(t) = 1.947052312 cosΩt + 0.052117923 cos 3Ωt + 0.001198712 cos 5Ωt

− 0.000241312 cos 7Ωt − 0.000127635 cos 9Ωt,
(3.3)

where Ω = 2.12453. Comparisons between the approximate and numerical results for Case b
are presented in Figures 4–6.It can be seen from Figures 1–6 that the results obtained using
OIPM are almost identical with those obtained through numerical simulations.

4. Conclusions

In this paper we have developed an analytical treatment of strongly nonlinear oscillators with
cubic and harmonic restoring force using a new approximate analytical technique, namely,
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the Optimal Iteration PerturbationMethod (OIPM). This method accelerates the convergence
of the solutions since after only one iteration we achieved very accurate results. The proposed
approach is an iterative procedure, and iterations are preformed in a very simple manner by
identifying optimally some coefficients and therefore very good approximations are obtained
in few terms. Actually, the capital strength of OIPM is its fast convergence. An excellent
agreement of the approximate periodic solutions and frequencies with the exact ones has
been demonstrated. Two examples are given, and the results reveal that our procedure is
very effective, simple, and accurate. This paper demonstrates the general validity and the
great potential of the OIPM for solving strongly nonlinear problems.
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[6] V. Marinca, N. Herişanu, and C. Bota, “Application of the variational iteration method to some

nonlinear one dimensional oscillations,”Meccanica, vol. 43, pp. 75–79, 2008.
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[12] V. Marinca and N. Herişanu, “An optimal iteration method with application to the Thomas-Fermi
equation,” Central European Journal of Physics, vol. 9, no. 3, pp. 891–895, 2011.

[13] A. Yildirim, “Determination of periodic solutions for nonlinear oscillators with fractional powers by
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