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A wave equation of the Kirchhoff type with several nonlinearities is stabilized by a viscoelastic
damping. We consider the case of nonconstant (and unbounded) coefficients. This is a nondissipa-
tive case, and as a consequence the nonlinear terms cannot be estimated in the usual manner by the
initial energy. We suggest a way to get around this difficulty. It is proved that if the solution enters
a certain region, which we determine, then it will be attracted exponentially by the equilibrium.

1. Introduction

We will consider the following wave equation with a viscoelastic damping term:

utt +
m∑

i=1

bi(t)|u|piu =

⎛

⎝1 +
k∑

j=1

aj(t)‖∇u‖2qj2

⎞

⎠Δu

−
∫ t

0
h(t − s)Δu(s)ds, in Ω × R+,

u = 0, on Γ × R+,

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

(1.1)

where Ω is a bounded domain in Rn with smooth boundary Γ = ∂Ω and pi, qj >
0, i = 1, . . . , m, j = 1, . . . , k. The functions u0(x) and u1(x) are given initial data, and
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the (nonnegative) functions aj(t), bi(t), and h(t) are at least absolutely continuous and will
be specified later on. This problem arises in viscoelasticity where it has been shown by
experiments that when subject to sudden changes, the viscoelastic response not only does
depend on the current state of stress but also on all past states of stress. This gives rise
to the integral term called the memory term. One may find a rich literature in this regard
(with or without the Kirchhoff terms) treating mainly the stabilization of such systems for
different classes of functions h. We refer the reader to [1–25] and the references therein. For
problems of the Kirchhoff type, one can consult [26–35] and in particular [36–46] where the
equations are supplemented by a nonlinear source. Several questions, such as well-posedness
and asymptotic behavior, have been discussed in these references, to cite but a few.

As is clear from the equation in (1.1), we consider here several nonlinearities and
the relaxation function is not necessarily decreasing or even nonincreasing. These issues
are important but do not constitute the main contribution in the present paper. In case that
aj(t) and bi(t) are not nonincreasing, then we are in a nondissipative situation. This is the
case also when the relaxation function oscillates (in case aj(t), bi(t) are nonincreasing). Our
argument here is simple and flexible. It relies on a Gronwall-type inequality involving several
nonlinearities. We prove that there exists a sufficiently large T > 0 and a constant U after
which (the modified energy of) global solutions are bounded below by U or decay to zero
exponentially. We were not able to find conditions directly on the initial data because the
Gronwall inequality is applicable only after some large values of time.

For simplicity we shall consider the simpler case p1 = p, pi = 0, b1 = b, bi = 0, i =
2, . . . , m and q1 = q, qj = 0, a1 = a, aj = 0, j = 2, . . . , k.

The local existence and uniqueness may be found in [36, 37].

Theorem 1.1. Assume that (u0, u1) ∈ H1
0(Ω) × L2(Ω) and h(t) is a nonnegative summable kernel.

If 0 < p < 2/(n − 2) when n ≥ 3 and p > 0 when n = 1, 2, then there exists a unique solution u to
problem (1.1) such that

u ∈ C
(
[0, T];H1

0(Ω)
)
∩ C1

(
[0, T];L2(Ω)

)
(1.2)

for T small enough.

The plan of the paper is as follows. In the next section we prepare some materials
needed to prove our result. Section 3 is devoted to the statement and proof of our theorem.

2. Preliminaries

In this section we define the different functionals wewill work with.We prove an equivalence
result between two functionals. Further, some useful lemmas are presented. We define the
(classical) energy by

E(t) =
1
2

(
‖ut‖22 + ‖∇u‖22

)
+

a(t)
2
(
q + 1

)‖∇u‖2(q+1)2 +
b(t)
p + 2

‖u‖p+2p+2, t ≥ 0, (2.1)
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where ‖ · ‖p denotes the norm in Lp(Ω). Then by (1.1) it is easy to see that for t ≥ 0

E′(t) =
∫

Ω
∇ut ·

∫ t

0
h(t − s)∇u(s)dsdx +

a′(t)
2
(
q + 1

)‖∇u‖2(q+1)2 +
b′(t)
p + 2

‖u‖p+2p+2. (2.2)

The first term in the right-hand side of (2.2) may be written as the derivative of some
expression; namely,

∫

Ω
∇ut ·

∫ t

0
h(t − s)∇u(s)dsdx =

1
2

∫

Ω

(
h′�∇u

)
dx − 1

2
h(t)‖∇u‖22

− 1
2
d

dt

{∫

Ω
(h�∇u)dx −

(∫ t

0
h(s)ds

)
‖∇u‖22

}
,

(2.3)

where

(h�v)(t) :=
∫ t

0
h(t − s)|v(t) − v(s)|2ds. (2.4)

Therefore, if we modify E(t) to

E(t) := 1
2

{
‖ut‖22 +

(
1 −
∫ t

0
h(s)ds

)
‖∇u‖22 +

∫

Ω
(h�∇u)dx

}

+
a(t)

2
(
q + 1

)‖∇u‖2(q+1)2 +
b(t)
p + 2

‖u‖p+2p+2,

(2.5)

we obtain for t ≥ 0

E′(t) =
1
2

∫

Ω

((
h′�∇u

) − h(t)|∇u|2
)
dx +

a′(t)
2
(
q + 1

)‖∇u‖2(q+1)2 +
b′(t)
p + 2

‖u‖p+2p+2. (2.6)

Assuming that

1 −
∫+∞

0
h(s)ds =: 1 − κ > 0 (2.7)

makes E(t) a nonnegative functional. The following functionals

Φ1(t) :=
∫

Ω
utu dx,

Φ2(t) := −
∫

Ω
ut

∫ t

0
h(t − s)(u(t) − u(s))dsdx

(2.8)
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are standard and will be used here. The next ones have been introduced by the present author
in [24]

Φ3(t) :=
∫ t

0
Hγ(t − s)‖∇u(s)‖22ds, Φ4(t) :=

∫ t

0
Ψγ(t − s)‖∇u(s)‖22ds, (2.9)

where

Hγ(t) := γ(t)−1
∫∞

t

h(s)γ(s)ds, Ψγ(t) := γ(t)−1
∫∞

t

ξ(s)γ(s)ds, t ≥ 0, (2.10)

and γ(t) and ξ(t) are two nonnegative functions which will be precised later (see (H2), (H3)).
The functional

L(t) := E(t) +
4∑

i=1

λiΦi(t) (2.11)

for some λi > 0, i = 1, 2, 3, 4, to be determined is equivalent to E(t) + Φ3(t) + Φ4(t).

Proposition 2.1. There exist ρi > 0, i = 1, 2 such that

ρ1[E(t) + Φ3(t) + Φ4(t)] ≤ L(t) ≤ ρ2[E(t) + Φ3(t) + Φ4(t)] (2.12)

for all t ≥ 0 and small λi, i = 1, 2.

Proof. By the inequalities

Φ1(t) =
∫

Ω
utu dx ≤ 1

2
‖ut‖22 +

Cp

2
‖∇u‖22,

Φ2(t) ≤ 1
2
‖ut‖22 +

Cpκ

2

∫

Ω
(h�∇u)dx,

(2.13)

where Cp is the Poincaré constant, we have

L(t) ≤ 1
2
(1 + λ1 + λ2)‖ut‖22 +

1
2

(
1 −
∫ t

0
h(s)ds + λ1Cp

)
‖∇u‖22 +

b(t)
p + 2

‖u‖p+2p+2

+
1
2
(
1 + λ2Cpκ

) ∫

Ω
(h�∇u)dx +

a(t)
2
(
q + 1

)‖∇u‖2(q+1)2 + λ3Φ3(t) + λ4Φ4(t), t ≥ 0.

(2.14)
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On the other hand,

2L(t) ≥ (1 − λ1 − λ2)‖ut‖22 +
(
1 − λ2Cpκ

) ∫

Ω
(h�∇u)dx +

2b(t)
p + 2

‖u‖p+2p+2

+
a(t)
q + 1

‖∇u‖2(q+1)2 +
[
1 − κ − λ1Cp

]‖∇u‖22 + 2λ3Φ3(t) + 2λ4Φ4(t).

(2.15)

Therefore, ρ1[E(t) + Φ3(t) + Φ4(t)] ≤ L(t) ≤ ρ2[E(t) + Φ3(t) + Φ4(t)] for some constant ρi >
0, i = 1, 2 and small λi, i = 1, 2 such that λ1 < min{1, (1−κ)/Cp} and λ2 < min{1/Cpκ, 1− λ1}.

The identity to follow is easy to justify and is helpful to prove our result.

Lemma 2.2. One has for h ∈ C(0,∞) and v ∈ C((0,∞);L2(Ω))

∫

Ω
v(t)

∫ t

0
h(t − s)v(s)dsdx =

1
2

(∫ t

0
h(s)ds

)
‖v(t)‖22

+
1
2

∫ t

0
h(t − s)‖v(s)‖22ds −

1
2

∫

Ω
(h�v)dx, t ≥ 0.

(2.16)

The next lemma is crucial in estimating (partially) our nonlinear terms. It can be found
in [47].

Let I ⊂ R, and let g1, g2 : I → R \ {0}. We write g1 ∝ g2 if g2/g1 is nondecreasing in I.

Lemma 2.3. Let a(t) be a positive continuous function in J := [α, β), kj(t), j = 1, . . . , n are
nonnegative continuous functions, gj(u), j = 1, . . . , n are nondecreasing continuous functions in R+,
with gj(u) > 0 for u > 0, and u(t) is a nonnegative continuous functions in J . If g1 ∝ g2 ∝ · · · ∝ gn
in (0,∞), then the inequality

u(t) ≤ a(t) +
n∑

j=1

∫ t

α

kj(s)gj(u(s))ds, t ∈ J, (2.17)

implies that

u(t) ≤ cn(t), α ≤ t < β0, (2.18)

where c0(t) := sup0≤s≤ta(s),

cj(t) := G−1
j

[
Gj

(
cj−1(t)

)
+
∫ t

α

kj(s)ds

]
, j = 1, . . . , n,

Gj(u) :=
∫u

uj

dx

gj(x)
, u > 0

(
uj > 0, j = 1, ..., n

)
,

(2.19)

and β0 is chosen so that the functions cj(t), j = 1, . . . , n are defined for α ≤ t < β0.
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Lemma 2.4. Assume that 2 ≤ q < +∞ if n = 1, 2 or 2 ≤ q < 2n/(n − 2) if n ≥ 3. Then there exists a
positive constant Ce = Ce(Ω, q) such that

‖u‖q ≤ Ce‖∇u‖2 (2.20)

for u ∈ H1
0(Ω).

3. Asymptotic Behavior

In this section we state and prove our result. To this end we need some notation. For every
measurable set A ⊂ R+, we define the probability measure ĥ by

ĥ(A) :=
1
κ

∫

A
h(s)ds. (3.1)

The nondecreasingness set and the non-decreasingness rate of h are defined by

Qh :=
{
s ∈ R+ : h(s) > 0, h′(s) ≥ 0

}
, (3.2)

Rh := ĥ(Qh), (3.3)

respectively.
The following assumptions on the kernel h(t)will be adopted.

(H1) h(t) ≥ 0 for all t ≥ 0 and 0 < κ =
∫+∞
0 h(s)ds < 1.

(H2) h is absolutely continuous and of bounded variation on (0,∞) and h′(t) ≤ ξ(t) for
some nonnegative summable function ξ(t) (= max{0, h′(t)} where h′(t) exists) and
almost all t > 0.

(H3) There exists a nondecreasing function γ(t) > 0 such that γ ′(t)/γ(t) = η(t) is a
nonincreasing function:

∫+∞
0 h(s)γ(s)ds < +∞ and

∫+∞
0 ξ(s)γ(s)ds < +∞.

Note that a wide class of functions satisfies the assumption (H3). In particular,
exponentially and polynomially (or power type) decaying functions are in this class.

Let t∗ > 0 be a number such that
∫ t∗
0 h(s)ds = h∗ > 0. We denote by Bt the set Bt :=

B ∩ [0, t].

Lemma 3.1. One has for t ≥ t∗ and δi > 0, i = 1, . . . , 5

Φ′
2(t) ≤(1 − h∗)

[
δ1 +

3
2

∫

Qt

h(t − s)ds

]
‖∇u‖22 + (δ3 − h∗)‖ut‖22

+
[
(1 − h∗)

κ

4δ1
+
(
1 +

1
δ2

)
κ

] ∫

Ω

∫

At

h(t − s)|∇u(t) − ∇u(s)|2dsdx
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+
1
2
(1 − h∗)

∫

Qt

h(t − s)‖∇u(s)‖22ds −
Cp

4δ3
BV [h]

∫

Ω

(
h′�∇u

)
dx

+ (1 + δ2)

(∫

Qt

h(t − s)ds

)∫

Ω

∫

Qt

h(t − s)|∇u(t) − ∇u(s)|2dsdx

+
2p+1δ4Ceb

2(t)

(1 − κ)p+1
Ep+1(t) +

Cpκ

4δ4

∫

Ω
(h�∇u)dx + δ5a(t)‖∇u‖2(q+1)2 +

2q−1κa(t)
δ5(1 − κ)q

Eq+1(t)

+
Cp

4δ3

(∫

Qt

ξ(t − s)ds

)∫

Ω

∫

Qt

ξ(t − s)|∇u(t) − ∇u(s)|2dsdx,

(3.4)

where BV [h] is the total variation of h.

Proof. This lemma is proved by a direct differentiation of Φ2(t) along solutions of (1.1) and
estimation of the different terms in the obtained expression of the derivative. Indeed, we have

Φ′
2(t) = −

∫

Ω
utt

∫ t

0
h(t − s)(u(t) − u(s))dsdx

−
∫

Ω
ut

[∫ t

0
h′(t − s)(u(t) − u(s))ds + ut

∫ t

0
h(s)ds

]
dx

(3.5)

or

Φ′
2(t) = −

∫

Ω

[(
1 −
∫ t

0
h(s)ds

)
Δu − b(t)|u|pu + a(t)‖∇u‖2q2 Δu

+
∫ t

0
h(t − s)(Δu(t) −Δu(s))ds

]∫ t

0
h(t − s)(u(t) − u(s))dsdx

−
(∫ t

0
h(s)ds

)
‖ut‖22 −

∫

Ω
ut

∫ t

0
h′(t − s)(u(t) − u(s))dsdx, t ≥ 0.

(3.6)

Therefore,

Φ′
2(t) =

(
1 −
∫ t

0
h(s)ds + a(t)‖∇u‖2q2

)

×
∫

Ω
∇u ·

∫ t

0
h(t − s)(∇u(t) − ∇u(s))dsdx −

(∫ t

0
h(s)ds

)
‖ut‖22
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+ b(t)
∫

Ω
|u|pu

∫ t

0
h(t − s)(u(t) − u(s))dsdx −

∫

Ω
ut

∫ t

0
h′(t − s)(u(t) − u(s))dsdx

+
∫

Ω

∣∣∣∣∣

∫ t

0
h(t − s)(∇u(t) − ∇u(s))ds

∣∣∣∣∣

2

dx, t ≥ 0.

(3.7)

For all measurable setsA and Q such that A = R+ \ Q, it is clear that

∫

Ω
∇u ·

∫ t

0
h(t − s)(∇u(t) − ∇u(s))dsdx

=
∫

Ω
∇u ·

∫

A∩[0,t]
h(t − s)(∇u(t) − ∇u(s))dsdx

+
∫

Ω
∇u ·

∫

Q∩[0,t]
h(t − s)(∇u(t) − ∇u(s))dsdx

=
∫

Ω
∇u ·

∫

A∩[0,t]
h(t − s)(∇u(t) − ∇u(s))dsdx

+

(∫

Q∩[0,t]
h(t − s)ds

)
‖∇u‖22 −

∫

Ω
∇u ·

∫

Q∩[0,t]
h(t − s)∇u(s)dsdx, t ≥ 0.

(3.8)

For δ1 > 0, the first term in the right-hand side of (3.8) satisfies

∫

Ω
∇u ·

∫

At

h(t − s)(∇u(t) − ∇u(s))dsdx

≤ δ1‖∇u‖22 +
κ

4δ1

∫

Ω

∫

At

h(t − s)|∇u(t) − ∇u(s)|2dsdx, t ≥ 0,

(3.9)

and the third one fulfills

∫

Ω
∇u ·

∫

Qt

h(t − s)∇u(s)dsdx

≤ 1
2

(∫

Qt

h(t − s)ds

)
‖∇u‖22 +

1
2

∫

Qt

h(t − s)‖∇u(s)‖22ds, t ≥ 0.

(3.10)
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Back to (3.8)we may write

∫

Ω
∇u ·

∫ t

0
h(t − s)(∇u(t) − ∇u(s))dsdx

≤ δ1‖∇u‖22 +
κ

4δ1

∫

Ω

∫

At

h(t − s)|∇u(t) − ∇u(s)|2dsdx

+
3
2
‖∇u‖22

∫

Qt

h(t − s)ds +
1
2

∫

Qt

h(t − s)‖∇u(s)‖22ds, t ≥ 0.

(3.11)

The last term in the right-hand side of (3.7) will be estimated as follows:

∫

Ω

∣∣∣∣∣

∫ t

0
h(t − s)(∇u(t) − ∇u(s))ds

∣∣∣∣∣

2

dx

≤
(
1 +

1
δ2

)
κ

∫

Ω

∫

At

h(t − s)|∇u(t) − ∇u(s)|2dsdx

+ (1 + δ2)

(∫

Qt

h(t − s)ds

)∫

Ω

∫

Qt

h(t − s)|∇u(t) − ∇u(s)|2dsdx, δ2 > 0.

(3.12)

For the fourth term in (3.7), it holds that

−
∫

Ω
ut

∫ t

0
h′(t − s)(u(t) − u(s))dsdx

≤ δ3‖ut‖22 −
Cp

4δ3
BV [h]

∫

Ω

(
h′�∇u

)
dx

+
Cp

4δ3

(∫

Qt

ξ(t − s)ds

)∫

Ω

∫

Qt

ξ(t − s)|∇u(t) − ∇u(s)|2dsdx, δ3 > 0, t ≥ 0.

(3.13)

Moreover, from Lemma 2.4, for p > 0 if n = 1, 2 and 0 < p < 2/(n − 2) if n ≥ 3, we find

b(t)
∫

Ω
|u|pu

∫ t

0
h(t − s)(u(t) − u(s))dsdx

≤ δ4b
2(t)‖u‖2(p+1)2(p+1) +

Cp

4δ4

(∫ t

0
h(s)ds

)∫

Ω
(h�∇u)dx

≤ δ4Ceb
2(t)‖∇u‖2(p+1)2 +

Cpκ

4δ4

∫

Ω
(h�∇u)dx

≤ 2p+1δ4Ceb
2(t)

(1 − κ)p+1
Ep+1(t) +

Cpκ

4δ4

∫

Ω
(h�∇u)dx, δ4 > 0, t ≥ 0.

(3.14)
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The definition of E(t) in (2.5) allows us to write

a(t)‖∇u‖2q2
∫

Ω
∇u ·

∫ t

0
h(t − s)(∇u(t) − ∇u(s))dsdx

≤ a(t)‖∇u‖2q2
{
δ5‖∇u‖22 +

κ

4δ5

∫

Ω
(h�∇u)dx

}

≤ δ5a(t)‖∇u‖2(q+1)2 +
2q−1κa(t)
δ5(1 − κ)q

Eq+1(t), δ5 > 0, t ≥ 0.

(3.15)

Gathering all the relations (3.11)–(3.15) together with (3.7), we obtain for t ≥ t∗

Φ′
2(t) ≤ (1 − h∗)

[
δ1 +

3
2

∫

Qt

h(t − s)ds

]
‖∇u‖22 + (δ3 − h∗)‖ut‖22

+
[
(1 − h∗)

κ

4δ1
+
(
1 +

1
δ2

)
κ

] ∫

Ω

∫

At

h(t − s)|∇u(t) − ∇u(s)|2dsdx

+
1
2
(1 − h∗)

∫

Qt

h(t − s)‖∇u(s)‖22ds −
Cp

4δ3
BV [h]

∫

Ω

(
h′�∇u

)
dx

+ (1 + δ2)

(∫

Qt

h(t − s)ds

)∫

Ω

∫

Qt

h(t − s)|∇u(t) − ∇u(s)|2dsdx

+
2p+1δ4Ceb

2(t)

(1 − κ)p+1
Ep+1(t) +

Cpκ

4δ4

∫

Ω
(h�∇u)dx + δ5a(t)‖∇u‖2(q+1)2 +

2q−1κa(t)
δ5(1 − κ)q

Eq+1(t)

+
Cp

4δ3

(∫

Qt

ξ(t − s)ds

)∫

Ω

∫

Qt

ξ(t − s)|∇u(t) − ∇u(s)|2dsdx.

(3.16)

In the following theorem we will assume that p < q just to fix ideas. The result is also
valid for p > q. It suffices to interchange p ↔ q and A(t) ↔ B(t) in the proof following it. The
case p = q is easier.

We will make use of the following hypotheses for some positive constants A, B, U,
and V to be determined.

(A) a(t) is a continuously differentiable function such that a′(t) < Aa(t), t ≥ 0.

(B) b(t) is a continuously differentiable function such that b′(t) < Bb(t), t ≥ 0.

(C) p > 0 if n = 1, 2 and 0 < p < 2/(n − 2) if n ≥ 3.

(D) [
∫∞
0 a(s)e−qsds]1/q[

∫∞
0 b2(s)e−psds]1/p < U.

(E) [
∫∞
0 a(s)e−q

∫s
0 η(τ)dτds]

1/q
[
∫∞
0 b2(s)e−p

∫s
0 η(τ)dτds]

1/p
< V .
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Theorem 3.2. Assume that the hypotheses (H1)–(H3), (A)–(C) hold and Rh < 1/4. If limt→∞η(t) =
η /= 0, then, for global solutions and small

∫
Q ξ(s)ds, there exist T1 > 0 and U > 0 such that L(t) >

U, t ≥ T1 or

E(t) ≤ M1e
−ν1t, t ≥ 0 (3.17)

for some positive constants M1 and ν1 as long as (D) holds. If η = 0, then there exist T2 > 0 and
V > 0 such that L(t) > V, t ≥ T2 or

E(t) ≤ M2e
−ν2

∫ t
0 η(s)ds, t ≥ 0 (3.18)

for some positive constants M2 and ν2 as long as (E) holds.

Proof. A differentiation of Φ1(t)with respect to t along trajectories of (1.1) gives

Φ′
1(t) := ‖ut‖22 − ‖∇u‖22 +

∫

Ω
∇u ·

∫ t

0
h(t − s)∇u(s)dsdx

− a(t)‖∇u‖2(q+1)2 − b(t)‖u‖p+2p+2,

(3.19)

and Lemma 2.2 implies

Φ′
1(t) ≤ ‖ut‖22 −

(
1 − κ

2

)
‖∇u‖22 +

1
2

∫ t

0
h(t − s)‖∇u(s)‖22ds

− 1
2

∫

Ω
(h�∇u)dx − a(t)‖∇u‖2(q+1)2 − b(t)‖u‖p+2p+2, t ≥ 0.

(3.20)

Next, a differentiation of Φ3(t) and Φ4(t) yields

Φ′
3(t) = Hγ(0)‖∇u‖22 +

∫ t

0
H ′

γ(t − s)‖∇u(s)‖22ds

= Hγ(0)‖∇u‖22 −
∫ t

0

γ ′(t − s)
γ(t − s)

Hγ(t − s)‖∇u(s)‖22ds −
∫ t

0
h(t − s)‖∇u(s)‖22ds

≤ Hγ(0)‖∇u‖22 − η(t)Φ3(t) −
∫ t

0
h(t − s)‖∇u(s)‖22ds, t ≥ 0,

Φ′
4(t) = Ψγ(0)‖∇u‖22 +

∫ t

0
Ψ

′
γ (t − s)‖∇u(s)‖22ds

= Ψγ(0)‖∇u‖22 −
∫ t

0

γ ′(t − s)
γ(t − s)

Ψγ(t − s)‖∇u(s)‖22ds −
∫ t

0
ξ(t − s)‖∇u(s)‖22ds

≤ Ψγ(0)‖∇u‖22 − η(t)Φ4(t) −
∫ t

0
ξ(t − s)‖∇u(s)‖22ds, t ≥ 0.

(3.21)
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Taking into account Lemma 3.1 and the relations (2.6), (3.20)-(3.21), we see that

L′(t) ≤
(
1
2
− Cp

4δ3
λ2BV [h]

)∫

Ω

(
h′�∇u

)
dx + [λ1 + (δ3 − h∗)λ2]‖ut‖22

+

{
λ2(1 − h∗)

[
δ1 +

3
2

∫

Qt

h(t − s)ds

]
+ λ3Hγ(0) + λ4Ψγ(0) − λ1

(
1 − κ

2

)}

× ‖∇u‖22 +
(
λ1
2

+
λ2(1 − h∗)

2
− λ3

)∫ t

0
h(t − s)‖∇u(s)‖22ds

+

[
a′(t)

2
(
q + 1

) + δ5λ2a(t) − λ1a(t)

]
‖∇u‖2(q+1)2 +

[
(1 + δ2)λ2

∫

Qt

h(t − s)ds − λ1
2

]

×
∫

Ω
(h�∇u)dx + λ2κ

[
1 +

1 − h∗
4δ1

+
1
δ2

] ∫

Ω

∫

At

h(t − s)|∇u(t) − ∇u(s)|2dsdx

− λ3η(t)Φ3(t) − λ4η(t)Φ4(t) +
[
b′(t)
p + 2

− λ1b(t)
]
‖u‖p+2p+2 +

λ2Cpκ

4δ4

∫

Ω
(h�∇u)dx

+
2q−1κa(t)
δ5(1 − κ)q

λ2Eq+1(t) +
2p+1δ4Ceb

2(t)

(1 − κ)p+1
λ2Ep+1(t) − λ4

∫ t

0
ξ(t − s)‖∇u(s)‖22ds

+
λ2Cp

4δ3

(∫

Qt

ξ(t − s)ds

)∫

Qt

ξ(t − s)‖∇u(t) − ∇u(s)‖22ds, t ≥ t∗.

(3.22)

Next, as in [17], we introduce the sets

An :=
{
s ∈ R+ : nh′(s) + h(s) ≤ 0

}
, n ∈ N, (3.23)

and observe that

⋃

n

An = R+ \ {Qh ∪Nh}, (3.24)

whereNh is the null set where h′ is not defined andQh is as in (3.2). Furthermore, if we denote
Qn := R+ \ An, then limn→∞ĥ(Qn) = ĥ(Qh) because Qn+1 ⊂ Qn for all n and

⋂
n Qn = Qh ∪Nh.

Moreover, we designate by Ãnt the sets

Ãnt :=
{
s ∈ R+ : 0 ≤ s ≤ t, nh′(t − s) + h(t − s) ≤ 0

}
, n ∈ N. (3.25)

In (3.22), we take At := Ãnt and Qt := Q̃nt. Choosing λ1 = (h∗ − ε)λ2, it is clear that

(1 + δ2)λ2κĥ(Qn) − λ1
2

≤ 0 (3.26)
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for small ε and δ2, large n and t∗, if ĥ(Q) < 1/4. We deduce that

(1 + δ2)λ2

∫

Q̃nt

h(t − s)ds − λ1
2

< 0. (3.27)

Furthermore, if ĥ(Q) < 1/4, then

3(1 − h∗)
2

∫

Q̃nt

h(t − s)ds < δh∗
(
1 − κ

2

)
(3.28)

with

δ =
3(1 − h∗)κ
4(2 − κ)h∗

+ β (3.29)

and a small β > 0. Pick

λ3 =
1
2
[λ1 + λ2(1 − h∗)] (3.30)

and Hγ(0) such that

λ3Hγ(0) < λ2
(1 − δ)h∗(2 − κ)

2
. (3.31)

Note that this is possible if t∗ is so large that h∗ > 7κ/(8 − κ) even though

Hγ(0) = γ(0)−1
∫∞

0
h(s)γ(s)ds ≥

∫∞

0
h(s)ds = κ. (3.32)

Taking the relations (3.22)–(3.30) into account and selecting λ2 < δ3/CpBV [h] so that

1
2
− Cpλ2

4δ3
BV [h] ≥ 1

4
, (3.33)

and small enough so that

λ2κ

(
1 +

1 − h∗
4δ1

+
1
δ2

+
Cp

4δ4

)
<

1
4n

, (3.34)
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we find for δ3 = ε/2, large δ4, small Ψγ(0), and t ≥ t∗

L′(t) ≤ − C1

{
‖ut‖22 + ‖∇u‖22 +

∫

Ω
(h�∇u)dx

}
+
2p+1δ4Ceb

2(t)

(1 − κ)p+1
λ2Ep+1(t)

+

[
a′(t)

2
(
q + 1

) + δ5λ2a(t) − λ1a(t)

]
‖∇u‖2(q+1)2 +

2q−1κa(t)
δ5(1 − κ)q

λ2Eq+1(t) − λ3η(t)Φ3(t)

− λ4η(t)Φ4(t) +
1
2

[
1 +

λ2Cp

2δ3

∫

Qt

ξ(t − s)ds

]∫

Ω

∫

Qnt

h′(t − s)|∇u(t) − ∇u(s)|2dsdx

+
[
b′(t)
p + 2

− λ1b(t)
]
‖u‖p+2p+2 − λ4

∫ t

0
ξ(t − s)‖∇u(s)‖22ds

(3.35)

for some positive constant C1. Take λ4 > 1 + (λ2Cp/2δ3)
∫
Q ξ(s)ds, δ5,

∫
Q ξ(s)ds small, and

a′(t)
2
(
q + 1

) < (λ1 − α)a(t) (3.36)

(i.e., A = 2(q + 1)(λ1 − α) for some 0 < α < λ1) and

b′(t)
p + 2

<
(
λ1 − β

)
b(t) (3.37)

(i.e., B = (p + 2)(λ1 − β) for some 0 < β < λ1) to derive that

L′(t) ≤ − C2E(t) + 2p+1δ4Ceb
2(t)

(1 − κ)p+1
λ2Ep+1(t) +

2q−1κa(t)
δ5(1 − κ)q

λ2Eq+1(t)

− λ3η(t)Φ3(t) − λ4η(t)Φ4(t)

(3.38)

for some positive constant C2.
If limt→∞η(t)/= 0, then there exist a t̂ ≥ t∗ and C3 > 0 such that η(t) ≥ C3 for t ≥ t̂. Thus,

in virtue of Proposition 2.1, for C3 > 0, we have

L′(t) ≤ −C3L(t) + B(t)Lp+1(t) +A(t)Lq+1(t), (3.39)

where

B(t) :=
2p+1δ4Ceλ2

(1 − κ)p+1ρp+11

b2(t),

A(t) :=
2q−1κλ2

δ5(1 − κ)qρq+11

a(t).

(3.40)
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If there exists a T ≥ t̂ such that L(T) < [p
∫∞
0 B̃(s)ds]

−1/p
, where B̃(t) := B(t)e−pC3(t−T), then

from (3.39)

[
eC3(t−T)L(t)

]′ ≤ eC3(t−T)B(t)Lp+1(t) + eC3(t−T)A(t)Lq+1(t), (3.41)

and it follows that for t ≥ T

L̃(t) ≤ L(T) +
∫ t

T

e−pC3(s−T)B(s)L̃p+1(s)ds +
∫ t

T

e−qC3(s−T)A(s)L̃q+1(s)ds (3.42)

with L̃(t) := eC3(t−T)L(t). Now we apply Lemma 2.3 to get

L̃(t) ≤
[
N−q − q

∫ t

0
Ã(s)ds

]−1/q
, t ≥ T, (3.43)

where Ã(t) := e−qC3(t−T)A(t) and N := [L(T)−p − p
∫∞
0 B̃(s)ds]

−1/p
. If, in addition,

q
∫∞
0 Ã(s)ds < L(T)−q, then L̃(t) is uniformly bounded by a positive constant C4. Thus

L(t) ≤ C4e
−C3t, t ≥ T, (3.44)

and by continuity (3.44) holds for all t ≥ 0.
If limt→∞η(t) = 0, then for any C > 0 there exists a t(C) ≥ t∗ such that η(t) ≤ C for

t ≥ t(C). Therefore,

L′(t) ≤ −C5η(t)L(t) + B(t)Lp+1(t) +A(t)Lq+1(t), t ≥ t = t(C2) (3.45)

for some C5 > 0. The previous argument carries out with eC3(t−T) replaced by eC5
∫ t
T η(d)ds.

In case that q < p, we reverse the roles of p and q in the argument above. The case p = q
is clear.

Remark 3.3. The case where the derivative of the kernel does not approach zero on A (as is
the case, for instance, when h′ ≤ −Ch on A) is interesting. Indeed, the right-hand side in
condition (3.34)will be replaced by C/4 with a possibly large constant C.

Remark 3.4. The argument clearly works for all kinds of kernels previously treated where
derivatives cannot be positive or even take the value zero. In these cases there will be no
need for the smallness conditions on the kernels. This work shows that derivatives may be
positive (i.e., kernels may be increasing) on some “small” subintervals and open the door for
(optimal) estimations and improvements of these sets.

Remark 3.5. The assumptions a′(t) < 2(q + 1)(λ1 − α)a(t) and b′(t) < (p + 2)(λ1 − β)b(t) may
be relaxed to a′(t) < 2(q + 1)λ1a(t) and b′(t) < (p + 2)λ1b(t), respectively. In this case α = α(t)
and β = β(t)would depend on t.
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Remark 3.6. The assertion in Theorem 3.2 is an “alternative” statement. As a next step it would
be nice to discuss the (sufficient conditions of) occurrence of each case in addition to the
global existence.
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[16] J. E. Muñoz Rivera and M. G. Naso, “On the decay of the energy for systems with memory and
indefinite dissipation,” Asymptotic Analysis, vol. 49, no. 3-4, pp. 189–204, 2006.

[17] V. Pata, “Exponential stability in linear viscoelasticity,”Quarterly of Applied Mathematics, vol. 64, no. 3,
pp. 499–513, 2006.

[18] N.-E. Tatar, “On a problem arising in isothermal viscoelasticity,” International Journal of Pure and
Applied Mathematics, vol. 8, no. 1, pp. 1–12, 2003.

[19] N.-E. Tatar, “Long time behavior for a viscoelastic problem with a positive definite kernel,” The
Australian Journal of Mathematical Analysis and Applications, vol. 1, no. 1, article 5, pp. 1–11, 2004.

[20] N.-E. Tatar, “Polynomial stability without polynomial decay of the relaxation function,”Mathematical
Methods in the Applied Sciences, vol. 31, no. 15, pp. 1874–1886, 2008.



Journal of Applied Mathematics 17

[21] N.-E. Tatar, “How far can relaxation functions be increasing in viscoelastic problems?” Applied Math-
ematics Letters, vol. 22, no. 3, pp. 336–340, 2009.

[22] N.-E. Tatar, “Exponential decay for a viscoelastic problem with a singular kernel,” Zeitschrift für
Angewandte Mathematik und Physik, vol. 60, no. 4, pp. 640–650, 2009.

[23] N.-E. Tatar, “On a large class of kernels yielding exponential stability in viscoelasticity,” Applied
Mathematics and Computation, vol. 215, no. 6, pp. 2298–2306, 2009.

[24] N.-E. Tatar, “Oscillating kernels and arbitrary decays in viscoelasticity,” Mathematische Nachrichten,
vol. 285, no. 8-9, pp. 1130–1143, 2012.

[25] S. Q. Yu, “Polynomial stability of solutions for a system of non-linear viscoelastic equations,” Appli-
cable Analysis, vol. 88, no. 7, pp. 1039–1051, 2009.

[26] M. Abdelli and A. Benaissa, “Energy decay of solutions of a degenerate Kirchhoff equation with a
weak nonlinear dissipation,” Nonlinear Analysis, vol. 69, no. 7, pp. 1999–2008, 2008.

[27] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho, and J. A. Soriano, “Existence and
exponential decay for a Kirchhoff-Carrier model with viscosity,” Journal of Mathematical Analysis and
Applications, vol. 226, no. 1, pp. 40–60, 1998.

[28] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. A. Soriano, and J. S. Prates Filho, “Existence
and asymptotic behaviour for a degenerate Kirchhoff-Carrier model with viscosity and nonlinear
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