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An inverse problem for a linear stochastic evolution equation is researched. The stochastic
evolution equation contains a parameter with values in a Hilbert space. The solution of the
evolution equation depends continuously on the parameter and is Fréchet differentiable with
respect to the parameter. An optimization method is provided to estimate the parameter. A
sufficient condition to ensure the existence of an optimal parameter is presented, and a necessary
condition that the optimal parameter, if it exists, should satisfy is also presented. Finally, two
examples are given to show the applications of the above results.

1. Introduction

The purpose of this paper is to study an inverse problem for the following linear stochastic
evolution equation:

dy +
[
A
(
t; p

)
+ B

(
t; p

)]
ydt = f

(
t; p

)
dt + σ

(
t; p

)
dw(t), t ∈ (t0, tf

) ≡ T,
y(t0) = ϕ + ξ,

(1.1)

where tf < ∞, p ∈ Pad ⊂ P is a parameter to be determined, and Pad is a convex domain in
P . The solution of (1.1) corresponding to p can be denoted as y = y(p) = y(t; p) to explicitly
show the dependence of y on p.

The problem of this paper is to determine the unknown parameter p based on the
measurement g(t), which is defined by the following:

g(t) = Λ
(
t; p

)
y(t), t ∈ T, (1.2)

where V ,H, K,W , and P are Hilbert spaces.
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There are many papers dealing with parameter estimation problems for stochastic
partial differential equations, for instance, see [1–7], but only a few papers to estimate directly
parameters involved in stochastic evolution equations in infinite dimensional spaces, for
example, [8, 9]. In particular, Lototsky and Rosovskii [9] consider a problem estimating a
constant parameter and obtain an estimate that is consistent and asymptotically normal.

Denote by L(X;Y ) the linear continuous operator space on X to Y , by (·, ·)X the inner
product of X, and by 〈·, ·〉X′,X the dual product of X′ and X, where X′ is the dual of X.

V , V ′, andH make up an evolution triple, namely, they should satisfy

V ⊂ H ⊂ V ′, (1.3)

where each space is dense in the following space and has a continuous injection,H ′ = H, and

〈
y, x

〉
V ′,V =

(
y, x

)
H, ∀x ∈ V, y ∈ H. (1.4)

For any t ∈ T and p ∈ Pad, A(t; p) ∈ L(V ;V ′), B(t; p) ∈ L(V ;H), σ(t, p) ∈ L(W ;H),
Λ(t; p) ∈ L(V ;K, ), f(t; p) ∈ H, and

〈
A
(
t; p

)
z, z

〉
V ′,V ≥ α‖z‖2V , z ∈ V, (1.5)

where the constant α is independent of p ∈ Pad and t ∈ T . Let (Ω,F, μ) be a complete
probability space and Ft an increasing family of sub σ-algebras of F(F = F∞).

M(Ω, μ,Φ) denotes the space of random variables with values in a Hilbert space Φ.

Lr(Ω;Φ) ≡
{

x ∈M(
Ω, μ,Φ

)
; ‖x‖ ≡ [E‖x‖rΦ

]1/r =
[∫

Ω
‖x(ω)‖rΦdμ(ω)

]1/r
<∞

}

,

Lr(Ω × T ;Φ) ≡
{

x(t) ∈M(
Ω, μ,Φ

)
, t ∈ T ; ‖x‖ ≡

[∫

Ω

∫

T

‖x(t, ω)‖rΦdtdμ(ω)
]1/r

<∞
}

.

(1.6)

w(t) ∈ M(Ω, μ,W) is a Wiener process with values in a separable Hilbert spaceW , which is
adapted to Ft, that is, for all e ∈W , (w(t), e)W is a real Wiener process and an Ft-martingale,
with the correlation function

E{(w(t1), e1)W(w(t2), e2)W} =
∫min(t1,t2)

t0

(Q(τ)e1, e2)dτ, (1.7)

where t0 ≤ t1, t2 ≤ tf and Q(t) is a positive self-adjoint nuclear operator almost everywhere
onW . Q(t) is called the covariance operator. Moreover, assume that Q(t) satisfies

Q(·) ∈ L∞(T ;L(W)), (1.8)

where ϕ0 ∈ H, ξ ∈ L2(Ω,H) is independent of w(t).
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Now, determine the parameter p in the system (1.1) and (1.2). It is transformed into an
optimization problem as most researchers expect. That is, seek an optimal parameter p̂ ∈ Pad
such that the cost functional

J
(
p
)
= Eg

∫

T

∥∥g(t) −Λ
(
t; p

)
y
(
t; p

)∥∥2
Kdt (1.9)

reaches its minimum over the admissible parameter set Pad at p̂, that is,

J
(
p̂
)
= min

p∈Pad
J
(
p
)
, (1.10)

where Eg is a conditional expectation, that is,

Egf = E
{
f | Gt}, (1.11)

andGt is the sub-σ-algebra induced by the stochastic process g(s), 0 ≤ s ≤ t, which is adapted
to Ft.

If there exists a neighbourhood U ⊂ Pad of p0 such that

J
(
p0
)
= inf

p∈U
J
(
p
)
, (1.12)

then Po is called a relative optimal parameter.
In Section 2, the base of this paper is given, under certain conditions the function p →

y(p) is continuous and Fréchet continuously differentiable.
In Section 3, the main results of this paper are proposed. The problem estimating the

parameter is transformed into the optimization problem. The above optimization problem,
such as existence of the optimal parameter and necessary conditions, is studied.

In Section 4, the results in Sections 2 and 3 are applied to parabolic stochastic partial
differential equations to identify certain parameters involved in those equations.

2. Continuity and Differentiability with Respect to a Parameter

In this section the continuity and the differentiability of the solution of the system (1.1) with
respect to the parameter p are studied.

Before studying the properties of the solution to (1.1), it must be shown that the
system (1.1) is well-behaved in some sense on certain conditions. There are many papers
dealing with solvability of Stochastic evolution equation (1.1), for example, see [10–12]. From
Bensoussan [10] the following lemma is useful.
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Lemma 2.1. Besides the assumptions for A, B, f , ϕ, w(t), and σ in Section 1, one assumes that, for
any p ∈ Pad,

A
(·; p) ∈ L2(T ;L(V ;V ′)) ∩ L∞(T ;L(V ;V ′)),

B
(·; p) ∈ L∞(Ω × T ;L(V ;H)),

f
(·, p) ∈ L2(Ω × T ;H),

σ
(·, p) ∈ L2(T,L(W ;H)).

(2.1)

Then there exists a unique generalized solution, y, in the Ladyzenskaja sense of (1.1) almost every
t ∈ T such that

y ∈ L2(Ω;C(T ;H)) ∩ L2(Ω × T ;V ) ∩ C
(
T ;L2(Ω;H)

)
≡ S, (2.2)

y(t) is adapted to Ft (as a process with values inH), and y(t) is Ft measurable with values in V .

In the above lemma the space Ck(X,Y ) with k = 0, 1 consists of all continuous func-
tions u : X → Y that have continuous Fréchet derivatives up to order k on X, with the
norm

‖u‖ =
k∑

i=0

max
t∈X

∥∥∥u(i)(t)
∥∥∥. (2.3)

Remark 2.2. The generalized solution in the Ladyzenskaja sense is the solution of the
following variational equation:

(
y(t), η(t)

)
H =

(
ϕ + ξ, η(t0)

)
H +

∫ t

t0

〈
y(t), dtη(t)

〉
V,V ′

+
∫ t

t0

〈[
A
(
t; p

)
+ B

(
t; p

)]
y(t)dt, η(t)

〉
V ′,V

+
∫ t

t0

(
σ
(
t; p

)
dw(t), η(t)

)
H, a.s., ∀η ∈W1(T ;V,H),

(2.4)

where the spaceW1(T ;V,H) is a Hilbert space that is defined by

W1(T ;V,H) =
{
η; η ∈ L2(T ;V ),

dη

dt
∈ L2(T ;V ′)

}
, (2.5)

and it is well known thatW1(T ;V,H) ⊂ C(T ;H).
Now, it is time to give the main results in this section.
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Theorem 2.3. If the assumptions of Lemma 2.1 are satisfied and

A : p −→ L2(T ;L(V ;V ′)), B : p −→ L∞(Ω × T ;L(V ;H)),

f : p −→ L2(Ω × T ;H), σ : p −→ L2(T,L(W ;H)),
(2.6)

are continuous, the solution of (1.1)

y : Pad −→ S (2.7)

is continuous, that is, y ∈ C(Pad;S) or the following equalities are true:

lim
p→ p0

∥∥y
(
p
) − y(p0

)∥∥
C(T ;L2(Ω,H)) = 0, (2.8)

lim
p→ p0

∥∥y
(
p
) − y(p0

)∥∥
L2(Ω;C(T ;H)) = 0, (2.9)

lim
p→ p0

∥∥y
(
p
) − y(p0

)∥∥
L2(Ω×T ;V ) = 0. (2.10)

Before proving Theorem 2.3, from Bensoussan [10] the following Itô formula in a
Hilbert space is quoted.

Lemma 2.4. Let Φ(z, t) be a functional onH × T , which is twice continuously Fréchet differentiable
in z ∈ H and continuously differentiable in t ∈ T . Assume z(t) has the stochastic differential:

dz(t) = a(t)dt + b(t)dw(t), z(t0) = z0, (2.11)

where a(t) is a stochastic process with values inH, which is adapted and satisfies the condition

a.s
∫ t

t0

‖a(t)‖Hdt < +∞, ∀t ∈ T, (2.12)

where b(t) is an adapted process with values in L(W,H) such that t, ω → b is measurable and

E

∫ t1

t0

‖b(t)‖2L(W,H)dt <∞, ∀t1 < tf , (2.13)

then one has the following Itô formula in the Hilbert space:

Φ(z(t), t) = Φ(z(t0), t0)) +
∫ t

t0

(
∂Φ
∂z

, a(s)
)

H

ds +
∫ t

t0

(
∂Φ
∂z

, bdw(s)
)

H

+
1
2

∫ t

t0

tr

[

b∗
∂2Φ
∂z2

bQ

]

ds +
∫ t

t0

∂Φ
∂t
ds,

(2.14)
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where b∗ is the adjoint of b and the symbol “tr” is the trace operator, of which definition for a nuclear
operatorU ∈ L(X) is as follows:

tr U =
∞∑

n=1

(
Ufn, fn

)
X, (2.15)

where {fn} is an orthonormal basis of X.

The following two lemmas are obvious, so their proofs are omitted.

Lemma 2.5. Supposes thatU ∈ L(X) is a nuclear operator and B ∈ L(X,Y ), then

tr (B∗BU) ≤ ‖B‖2 tr U. (2.16)

Lemma 2.6. If ψ ∈ L2(Ω;L2(T)),

E

∫

T

ψ(t)dw(t) = 0. (2.17)

Lemma 2.7. If f ∈ L2(Ω;L2(T ;W)) ≡ L2(Ω × T,W),

E

∣∣∣∣

∫

T

(
f(t), dw(t)

)
W

∣∣∣∣

2

= E
∫

T

(
R(t)f(t), f(t)

)
Wdt. (2.18)

Proof. First, suppose that f is a step function, that is,

f(t) = fr, tr ≤ t < tr+1, r = 0, . . . ,N − 1, (2.19)

where fr ∈ L2(Ω,W) and t0 < t1 < · · · < tN = tf .
Let {en} be an orthomomal basis ofW . Obviously,

w(t) =
∞∑

i=1

(en,w(t))Wen, (2.20)

and wn(t) = (en,w(t)) is a Wiener process. Furthermore,

E

∣∣∣∣

∫

T

(f(t), dw(t))
∣∣∣∣

2

= E
∑

i,j

∑

r,s

∫ tr+1

tr

(
fr, eidwi

)
∫ ts+1

ts

(
fs, ejdwj

)

= E
∑

i,j

∑

r,s

(
fr, ei

)
[wi(tr+1) −wi(tr)]

(
fs, ej

)[
wj(ts+1) −wj

(
tj
)]
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= E
∫

T

⎛

⎝R(t)
∑

i

(
f, ei

)
ei,
∑

j

(
f, ej

)
ej

⎞

⎠dt

= E
∫

T

(
R(t)f(t), f(t)

)
Wdt,

(2.21)

So (2.18) is proved.
For the general case, (2.18) can be obtained as most lectures on stochastic integral have

done, which is omitted.

New, the proof of Theorem 2.3 can be given as follows.

Proof of Theorem 2.3. Denote y(t) = y(t, p) and y0(t) = y(t; p0), and then

dy +
[
A
(
t; p

)
+ B

(
t; p

)]
ydt = f

(
t; p

)
dt + σ

(
t; p

)
dw(t), y(t0) = ϕ + ζ, (2.22)

dy0 +
[
A
(
t; p0

)
+ B

(
t; p0

)]
y0dt = f

(
t; p0

)
dt + σ

(
t; p0

)
dw(t), y0(t0) = ϕ + ζ. (2.23)

Let z(t) = y(t) − y0(t), and then from the above equalities, it follows

dz(t) +
[
A
(
t; p

)
+ B

(
t; p

)]
zdt =

{
f
(
t; p

) − f(t; p0
) − [A(t; p) −A(t; p0

)]
y0

−[B(t; p) − B(t; p0
)]
y0
}
dt +

[
σ
(
t; p

) − σ(t; p0
)]
dw(t),

z(t0) = 0.
(2.24)

Setting Φ(z) = (1/2)‖z‖2, z ∈W !(T ;V,H) according to Lemma 2.4, it gets

1
2
‖z(t)‖2H +

∫ t

t0

〈
z(s), A

(
s; p

)
z(s)

〉
V,V ′ds

= −
∫ t

t0

(
z(s), B

(
s; p

)
z(s)

)
Hds

−
∫ t

t0

〈
z(s),

[
A
(
s; p

) −A(s; p0
)]
y0(s)

〉
V,V ′ds

+
∫ t

t0

(
z(s),

{
f
(
s; p

) − f(s; p0
) − [B(s; p) − B(s; p0

)]
y0(s)

})
Hds

+
∫ t

t0

(
z(s),

[
σ
(
s; p

) − σ(s; p0
)]
dw(s)

)
H

+
1
2

∫ t

t0

tr
{[
σ
(
s, p

) − σ(s; p0
)]∗[

σ
(
s, p

) − σ(s; p0
)]
Q(s)

}
ds,

(2.25)



8 Journal of Applied Mathematics

which is

‖z(t)‖2H + 2
∫ t

t0

〈
z(s), A

(
s; p

)
z(s)

〉
V.V ′ds

= −2
∫ t

t0

(
z(s), B

(
s; p

)
z(s)

)
Hds + 2

∫ t

t0

(
z(s), f

(
s; p

) − f(s; p0
))

Hds

− 2
∫ t

t0

〈
z(s),

[
A
(
s; p

) −A(s; p0
)]
y0(s)

〉
V,V ′ds

− 2
∫ t

t0

(
z(s);

[
B
(
s; p

) − B(s; p0
)]
y0(s)

)
Hds

+ 2
∫ t

t0

(
z(s),

[
σ
(
s; p

) − σ(s; p0
)]
dw(s)

)
H

+
∫ t

t0

tr
{[
σ
(
s, p

) − σ(s; p0
)]∗[

σ
(
s, p

) − σ(s; p0
)]
Q(s)

}
ds.

(2.26)

Taking the expectation from the above and considering Lemma 2.6, it has

E‖z(t)‖2H + 2E
∫ t

t0

〈
z(s), A

(
s; p

)
z(s)

〉
V,V ′ds

= −2E
∫ t

t0

(
z(s), B

(
s; p

)
z(s)

)
Hds + 2E

∫ t

t0

(
z(s), f

(
s; p

) − f(s; p0
))

Hds

− 2E
∫ t

t0

〈
z(s), [A(s; p) −A(s; p0)]y0(s)

〉
V,V ′ds

− 2E
∫ t

t0

(
z(s);

[
B
(
s; p

) − B(s; p0
)]
y0(s)

)
Hds

+
∫ t

t0

tr
{[
σ
(
s, p

) − σ(s; p0
)]∗[

σ
(
s, p

) − σ(s; p0
)]
Q(s)

}
ds.

(2.27)

From the assumptions of the spacesH and V , there exists a constant γ such that

‖x‖H ≤ γ‖x‖V , ∀x ∈ V. (2.28)
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Furthermore, according to the assumptions of the operator A(p) and using (2.28) and 2ab ≤
εa2 + b2/ε, we can obtain

E‖z(t)‖2H + 2αE
∫ t

t0

‖z(s)‖2V ds

≤ αE
∫ t

t0

‖z(s)‖2V ds +
4γ
α

∥∥B
(·; p)∥∥2

L∞(T ;L(V ;H))E

∫ t

t0

‖z(s)‖2Hds

+
4γ
α

E

∫ t

t0

{∥∥f
(
s; p

) − f(s; p0
)∥∥2

H +
∥∥[A

(
s; p

) −A(s; p0
)]
y0(s)

∥∥2
V ′

+
∥∥[B

(
s; p

) − B(s; p0
)]
y0(s)

∥∥2
H

}
ds.

+ ‖ tr Q‖
∫ t

t0

∥∥σ
(
s, p

) − σ(s; p0
)∥∥2

ds.

(2.29)

By the assumptions of Theorem 2.3 there is a constant c such that

E‖z(t)‖2H + αE
∫ t

t0

‖z(s)‖2V ds

≤ c
∫ t

t0

E‖z(s)‖2Hds + c
∫ t

t0

∥∥σ
(
s, p

) − σ(s; p0
)∥∥2

L(W ;H)ds

+ cE
∫ t

t0

{∥∥f
(
s; p

) − f(s; p0
)∥∥2

H +
∥∥[A

(
s; p

) −A(s; p0
)]
y0(s)

∥∥2
V ′

+
∥∥[B

(
s; p

) − B(s; p0
)]
y0(s)

∥∥2
H

}
ds.

(2.30)

Obviously,

E‖z(t)‖2H ≤ c
∫ t

t0

E‖z(s)‖2Hds

+ cE
∫ t

t0

{∥∥f
(
s; p

) − f(s; p0
)∥∥2

H

+
∥∥[A

(
s; p

) −A(s; p0
)]
y0(s)

∥∥2
V ′

+
∥∥[B

(
s; p

) − B(s; p0
)]
y0(s)

∥∥2
H

}
ds

+ c
∫ t

t0

∥∥σ
(
s, p

) − σ(s; p0
)∥∥2

L(W ;H)ds.

(2.31)
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Using the Gronwall inequality (see [13] for the definition), and the assumptions of Theo-
rem 2.3, letting p → p0, it has

max
t∈T

E‖z(s)‖2H = o(1), (2.32)

which is (2.8). Furthermore, from (2.31), it follows

E

∫

T

‖z(s)‖2V = o(1), (2.33)

which is just (2.10).
From (2.26), it has the following estimate:

‖z(t)‖2H + 2α
∫ t

t0

‖z(s)‖2V ds

≤ α

γ

∫ t

t0

‖z(s)‖2Hds

+
4γ
α

∫ t

t0

{∥∥f
(
s; p

) − f(s; p0
)∥∥2

H

+
∥∥[A

(
s; p

) −A(s; p0
)]
y0(s)

∥∥2
V ′

+
∥∥[B

(
s; p

) − B(s; p0
)]
y0(s)

∥∥2
H

}
ds

+
∥∥B

(·; p)∥∥2
L∞(T ;L(V ;H))

∫ t

t0

‖z(s)‖2Hds

+ 2
∫ t

t0

(
z(s),

[
σ
(
s; p

) − σ(s; p0
)]
dw(s)

)
H

+ ‖ tr Q‖L∞(T)

∫ t

t0

∥∥σ
(
s, p

) − σ(s; p0
)∥∥2

L(W ;H)ds.

(2.34)

Similarly, it also obtains

‖z(t)‖2H ≤ c
∫ t

t0

{∥∥f
(
s; p

) − f(s; p0
)∥∥2

H +
∥∥[A

(
p
) −A(p0

)]
y0
∥∥2
V ′

+
∥∥[B

(
p
) − B(p0

)]
y0
∥∥2
H +

∥∥σ
(
p
) − σ(p0

)∥∥2
L(W ;H)

}
ds

+ c
∫ t

t0

(
z(s),

[
σ
(
s, p

) − σ(s; p0
)]
dw(s)

)
H, t ∈ T.

(2.35)
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On the other hand, the indefinite stochastic integral

X(t) =
∫ t

t0

([
σ
(
s; p

) − σ(s; p)]∗z(s), dw(s)
)
H

(2.36)

is a continuous martingale, so

Emax
t∈T

X(t) ≤ Emax
t

|X(t)| ≤
[

E

(
max
t

|X(t)|
)2
]1/2

≤ 2
{
E
∣∣X
(
tf
)∣∣2

}1/2

= 2
{
E

∫

T

(
R(t)

[
σ
(
s; p

) − σ(s; p0
)]∗

z(s),
[
σ
(
s; p

) − σ(s; p0
)]∗

z(s)
)
dt

}1/2

≤ c
{∫

T

∥∥σ
(
t; p

) − σ(t; p0
)∥∥2

dt

}1/2

,

(2.37)

where the following martingale inequality is used:

E

{
max
T

|X(t)|α
}

≤
(

α

α − 1

)2

E
∣∣X
(
tf
)∣∣α, (2.38)

with α = 2.
Combining (2.35) with (2.37), it has

Emax
t∈T

‖z(t)‖2H ≤ cE
∫ tf

t0

{∥∥f
(
s; p

) − f(s; p0
)∥∥2

H +
∥∥[A

(
s; p

) −A(s; p0
)]
y0(s)

∥∥2
V ′

+
∥∥[B

(
s; p

) − B(s; p0
)]
y0(s)

∥∥2
H

}
ds

+ c
∫

T

∥∥σ
(
s, p

) − σ(s; p0
)∥∥2

L(W ;H)ds

+ c
{∫

T

∥∥σ
(
s, p

) − σ(s; p0
)∥∥2

L(W ;H)ds

}1/2

.

(2.39)

Letting p → p0 in P , by the assumptions of Theorem 2.3, it immediately obtains

Emax
t∈T

‖z(t)‖2H = o(1), (2.40)

which is (2.9).

Theorem 2.8. Besides the assumptions of Theorem 2.3, suppose that the mappings

A : T × Pad −→ L(V ;V ′), B : T × Pad −→ L(V ;H),

f : T × Pad −→ H, σ : T × Pad −→ L(W ;H)
(2.41)
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are continuously Fréchet differentiable, then the solution of (1.1)

y : p −→ y
(
p
) ∈ S (2.42)

is continuously Fréchet differentiable and its Fréchet derivative operators at p0 ∈ Pad, y′(p0) ∈
L(P,S), are determined by the following system:

dẏ +
[
A
(
t; p0

)
+ B

(
t;y0

)]
ẏdt =

[
f ′
p

(
t; p0

)
h −A′

p

(
t; p0

)
hy0 − B′

p

(
t; p0

)
hy0

]
dt + σ ′

p

(
t; p0

)
hdw(t),

ẏ(t0) = 0,
(2.43)

where ẏ = y′(p0)h, h ∈ P , y0 = y(t; p0) is determined by (1.1), and f ′
p(t; p0) ∈ L(P ;H), A′

p(p0) ∈
L(P ;L(V ;V ′)), B′

p(p0) ∈ L(P ;L(V ;H)), and σ ′
p(p0) ∈ L(P ;L(W ;H)) are the Fréchet derivative

operators of p → f(t; p), p → A(p), p → B(p), and p → σ(p), at p = p0, respectively.

Proof. By Lemma 2.1, there exists a unique solution to (2.43), ẏ ∈ S. Taking p0 ∈ Pad, for any
p ∈ Pad, setting h = p − p0 and z = y − y0 − ẏ, where y = y(p) and y0 = y(p0) are defined by
(2.22) and (2.23), respectively, it has

dz + (A0 + B0)zdt =
{(
f − f0 − f ′

0h
) − (A −A0 −A′

0h
)
y

−(B − B0 − B′
0h
)
yA′

0h
(
y − y0

) − B′
0h
(
y − y0

)}
dt +

(
σ − σ0 − σ ′

0h
)
dw(t),

z(t0) = 0,
(2.44)

where A = A(p), A0 = A(p0), A′
0 = A

′
p(p0), . . ., σ = σ(p), σ0 = σ(p0), and σ ′

0 = σ
′
p(p0).

Letting p → p0 or ‖h‖ → 0, according to the definition of the Fréchet differentiability,
it has

∥∥f − f0 − f ′
0h
∥∥
H = o(‖h‖),

∥∥A −A0 −A′
0h
∥∥
L(V ;V ′) = o(‖h‖),

∥∥B − B0 − B′
0h
∥∥
L(V ;H) = o(‖h‖),

∥∥σ − σ0 − σ ′
0h
∥∥
L(w;H) = o(‖h‖).

(2.45)

Moreover, by Theorem 2.3 it gets ‖y − y0‖S = o(1) and ‖y‖S = ‖y − y0‖ + ‖y0‖ ≤
c‖y0‖ + c.

Using the deduction similar to Theorem 2.3 it obtains

‖z‖S = o(‖h‖), (2.46)

which is just ‖y − y0 − y′
0‖ = o(‖h‖).
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So, y(p) is Fréchet differentiable at p0 and its Fréchet derivative operator y′
0 is det-

ermined by (2.43).
The continuity of y′(p) can be proved in a way similar to proof of Theorem 2.3, which

is omitted here.

3. Existence and Necessary Conditions for Optimality

In this section the optimization problem (1.10) is researched. First, we prove that the cost
functional p → J(p) is continuous and continuously Fréchet differentiable. Next, we prove
that under certain sufficient conditions there exists an optimal parameter p̂, at which the cost
functional reaches its minimum over the admissible parameter set Pad, and derive necessary
conditions for optimality, which means that the optimal parameter should satisfy some
inequalities.

Theorem 3.1. Let the assumptions of Theorem 2.3 be satisfied, g ∈ L2(Ω;L2(T ;K)) = L2(Ω×T ;K),
and let

Λ : p → L∞(T ;L(V ;K)) (3.1)

be continuous, then the mapping

J : p → R+ (3.2)

is continuous.

Proof. Take p0, p ∈ Pad and set h = p−p0, y = y(p), y0 = y(p0), Λ = Λ(p), and Λ0 = Λ(p0), then
it has

∣∣J
(
p
) − J(p0

)∣∣

=
∣∣∣∣Eg

∫

T

{∥∥Λy − g∥∥2
K − ∥∥Λ0y0 − g

∥∥2
K

}
dt

∣∣∣∣

=
∣∣∣∣Eg

∫

T

(
Λy + Λ0y0 − 2g,Λ

(
y − y0

)
+ (Λ −Λ0)y0

)
Kdt

∣∣∣∣

≤ 2
(
Eg

∫

T

∥∥Λy + Λ0y0 − 2g
∥∥2
Kdt

)1/2(
Eg

∫

T

{∥∥Λ
(
y − y0

)∥∥2
K +

∥∥(Λ −Λ0)y0
∥∥2
K

}
dt

)1/2

.

(3.3)

Letting p → p0, that is, ‖h‖ → 0, using Theorem 2.3 and the assumptions of Theorem 3.1, it
obtains at once

∣∣J
(
p
) − J(p0

)∣∣ = o(1). (3.4)

Hence, J(p) is continuous.

From Zeidler [14] the following lemma is quoted.
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Lemma 3.2. The minimum problem

min
u∈M

F(u) = α (3.5)

has a solution, where F :M ⊆ X → (−∞,+∞],M/= ∅, if one of the following conditions is fulfilled:
(a) X is a topological space and F is lower semicompact;

(b) X is a topological space,M is compact, and F is continuous.

Lemma 3.3. The extreme problem

inf
p∈Pad

I
(
p
) ≡ E

∫

T

∥∥U(t)p − g(t)∥∥2
Kdt = d

2, U ∈ L2(Ω × T ;L(P ;K)) (3.6)

has a solution, p∗ ∈ Pad ⊂ P , if one of the following conditions is fulfilled:

(a) Pad is a closed subspace of P ;

(b) Pad is a closed and convex in P .

Proof. Obviously, the condition (a) is a special case of the condition (b). So, it needs only proof
that the conclusion holds in the case (b).

Assume Kad = UPad. Obviously, Kad is closed and convex.
Suppose {pn} ⊂ Pad is a minimizing sequence, that is, I(pn) → d2.
In order to prove that {Upn} is a Cauchy sequence, we prove the following inequality:

E

∫

T

∥∥UP ′ −UP ′′∥∥2
dt

≤
{√

E

∫

T

∥∥UP ′ − g∥∥2
dt − d2 +

√

E

∫

T

∥∥UP ′′ − g∥∥2
dt − d2

}2

, ∀p′, p′′ ∈ p.
(3.7)

Obviously, we have the following inequality:

{
E

∫

T

(
UP ′ − g,UP ′′ − g)Kdt − d2

}2

≤
{
E

∫

T

∥∥UP ′ − g∥∥2
Kdt−d2

}{
E

∫

T

∥∥UP ′′ − g∥∥2
dt−d2

}
.

(3.8)

Therefore,

E

∫

T

∥∥UP ′ −UP ′′∥∥2
dt

=
{
E

∫

T

∥∥UP ′ − g∥∥2
dt − d2

}
− 2

{
E

∫

T

(
UP ′ − g,UP ′′ − g)dt − d2

}

+
{
E

∫

T

∥∥UP ′′ − g∥∥2
dt − d2

}
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≤
{
E

∫

T

∥∥UP ′ − g∥∥2
dt − d2

}

+ 2

√

E

∫

T

∥∥UP ′ − g∥∥2
dt − d2

√

E

∫

T

∥∥UP ′′ − g∥∥2
dt − d2

+
{
E

∫

T

∥∥UP ′′ − g∥∥2
dt − d2

}

=

{√

E

∫

T

∥∥UP ′ − g∥∥2
dt − d2 +

√

E

∫

T

∥∥UP ′′ − g∥∥2
dt − d2

}2

,

(3.9)

which is exactly (3.7).
For anym, n ∈ N, from (3.7) it has

E

∫

T

∥∥Upn+m −Upn
∥∥2
dt ≤

{√

E

∫

T

∥∥Upn+m − g∥∥2
dt − d2 +

√

E

∫

T

∥∥Upn − g
∥∥2
dt − d2

}2

.

(3.10)

Letting n → +∞, it obtains

Upn+m −Upn = o(1). (3.11)

Hence, {Upn} ⊂ Kad is a Cauchy sequence. Since Kad is closed, there exists y∗ ∈ Kad such
that

Upn −→ y∗, in L2
(
Ω;L2(T ;K)

)
. (3.12)

By the definition of Kad, there exists p∗ ∈ Pad such that y∗ = Up∗. Obviously, it has

I
(
p∗
)
= lim

n→∞
I
(
pn
)
= d2. (3.13)

Theorem 3.4. Let the assumptions of Theorem 3.1 be true and let one of the following be fulfilled:

(a) P is a finite-dimensional Euclidean space and Pad is convex, bounded, and closed;

(b) the function p → y(p) is linear, Λ is independent of p, and Pad is closed and convex;

(c) Pad is compact in P ,

then the optimization problem (1.9) has a solution, p∗ ∈ Pad, namely,

J
(
p∗
)
= min

p∈Pad
J
(
p
)
. (3.14)
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Proof. Obviously, the result can be obtained by Lemma 3.2 and Theorem 3.1 when (a) or (c)
is fulfilled.

If the condition (b) holds, there is an operator Y (t) ∈ L(Pad;S), for all t ∈ T , such that
for all p ∈ Pad, Y (t)p = y(t; p) is the solution of (1.1). Therefore,U = ΛY ∈ L2(Ω×T ;L(P ;K))
satisfies the assumptions of Lemma 3.3. So, by Lemma 3.3 the result immediately can be
obtained.

Furthermore, we also can obtain the smoothness of the mapping J(p).

Theorem 3.5. Let the assumptions of Theorem 2.8 be satisfied, g ∈ L2(Ω × T ;K), and let

Λ : p −→ L∞(T ;L(V ;K)) (3.15)

be Fréchet differentiable, then

J : p −→ R
+ (3.16)

is continuously Fréchet differentiable and the Fréchet differential of J at p along the direction h ∈ P is
determined by the following:

J ′
(
p
)
h = 2Eg

∫

T

(
Λ′(p

)
hy
(
t; p

)
+ Λ

(
p
)
y′(t; p

)
h,Λ

(
p
)
y
(
t; p

) − g(t))Kdt, (3.17)

where Λ′(p) ∈ L(P ;L(S;K)) and y′(t; p)h = ẏ(t) is determined by (2.43).

Proof. Take p, p ∈ Pad, set h = p − p, then we have

J
(
p
) − J(p) − 2Eg

∫

T

(
Λ′(p

)
hy
(
t; p

)
+ Λ

(
p
)
y′(t; p

)
h,Λ

(
p
)
y
(
t; p

) − g(t))Kdt

= Eg

∫

T

{((
Λ −Λ −Λ′

ph
)
y + Λ′

ph
(
y − y),Λy − g

)

K

+
(
Λ
(
y − y − y′

ph
)
,Λy − g

)

K

+
(
Λy − g,

(
Λ −Λ −Λ′

ph
)
y + Λ′

ph
(
y − y)

)

k

+
(
Λy − g,Λ

(
y − y − y′

ph
))

k

+
(
Λ′
phy + Λy′

ph,Λ
(
y − y) +

(
Λ −Λ

)
y
)

k

}
dt,

(3.18)

where y = y(p) and Λ = Λ(p). Letting p → p, that is, ‖h‖ → 0, it has

∣∣∣∣J
(
p
) − J(p) − 2Eg

∫

T

(
Λ′
phy + Λy′h,Λy − g

)

K
dt

∣∣∣∣ = o(‖h‖). (3.19)
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So, the functional J(p) is Fréchet differentiable and J ′(p)h is determined by (3.17), obviously,
p → J ′(p) is continuous.

It is now in the position to state necessary conditions for the optimization problem
(1.9).

Theorem 3.6. Let the assumptions of Theorem 3.5 be satisfied. If a point p0 ∈ Pad is a relative optimal
parameter for (1.9), then p0 is characterized by

J ′
(
p0
)(
p − p0

) ≡ 2Eg

∫

T

(
Λ′(p0

)(
p − p0

)
y
(
t; p0

)

+Λ
(
p0
)
y′(t; p0

)(
p − p0

)
,Λ
(
p0
)
y
(
t; p0

) − g(t))Kdt ≥ 0, p ∈ U ⊂ Pad,
(3.20)

whereU ∈ Pad is a neighbourhood of p0.

Proof. Firstly, let p0 be the relative optimal parameter, then, it has

J
(
p0
) ≤ J(p) = J(p0

)
+ J ′

(
p0
)(
p − p0

)
+ o

(∥∥p − p0
∥∥), ∀p ∈ U, (3.21)

from which it immediately obtains (3.20).
Alternatively suppose (3.20) is true. Using the Taylor formula with the Peano

remainder

J
(
p
)
= J

(
p0
)
+ J ′

(
p0
)(
p − p0

)
+ o

(∥∥p − p0
∥∥), (3.22)

it at once obtains

J
(
p
) ≥ J(p0

)
, p ∈ U. (3.23)

Theorem 3.7. Let the assumptions of Theorem 3.5 be satisfied and let the functional J(p) be convex. If
p0 ∈ Pad is an extreme point, then p0 is an optimal parameter and p0 is characterized by the following
inequality

J ′
(
p0
)(
p − p0

) ≥ 0, ∀p ∈ Pad. (3.24)

In particular, if p → y is linear, (3.24) is true.
(The results of this theorem are obvious, whom proof is omitted here.)
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Theorem 3.8. Let the assumptions of Theorem 3.5 be satisfied and let the observation operator Λ be
independent of p. Then the optimal parameter p0 that minimizes J(p) over Pad is characterized by the
following optimization system:

dy0 +
[
A
(
p0
)
+ B

(
p0
)]
y0dt = f

(
p0
)
dt + σ

(
p0
)
dwt, y0 = ϕ + ξ, (3.25)

−dz + [A(p0
)
+ B

(
p0
)]∗

zdt = Λ∗(Λy − g)dt, z
(
tf
)
= 0, (3.26)

1
2
J ′
(
p0
)(
p − p0

)
= Eg

∫

T

{(
f ′
ph − B′

phy0, z
)

H
−
〈
A′
phy0, z

〉

v′,v

}
dt ≥ 0, (3.27)

p ∈ Pad, where h = p − p0.

Proof. Firstly, using the flow of time reversed (changing t to tf − t) according to Lemma 2.1, it
is easy to show the problem (3.26) is well posed. By Theorems 3.5 and 3.6

0 ≤ 1
2
J ′
(
p0
)(
p − p0

)
= Eg

∫

T

(
Λy′(t; p0

)
h,Λy

(
t; p0

) − g(t))Kdt

= Eg

∫

T

〈
y′(t; p0

)
h,Λ∗[Λy − g]〉V,V ′dt, p ∈ Pad.

(3.28)

Setting ẏ = y′(t, p0)h and using (3.26) and (2.43), it has

0 ≤ J ′(p0
)
h = Eg

∫

T

〈
ẏ,−dz + (A + B)∗zdt

〉
V,V ′

= Eg

∫

T

〈
dẏ + (A + B)ẏdt, z

〉
V ′,V

= Eg

∫

T

〈[
f ′
ph −A′

phy0 − B′
phy0

]
dt + σ ′

phdw, z
〉

V ′V

= Eg

∫

T

{(
f ′
ph − B′

phy0, z
)

H
−
〈
A′
phy0, z

〉

V ′,V

}
dt.

(3.29)

4. Applications

In this section the above results are applied to systems governed by stochastic partial
differential equations. The following symbols are used:

D ⊂ R
n: a bounded open set;

∂D: the boundary of D, which is smooth;
dt: the partial differential with respect to t;
∂i = (∂/∂xi)(i = 1, ..., n);
Wm,2(s): Sobolev space, its definition can be found in [15].
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4.1. The System Governed by a Stochastic Parabolic Partial
Differential Equations

Consider the following stochastic parabolic partial differential equation:

dtu(x, t) =
n∑

i,j=1

∂i
(
aij(x)∂ju

)
dt − c(x, t)udt + f(x, t)dt + σ(x, t)dwt, (x, t) ∈ D × T,

u|∂D = 0,

u |t=t0 = ϕ(x) + ξ(x), x ∈ D,

(4.1)

where aij ∈Wm,2(D)withm > n/2, c ∈Wm,2(D×T), f ∈ L2(Ω×D×T), σ(·, t) ∈ L(W ;L2(D)),
for all t ∈ T , with

∫
T ‖σ(·, t)‖2L2(D)dt < ∞, ϕ ∈ L2(D), ξ ∈ L2(Ω × D), wt = w(t) is a Wiener

process inW .
The problem we shall deal with is to determine the unknown coefficients aij (i, j =

1, . . . , n) and c based on the measurement

z(x) = u
(
x, tf

)
, x ∈ D. (4.2)

Suppose H = L2(D) and V = H1
0(D), which is the subspace of W1,2(D) consisting of

all elements that vanish on the boundary, then V ′ = H−1(D). Note thatH = H ′. V ,H, and V ′

make up the evolutional tripe.
Take the unknown parameter p = (a11, . . . , ann, c) and define the parameter space by

P =
n∏

i,j=1

Wm,2(D) ×Wm,2(D × T), (4.3)

with the norm

∥∥p
∥∥2
P =

n∑

i,j=1

∥∥ai,j
∥∥2
Wm,2(D) + ‖c‖2Wm,2(D×T), (4.4)

then P is a Hilbert space.
In order to make sense of the problem (4.1), it assumes the admissible parameter set

Pad as follows:

Pad ≡
⎧
⎨

⎩
p ∈ P ; γ∣∣y∣∣2 ≤

n∑

i,j=1

ai,j(x)yiyj ≤ δ
∣∣y
∣∣2, ∀y =

(
y1, . . . , yn

) ∈ R
n, a.e. x ∈ D

⎫
⎬

⎭
, (4.5)

where γ and δ(0 < γ ≤ δ) are given constants.
Obviously, Pad is a convex and closed set in P . By the Sobolev imbedding theorem (see

Chapter [15], 6), the imbedding

Wm,2(D) −→ Cλ
(
D
)
⊂ C

(
D
)

(4.6)

is compact, where Cλ(D) is the Hölder space and λ ∈ (0, m − n/2).
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Next, define the operator

A ≡ −
n∑

i,j=1

∂i
(
ai,j∂j ·

)
, B(t) ≡ c(t), (4.7)

where c(t) ≡ c(·, t), and then, obviously, A(p) ∈ L(V, V ′). Using the generalized Green
formula, for all y, z ∈ V , it has

∣∣∣
〈
Ay, z

〉
V ′,V

∣∣∣ =

∣∣∣∣∣∣

〈

−
n∑

i,j=1

∂i
(
ai,j∂jy

)
, z

〉

V ′,V

∣∣∣∣∣∣

=

∣∣∣∣∣∣

⎛

⎝
n∑

i,j=1

ai,j∂jy, ∂iz

⎞

⎠

H

∣∣∣∣∣∣

≤ max
i,j

max
x∈D

∣∣ai,j(x)
∣∣∥∥∇y∥∥L2‖∇z‖L2

≤ c1
∥∥y

∥∥
V ‖z‖V .

(4.8)

Due to p ∈ Pad, it has

〈
Ay, y

〉
V ′V =

⎛

⎝
n∑

i,j=1

ai,j∂jy, ∂iy

⎞

⎠

H

≥ γ∥∥∇y∥∥2
L2 . (4.9)

By the Poincaré inequality it has

〈
Ay, y

〉
V ′,V ≥ c2

∥∥y
∥∥2
V , (4.10)

which, along with (4.8), shows that A satisfies (1.5).
Next, for all z ∈ V

‖B(t)z‖2H =
∫

D

|c(x, t)z(x)|2dx ≤ ‖c‖2L∞(D×T)

∫

D

|z(x)|2dx

≤ c0‖z‖2H ≤ c1‖z‖2V .
(4.11)

Therefore, B(t) ∈ L(V,H), for all t ∈ T .
Finally, set u(t) = u(·, t), f(t) = f(·, t), and σ(t) = σ(·, t). Thus, (4.1) can be written as

(3.25).
Summing up the above reasoning, it has the following theorem.

Theorem 4.1. If f ∈ L2(Ω ×D × T), then (4.1) has a unique solution u(p) = u(x, t; p):
u ∈ L2(Ω;C(T ;H) ∩ L2(Ω × T ;V ) ∩ C(T ;L2(Ω;H)) ≡ S,
u(·, t) is adapted to Ft (as a process with values inH),
u(·, t) is measurable with values in V .
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Theorem 4.2. If f ∈ L2(Ω×D×T), then for any p ∈ Pad, the mapping u(p) is continuously Fréchet
differentiable and its Fréchet differential u′(p)h = u̇ (h ∈ P) is determined by the following system:

dtu̇ −
∑

i,j

∂i
(
aij∂j u̇

)
dt + cu̇dt =

∑

i,j

∂i
(
Δai,j∂ju

)
dt −Δcudt,

u̇ |∂Ω = 0,

u̇ |t=t0 = 0,

(4.12)

where h = (Δa11, . . . ,Δann,Δc) ∈ P and u is determined by (4.1). Furthermore, the mapping u(p)
is infinitely Fréchet differentiable.

Because u ∈ C(T ;L2(Ω;H)), u(·, tf) ∈ L2(Ω;H). So, we can use the following cost
functional:

J
(
p
)
= E

∫

D

∣∣u
(
x, tf ; p

) − z(x)∣∣2dx, p ∈ Pad, (4.13)

in order to determine p. The operator Λ

Λu = u
(·, tf

)
, x ∈ D, Λ : C

(
T ;L2(Ω;H)

)
−→ L2(Ω;H) (4.14)

obviously satisfies Λ ∈ L(S;L2(Ω;H)).

Theorem 4.3. The mapping J(p) defined by (4.13) is continuously Fréchet differentiable and its
Fréchet differential is determined by

J ′
(
p
)
h = −2E

∫

D

∫

T

⎧
⎨

⎩

n∑

i,j=1

Δai,j∂iv∂ju + Δcuv

⎫
⎬

⎭
dt dx

=
〈
grad J, h

〉
P ′,P ,

(4.15)

where h = (Δa11, . . . ,Δann,Δc) ∈ P , the gradient operator is

grad J = −2E
∫

T

(∂1v∂1u, ∂1v∂2u, . . . , ∂nv∂nu)dt ∈ P ′, (4.16)

u = u(p) is the solution of (4.1), and v = v(p) is defined by the following system:

−dtv =
n∑

i,j

∂j
(
aij∂iv

)
dt − cvdt, (x, t) ∈ D × T,

v |∂D = 0,

v |t=tf = u|t=tf − z.

(4.17)
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4.2. Example 2

Consider the following system:

dtu −Δudt =
m∑

i=1

aifi(x, t)dt + σ(x, t)dwt, (x, t) ∈ D × T,

u|∂D = 0, t ∈ T,
u |t=t0 = ϕ(x) + ζ(x), x ∈ D,

(4.18)

where D ⊂ R
n with n ≤ 3.

The problem addressed is to identify the unknown parameter p = (a1, . . . , am) ∈ R
m,

which varies in an admissible parameter set Pad ≡ {p ∈ R
m; 0 ≤ γ ≤ ‖p‖Rm ≤ δ} based on the

approximate point measurement:

zi(x, t) = u(x, t), a.e. x ∈ Di, ∀t ∈ T, i = 1, . . . , L, (4.19)

where Di is the ε-neighbourhood of xi ∈ D and Di ∩Dj = ∅ (i /= j).
In order to make sense of (4.19), it assumes

fi ∈ L2
(
T ;W1,2(D)

)
, i = 1, . . . , m,

∂jσ(t) ∈ L(W,H),
∫

T

∥∥∂jσ(t)
∥∥2
L(W,H)dt <∞, j = 1, ..., n.

(4.20)

It is easy to prove that u(t) ∈ W2,2(D) ∩H1
0(D). Using the Sobolev embedding theorem [15],

it hasW2,2(D) ⊂ C(D). So (4.19) is sensible.
Introduce the characteristic function of Di:

χDi(x) =

{
1, x ∈ Di,

0, otherwise,
(4.21)

and the cost functional

min
p∈Pad

J
(
p
) ≡

L∑

i=1

E

∫

D

∫

T

[
χDi(x)

[
u
(
x, t; p

) − zi(x, t)
]]2

dtdx. (4.22)
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In the manner similar to reasoning in Section 4.1 it can be proved that the function u(p)
is continuously Fréchet differentiable and its Fréchet differential, u̇ = u′(p)h, h = (Δa1,
. . . ,Δam) ∈ R

m, is determined by the following:

dtu̇ −Δu̇dt =
m∑

i=1

Δaifidt, (x, t) ∈ D × T,

u̇ |∂D = 0,

u̇ |t=t0 = 0.

(4.23)

Furthermore, it can also be proved that the functional J(p) is continuously Fréchet
differentiable and its Fréchet differential is

J ′
(
p
)
h = 2

L∑

i=1

E

∫

T

∫

D

χDi(x)
[
u
(
x, t; p

) − zi(x, t)
]
u̇
(
x, t; p

)
dx dt. (4.24)

Now, the main results are given as followings.

Theorem 4.4. The functional J(p) is continuously Fréchet differentiable and its Fréchet differentiable
is

J ′
(
p
)
h =

(
grad J, h

)
Rm, (4.25)

where grad J is the gradient of J(p) determined by the following:

grad J =
(
E

∫

T

∫

D

vf1dx dt, . . . , E

∫

T

∫

D

vfmdx dt

)
∈ R

m, (4.26)

where v is the solution to the following initial-boundary problem:

−dtv −Δvdt = 2
L∑

i=1

χDi(x)
[
u
(
x, t; p

) − z(x, t)]dt, (x, t) ∈ D × T,

v |∂Ω = 0, v|t=tf = 0

(4.27)

and u(x, t; p) is the solution to the problem (4.18).
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Proof. By the formulae (4.24), (4.23), and (4.27), and using the integration by parts, it has

J ′
(
p
)
h = E

∫

T

∫

D

(−dtv −Δvdt)u̇dx

= E
∫

T

∫

D

v(dtu̇ −Δu̇dt)dx = E
∫

T

∫

D

m∑

i=1

vΔaifidx dt

=
m∑

i=1

ΔaiE
∫

T

∫

D

vfidx dt =
(
grad J, h

)
Rm.

(4.28)

5. Conclusion

In this paper we consider solving of the parameter contained in a linear stochastic evolution
equation (LSEE) by means of smooth optimization methods. We prove that the solution to
the LSEE continuously depends on the parameter and is continuously Fréchet differentiable
with respect to parameter. We also prove that the cost functional is continuously Fréchet
differentiable with respect to parameter. Based on the above results the necessary conditions,
which the optimal parameter should satisfy, are presented. Moreover, the sufficient
conditions, under which there exists an optimal parameter, also are presented. Finally we
apply the results to stochastic partial differential equations with a final measurement and an
approximate point measurement, respectively.

It should be pointed out that we only consider the linear stochastic evolution equation
(LSEE) without measurement errors. The case with measurement errors, such as filtering of
diffusion processes [16], is worth investigating in the future.
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