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A continuous time randomwalk is a randomwalk subordinated to a renewal process used in phys-
ics to model anomalous diffusion. In this paper, we establish Chover-type laws of the iterated loga-
rithm for continuous time randomwalkswith jumps andwaiting times in the domains of attraction
of stable laws.

1. Introduction

Let {Yi, Ji} be a sequence of independent and identically distributed random vectors, and
write S(n) = Y1 + Y2 + · · · + Yn and T(n) = J1 + J2 + · · · + Jn. LetNt = max{n ≥ 0 : T(n) ≤ t} the
renewal process of Ji. A continuous time random walk (CTRW) is defined by

X(t) = S(Nt) =
Nt∑

i=1

Yi. (1.1)

In this setting, Yi represents a particle jump, and Ji > 0 is the waiting time preceding that
jump, so that S(n) represents the particle location after n jumps and T(n) is the time of the
nth jump. Then Nt is the number of jumps by time t > 0, and the CTRW X(t) represents the
particle location at time t > 0, which is a random walk subordinated to a renewal process.

It should be mentioned that the subordination scheme of CTRW processes is going
back to Fogedby [1] and that it was expanded by Baule and Friedrich [2] andMagdziarz et al.
[3]. It should also be mentioned that the theory of subordination holds for nonhomogeneous
CTRW processes, that were introduced in the following works: Metzler et al. [4, 5] and Barkai
et al. [6].
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The CTRW is useful in physics for modeling anomalous diffusion. Heavy-tailed parti-
cle jumps lead to superdiffusion, where a cloud of particles spreads faster than the classical
Brownian motion, and heavy-tailed waiting times lead to subdiffusion. CTRW models and
the associated fractional diffusion equations are important in applications to physics, hydro-
logy, and finance; see, for example, Berkowitz et al. [7], Metzler and Klafter [8], Scalas [9],
andMeerchaert and Scalas [10] for more information. In applications to hydrology, the heavy
tailed particle jumps capture the velocity irregularities caused by a heterogeneous porous
media, and the waiting times model particle sticking or trapping. In applications to finance,
the particle jumps are price changes or log returns, separated by a random waiting time bet-
ween trades.

If the jumps Yi belong to the domain of attraction of a stable law with index α, (0 <
α < 2), and the waiting times Ji belong to the domain of attraction of a stable law with index
β, (0 < β < 1), Becker-Kern et al. [11] and Meerschaert and Scheffler [12] showed that as
c → ∞,

c−β/αX([ct]) =⇒ A(E(t)) (1.2)

a non-Markovian limit with scaling A(E(ct)) d= cβ/αA(E(t)), where A(t) is a stable Lévy
motion and E(t) is the inverse or hitting time process of a stable subordinator. Densities of
the CTRW scaling limit A(E(t)) solve a space-time fractional diffusion equation that also
involves a fractional time derivative of order β; see Meerschaert and Scheffler [13], Becker-
Kern et al. [11], and Meerschaert and Scheffler [12] for complete details. Becker-Kern et al.
[14], Meerschaert and Scheffler [15], and Meerschaert et al. [16] discussed the related limit
theorems for CTRWs based on two time scales, triangular arrays and dependent jumps, res-
pectively. The aim of the present paper is to investigate the laws of the iterated logarithm for
CTRWs. We establish Chover-type laws of the iterated logarithm for CTRWs with jumps and
waiting times in the domains of attraction of stable laws.

Throughout this paper we will use C to denote an unspecified positive and finite con-
stant which may be different in each occurrence and use “i.o.” to stand for “infinitely often”
and “a.s.” to stand for “almost surely” and “u(x) ∼ v(x)” to stand for “limu(x)/v(x) = 1”.
Our main results read as follows.

Theorem 1.1. Let {Yi} be a sequence of i.i.d. nonnegative random variables with a common distribu-
tion F, and let {Ji}, independent of {Yi}, be a sequence of i.i.d. nonnegative random variables with a
common distribution G. Assume that 1 − F(x) ∼ x−αL(x), 0 < α < 2, where L is a slowly varying
function, and that G is absolutely continuous and 1 − G(x) ∼ Cx−β, 0 < β < 1. Let {B(n)} be a
sequence such that nL(B(n))/B(n)α → C as n → ∞. Then one has

lim sup
t→∞

((
B
(
tβ
))−1

X(t)
)1/(log log t)

= e1/α a.s. (1.3)

The following is an immediate consequence of Theorem 1.1.

Corollary 1.2. If the tail distribution of Yi satisfies P(Y1 > x) ∼ Cx−α in Theorem 1.1, then one has

lim sup
t→∞

(
t−β/αX(t)

)1/(log log t)
= e1/α a.s. (1.4)
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In the course of our arguments we often make statements that are valid only for suffi-
ciently large values of some index. When there is no danger of confusion, we omit explicit
mention of this proviso.

2. Chung Type LIL for Stable Summands

In this section we consider a Chung-type law of the iterated logarithm for sums of random
variables in the domain of attraction of a stable law, which will take a key role to show
Theorem 1.1. When Ji has a symmetric stable distribution function G characterized by

E exp(itJi) = exp
(
−|t|β
)

for t ∈ R, (2.1)

0 < β < 2. Chover [17] established that

lim sup
n→∞

∣∣∣n−1/βT(n)
∣∣∣
1/(log logn)

= e1/β a.s. (2.2)

We call (2.2) as Chover’s law of the iterated logarithm. Since then, several papers have been
devoted to develop Chover’s LIL; see, for example, Hedye [18–20], Pakshirajan andVasudeva
[21], Vasudeva [22], Qi and Cheng [23], Scheffler [24], Chen [25], and Peng and Qi [26] for
reference. For some reason the obvious corresponding statement for the “lim inf” result does
not seem to have been recorded, and it is the purpose of this section to do so and may be of
independent interest.

Theorem 2.1. Let {Ji} be a sequence of i.i.d. nonnegative random variables with a common distribu-
tion G(x), and let V (x) = inf{y > 0 : 1−G(y) ≤ 1/x}. Assume that G is absolutely continuous and
1 −G(x) ∼ x−βl(x), 0 < β < 1, where l is a slowly varying function. Then one has

lim inf
n→∞

(
V (n)−1T(n)

)1/(log logn)
= 1 a.s. (2.3)

In order to prove Theorem 2.1, we need some lemmas.

Lemma 2.2. Let h(x) be a slowly varying function. Then, if yn → ∞, zn → ∞, one has for any
given τ > 0,

lim z−τn
h
(
ynzn
)

h
(
yn

) = 0, lim zτn
h
(
ynzn
)

h
(
yn

) = ∞. (2.4)

Proof. See Seneta [27].

Lemma 2.3. Let {Ji} be a sequence of i.i.d. nonnegative random variables with a common distribution
G and let M(n) = max{J1, J2, . . . , Jn}. Assume that G is absolutely continuous and 1 − G(x) ∼
x−βl(x), 0 < β < 1, where l is a slowly varying function. Then one has for some given small t > 0

lim
n→∞

EetT(n)/M(n) =
et

1 − t
∫1
0 e

tx
(
x−β − 1

)
dx

. (2.5)
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Proof. We will follow the argument of Lemma 2.1 in Darling [28]. Without loss of generality
we can assume J1 = max{J1, J2, . . . , Jn} = M(n) since each Ji has a probability of 1/n of being
the largest term, and P(Ji = Jj) = 0 for i /= j since G(x) is presumed continuous.

For notational simplicity we will use the tail distribution G(x) = 1 − G(x) = P(J1 > x)
and denote by g(x) the corresponding density, so that G(x) =

∫∞
x g(z)dz. Then, the joint

density of J1, J2, . . . , Jn, given J1 = M(n), is

g(x1, x2, . . . , xn) =

⎧
⎨

⎩
ng(x1)g(x2) · · · g(xn) if x1 = max

i
{xi},

0 otherwise.
(2.6)

Thus

EetT(n)/M(n) =
∫ ∫

· · ·
∫
et(x1+x2+···+xn)/x1g(x1, x2, . . . , xn)dx1dx2 · · ·dxn

= net
∫∞

0

∫y

0
· · ·
∫y

0
et(x2+x3+···+xn)/yg(x2)g(x3) · · · g(xn)g

(
y
)
dx2dx3 · · ·dxndy

= net
∫∞

0

{∫y

0
etx/yg(x)dx

}n−1
g
(
y
)
dy.

(2.7)

Let us put

φ
(
y, t
)
= y

∫1

0
etxg
(
xy
)
dx (2.8)

so that

EetT(n)/M(n) = net
∫∞

0

(
φ
(
y, t
))n−1

g
(
y
)
dy. (2.9)

It follows from Doeblin’s theorem that if λ > 0,

G
(
λy
)
= λ−βG

(
y
)
(1 + o(1)) (2.10)

for y ≥ y0 with some large y0 > 0. Then, for y ≤ y0, we can choose t > 0 small enough such
that t < − logG(y0) since G has regularly varying tail distribution, so that

φ
(
y, t
) ≤ etG

(
y0
)
< 1. (2.11)

It follows that

net
∫y0

0

(
φ
(
y, t
))n−1

g
(
y
)
dy −→ 0. (2.12)
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Consider the case y ≥ y0. By a slight transformation we find that

φ
(
y, t
)
= 1 −G

(
y
)
+ t

∫1

0
etx
(
G
(
xy
) −G

(
y
))

dx

= 1 −G
(
y
)
+ tG
(
y
)
(1 + o(1))

∫1

0
etx
(
x−β − 1

)
dx.

(2.13)

Putting

η = η(t) = t

∫1

0
etx
(
x−β − 1

)
dx, (2.14)

we have η < 1 since 0 < β < 1 and t is small. Thus

φ
(
y, t
)
= 1 −G

(
y
)(
1 − η

)
+ o
(
G
(
y
))

. (2.15)

By (2.9) and making the change of variable nG(y) = v to give

EetT(n)/M(n) = et
∫n

0

(
1 − v

n

(
1 − η

)
+ vo

(
1
n

))n−1
dv −→ et

∫∞

0
e−v(1−η)dv

=
et

1 − η
,

(2.16)

which yields the desired result.

The following large deviation result for stable summands is due to Heyde [19].

Lemma 2.4. Let {ξi} be a sequence of i.i.d. nonnegative random variables with a common tail dis-
tribution satisfying P(ξ1 > x) ∼ x−rh(x), 0 < r < 2, where h is a slowly varying function. Let {λn}
be a sequence such that nh(λn)/λrn → C as n → ∞, and let {xn} be a sequence with xn → ∞ as
n → ∞. Then

0 < lim inf
n→∞

xr
nh(λn)

h(xnλn)
P

(
n∑

i=1

ξi > xnλn

)
≤ lim sup

n→∞

xr
nh(λn)

h(xnλn)
P

(
n∑

i=1

ξi > xnλn

)
< ∞. (2.17)

Now we can show Theorem 2.1.

Proof of Theorem 2.1. In order to show (2.3), it is enough to show that for all ε > 0

lim inf
n→∞

(
logn

)ε
V (n)−1T(n) ≥ 1 a.s., (2.18)

lim inf
n→∞

(
logn

)−ε
V (n)−1T(n) ≤ 1 a.s. (2.19)
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We first show (2.18). Let nk = [θk], 1 < θ < 2. Put again G(x) = 1 − G(x) = P(J1 > x).
Let G

∗
be the inverse of G. Obverse that G

∗
(y) ∼ y−1/βH(1/y), 0 < y ≤ 1, whereH is a slowly

varying function and V (n) = G
∗
(1/n) ∼ n1/βH(n), so that

V (nk)
V (nk+1)

−→ θ−1/β (2.20)

(
lognk

)−ε
V (nk)

G
∗((

lognk

)βε/2
n−1
k

) ∼ (lognk

)−ε n
1/β
k

H(nk)

n
1/β
k

(
logn

)−ε/2
H
(
nk

(
lognk

)−βε/2)

=
(
lognk

)−ε/2 H(nk)

H
(
nk

(
lognk

)−βε/2) −→ 0,

(2.21)

by Lemma 2.2. LetU,U1, U2, . . . , Un be i.i.d. random variables with the distribution ofUUni-
form over (0, 1), and let M∗(n) = max{U1, U2, . . . , Un}. Then, from the fact that G(Jn) is a

Uniform (0, 1) random variable, we note that M∗(n) d= G(M(n)), n ≥ 1. From (2.21), Ji non-
negative, and G and G

∗
nonincreasing, it follows that

P
(
T(nk) ≤

(
lognk

)−ε
V (nk)

)

≤ P
(
M(nk) ≤

(
lognk

)−ε
V (nk)

)

≤ P(G
∗(
G(M(nk)) ≤ G

∗((
lognk

)βε/2
n−1
k

))

= P(G
(
M(nk) ≥

(
lognk

)βε/2
n−1
k

)

= P
(
1 −M∗(nk) ≥

(
lognk

)βε/2
n−1
k

)

= P
(
M∗(nk) ≤ 1 − (lognk

)βε/2
n−1
k

)

=
(
P
(
U ≤ 1 − (lognk

)βε/2
n−1
k

))nk

≤ exp
(
−(lognk

)βε/2)
.

(2.22)

Hence, the sum of the left hand side of the previously mentioned probability is finite; by the
Borel-Cantelli lemma, we get

lim inf
k→∞

(
lognk

)ε
V (nk)−1T(nk) ≥ 1 a.s. (2.23)
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Thus, by (2.20) we have

lim inf
n→∞

(
logn

)ε
V (n)−1T(n)

≥ lim inf
k→∞

min
nk≤n≤nk+1

(
logn

)ε
V (n)−1T(n)

≥ lim inf
k→∞

(
V (nk)
V (nk+1)

)(
lognk

)ε
V (nk)−1T(nk)

≥ θ−1/β a.s.

(2.24)

Therefore, by the arbitrariness of θ > 1, (2.18) holds.
We now show (2.19). Let nk = [ek

1+δ
], δ > 0. For notational simplicity, we introduce the

following notations:

ζk =
T(nk − nk−1)
M(nk − nk−1)

,

Ek =
{
T(nk) − T(nk−1) ≤

(
lognk

)ε
V (nk)

}
,

Ẽk =
{
T(nk−1) ≥ ε

(
lognk

)ε
V (nk)

}
,

Fk =
{
M(nk − nk−1) ≤

(
log lognk

)(1−ε)/β
V (nk)

}
,

Ok =
{
ζk ≥ (lognk

)ε(log lognk

)−(1−ε)/β}
.

(2.25)

By Lemma 2.3, we have

P(Ok) ≤ exp
(
−t(lognk

)ε(log lognk

)−1−ε/β)
Eetζk ≤ C exp

(
−t(lognk

)ε(log lognk

)−(1−ε)/β)
.

(2.26)

Thus, we get
∑

P(Ok) < ∞.
Observe again that G

∗
(y) ∼ y−1/βH(1/y) and V (n) ∼ n1/βH(n), so that

V (nk)
V (nk−1)

≥ e(1/β)k
δ

, (2.27)

(
log lognk

)(1−ε)/β
V (nk)

G
∗((

log lognk

)(1−ε)
n−1
k

) ∼
(
log lognk

)2(1−ε)/β
H(nk)

H
((

log lognk

)−(1−ε)
nk

) −→ ∞, (2.28)
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by Lemma 2.2. Thus, we note

P(Fk) ≥ P(G
∗(
G(M(nk − nk−1)) ≤ G

∗((
log lognk

)(1−ε)
n−1
k

))

= P(G
(
M(nk − nk−1) ≥

(
log lognk

)(1−ε)
n−1
k

)

= P
(
1 −M∗(nk − nk−1) ≥

(
log lognk

)(1−ε)
n−1
k

)

= P
(
M∗(nk − nk−1) ≤ 1 − (log lognk

)(1−ε)
n−1
k

)

=
(
P
(
U ≤ 1 − (log lognk

)(1−ε)
n−1
k

))nk−nk−1

=
(
1 − (log lognk

)(1−ε)
n−1
k

)nk−nk−1

≥ exp
(
−C(log lognk

)(1−ε/2))
,

(2.29)

which yields easily
∑

P(Fk) = ∞. Hence, since P(Ek) ≥ P(Fk) − P(Ok), we get
∑

P(Ek) = ∞.
Since Ek are independent, by the Borel-Cantelli lemma, we get

lim inf
k→∞

(
lognk

)−ε
V (nk)−1(T(nk) − T(nk−1)) ≤ 1 a.s. (2.30)

By applying Lemma 2.4 and (2.27) and some simple calculation, we have easily that∑
P(Ẽk) < ∞, so that

lim sup
k→∞

(
lognk

)−ε
V (nk)−1T(nk−1) = 0 a.s., (2.31)

which, together with (2.30), implies

lim inf
k→∞

(
lognk

)−ε
V (nk)−1T(nk) ≤ 1 a.s. (2.32)

This yields (2.19). The proof of Theorem 2.1 is now completed.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. We have to show that for all ε > 0

lim sup
t→∞

(
log t
)−(1+ε)/α(

B
(
tβ
))−1

X(t) ≤ 1 a.s., (3.1)

lim sup
t→∞

(
log t
)−(1−ε)/α(

B
(
tβ
))−1

X(t) ≥ 1 a.s. (3.2)
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We first show (3.1). Let tk = θk, 1 < θ < 2. For notational simplicity, we introduce the
following notations:

Qk =
{(

log tk
)−(1+ε)/α(

B
(
t
β

k

))−1
S(Ntk) ≥ 1

}
,

U(x) =
(
logx

)−ρ
x1/β, γ1(x) = sup

{
y : U

(
y
) ≤ x

}
, ρ =

ε

5β
,

Q̃k =
{(

log tk
)−(1+ε)/α(

B
(
t
β

k

))−1
S
(
γ1(tk)

) ≥ 1
}
,

Rk =
{
Ntk ≥ γ1(tk)

}
.

(3.3)

By (2.18), we have

P(Rk i.o.) = P
({

T
(
γ1(tk)

) ≤ tk
}
i.o.
)
= P
({

T(tk) ≤
(
log tk

)−ρ
V (tk)

}
i.o.
)
= 0. (3.4)

Put F(x) = 1 − F(x) = P(Y1 > x). Let F
∗
be the inverse of F. Recall that F

∗
(y) ∼

y−1/αH̃(1/y), 0 < y ≤ 1, where H̃ is a slowly varying function, so that B(n) = F
∗
(C/n) ∼

Cn1/αH̃(n) and

B
(
t
β

k

)

B
(
t
β

k−1
) −→ θβ/α. (3.5)

Note that

U
((

log tk
)ε/4

t
β

k

)
∼ (log tk

)ε/(4β)
tk
(
log
((

log tk
)ε/4

t
β

k

))−ρ ≥ U
(
γ1(tk)

)
= tk. (3.6)

Thus, by noting U increasing,

(
log tk

)ε/(4α)
t
β/α

k ≥ γ1(tk)1/α. (3.7)

Hence, by Lemma 2.2,

(
log tk

)ε/(2α) B
(
t
β

k

)

B
(
γ1(tk)

) ≥ C
(
log tk

)ε/(2α) t
β/α

k

(
H̃
(
t
β

k

))1/α

(
γ1(tk)

)1/α(
H̃
(
γ1(tk)

))1/α ≥ 1. (3.8)



10 Journal of Applied Mathematics

Thus, by (3.8) and Lemma 2.4, we have

P
(
Q̃k

)
≤ P

⎛
⎜⎝S
(
γ1(tk)

) ≥

⎛
⎜⎝
(
log tk

)(1+ε)/α B
(
t
β

k

)

B
(
γ1(tk)

)

⎞
⎟⎠B
(
γ1(tk)

)
⎞
⎟⎠

≤ P
(
S
(
γ1(tk)

) ≥ (log tk
)(1+ε/2)/α

B
(
γ1(tk)

))

≤ C
(
log tk

)−(1+ε/4)
.

(3.9)

Therefore,
∑

P(Q̃k) < ∞. By the Borel-Cantelli lemma, we get P(Q̃k i.o.) = 0.
Observe that

P

( ∞⋃

k=n

Qk

)
= P

( ∞⋃

k=n

Qk ∩
∞⋂

k=n

Rc
k

)
+ P

( ∞⋃

k=n

Qk ∩
( ∞⋂

k=n

Rc
k

)c)

≤ P

( ∞⋃

k=n

Q̃k

)
+ P

( ∞⋃

k=n

Rk

)
,

(3.10)

where Ec stands for the complement of E. Thus, letting n → ∞, we have

P(Qk i.o.) ≤ P
(
Q̃k i.o.

)
+ P(Rk i.o.) = 0, (3.11)

which implies that

lim sup
k→∞

(
log tk

)−(1+ε)/α(
B
(
t
β

k

))−1
X(tk) ≤ 1 a.s. (3.12)

Thus, by (3.5), we have

lim sup
t→∞

(
log t
)−(1+ε)/α(

B
(
tβ
))−1

X(t)

≤ lim sup
k→∞

max
tk−1<t≤tk

(
log t
)−(1+ε)/α(

B
(
tβ
))−1

X(t)

≤ θβ/αlim sup
k→∞

(
log tk

)−(1+ε)/α(
B
(
t
β

k

))−1
X(tk)

≤ θβ/α a.s.

(3.13)

This yields (3.1) immediately by letting θ ↓ 1.
We now show (3.2). Let tk = ek

1+δ
, δ > 0. To show (3.2), it is enough to prove

lim sup
k→∞

(
log tk

)−(1−ε)/α(
B
(
t
β

k

))−1
X(tk) ≥ 1 a.s. (3.14)
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Put

Λk =
{(

log tk
)−(1−ε)/α(

B
(
t
β

k

))−1
(S(Ntk)) ≥ 1

}
,

U1(x) =
(
logx

)ρ
x1/β, γ2(x) = sup

{
y : U1

(
y
) ≤ x

}
, ρ =

ε

5β
,

Wk =
{(

log tk
)−(1−ε)/α(

B
(
t
β

k

))−1(
S
(
γ2(tk)

) − S
(
γ2(tk−1)

)) ≥ 1
}
,

R̃k =
{
Ntk ≥ γ2(tk)

}
.

(3.15)

By (2.19), we have

P
(
R̃k i.o.

)
= P
({

T
(
γ2(tk)

) ≤ tk
}
i.o.
)
= P
({

T(tk) ≤
(
log tk

)ε
t
1/β
k

}
i.o.
)
= 1. (3.16)

Note that

U1

((
log tk

)−ε/4
t
β

k

)
∼ (log tk

)−ε/(4β)
tk
(
log
((

log tk
)−ε/4

t
β

k

))ρ ≤ U1
(
γ2(tk)

)
= tk. (3.17)

Thus, by noting U1 increasing,

(
log tk

)−ε/(4α)
t
β/α

k ≤ γ2(tk)1/α. (3.18)

Hence, by Lemma 2.2,

(
log tk

)−ε/(2α) B
(
t
β

k

)

B
(
γ2(tk)

) ≤ C
(
log tk

)−ε/(2α) t
β/α

k

(
H̃
(
t
β

k

))1/α

(
γ2(tk)

)1/α(
H̃
(
γ2(tk)

))1/α −→ 0. (3.19)

Similarly, by noting tk/tk−1 → ∞, one can have

B
(
γ2(tk)

)

B
(
γ2(tk) − γ2(tk−1)

) −→ 1. (3.20)

Thus, by Lemma 2.4, we have

P(Wk) ≥ P

⎛
⎜⎝S
(
γ2(tk) − γ2(tk−1)

) ≥

⎛
⎜⎝
(
log tk

)(1−ε)/α B
(
t
β

k

)

B
(
γ2(tk)

)

⎞
⎟⎠B
(
γ2(tk)

)
⎞
⎟⎠

≥ P
(
S
(
γ2(tk) − γ2(tk−1)

) ≥ (log tk
)(1−ε/2)/α

B
(
γ2(tk)

))

≥ C
(
log tk

)−(1−ε/4)
.

(3.21)
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Therefore,
∑

P(Wk) = ∞. Since the events {Wk} are independent, by the Borel-Cantelli
lemma, we get P(Wk i.o.) = 1.

Now, observe that

P

( ∞⋃

n=m
Λk

)
≥ P

( ∞⋃

n=m

(
Λk ∩ R̃k

))

≥ P

( ∞⋃

n=m

{(
log tk

)−(1−ε)/α(
B
(
t
β

k

))−1
S
(
γ2(tk)

) ≥ 1
})

× P

( ∞⋂

n=m
R̃k

)

≥ P

( ∞⋃

n=m
Wk

)
× P

( ∞⋂

n=m
R̃k

)
.

(3.22)

Therefore, by letting m → ∞, we get

P(Λk i.o.) ≥
(
P(Wk i.o.) − P

(
W̃k i.o.

))
P
(
R̃k i.o.

)
= 1, (3.23)

which implies (3.14). The proof of Theorem 1.1 is now completed.

Remark 3.1. By the proof Theorem 1.1, (1.3) can be modified as follows:

lim sup
t→∞

(
log t
)−1/α(

B
(
tβ
))−1

X(t) = 1 a.s. (3.24)

That is to say that the form of (1.3) is no rare and the variables (B(tβ))−1X(t) must be cut
down additionally by the factors (log t)−1/α to achieve a finite lim sup.
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