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This paper investigates the problem of robust stability of uncertain linear discrete-time system
over network with bounded packet loss. A new Lyapunov functional is constructed. It can more
fully utilize the characteristics of the packet loss; hence the established stability criterion is more
effective to deal with the effect of packet loss on the stability. Numerical examples are given to
illustrate the effectiveness and advantage of the proposed methods.

1. Introduction

A networked control system (NCS) is a system whose feedback loop or (and) control loop is
(are) connected via a communication network, which may be shared with other devices. The
main advantages of NCS are low cost, reduced weight, high reliability, simple installation,
and maintenance. As a result, the NCSs have been applied in many fields, such as mobile
sensor networks, manufacturing systems, teleoperation of robots, and aircraft systems [1].

However, the insertion of the communication networks in control loops will bring
some new problems. One of the most common problems in NCSs, especially in wireless
sensor networks, is packet dropout, that is, packets can be lost due to communication noise,
interference, or congestion [2]. Some results on this issue have been available. Generally, in
these results there are two types of packet-loss model. One is stochastic packet loss ([2–5];
etc), another is arbitrary but bounded packet loss ([6–9]; etc).

Here, we are concerned about the arbitrary but bounded packet loss. For this case,
there are two approaches available. One approach is based on switched system theory;
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another one is based on the theory of time-varying-delay system. Yu et al. [7] modeled the
packet-loss process as an arbitrary but finite switching signal. This enables them to apply the
theory from switched systems to stabilize the NCS. However, Yu et al. [7] adopted a common
Lyapunov function and the results are quadratic. Xiong and Lam [9] utilized a packet-loss-
dependent Lyapunov function to establish the stabilization condition, which is less conser-
vative than that of Yu et al. [7]. Unfortunately, however, in the stability condition of their
approaches the systemmatrices appear in the forms of power and cross-multiplication among
them. Therefore, it is difficult to deal with the systems with parametric uncertainty by using
these approaches. In contrast, if utilizing the delay system approach, the system matrices are
affine in the stability condition. Hence, this approach suits the uncertain systems. However,
it may be very conservative if directly using the existing delay system approaches (e.g., [10–
14]) to deal with the bounded packet loss. Themain reason is that the existing approaches can
not fully utilize the characteristic of packet loss. Therefore, for the systems in the simulta-
neous presence of parameter uncertainties and bounded packet loss, the problem of robust
stability has not been fully investigated and remains to be challenging, which motivates the
present study.

In this paper, we study the robust stability problem for uncertain discrete-time systems
with bounded networked packet loss. First, we transform the packet loss into a time-varying
input delay. Second, we note that the considered time-varying delay has a new characteristic.
It is different with the general time-varying delay, that is, the considered time delay will
change with some laws in the interval of two consecutive successful transmissions of the
network, which is not possessed by general time-varying delay. In order to utilize this char-
acteristic, we define a new Lyapunov functional. It does not only depend on the bound of the
delay, but also on the rate of its change. Due tomore fully utilizing the properties of the packet
loss (that is the time-varying delay induced by the packet loss), the established stability
criterion shows its less conservativeness. The construction of Lyapunov functional is inspired
by Fridman [15], where the stability of sampled-data control systems is considered. It does
not mean that the method developed in this paper is trivial. In fact, as it is shown in the
Section 3 of this paper that the properties of induced-delay are more complicate than that in
Fridman [15], such that the method of Fridman [15] cannot directly be applied to the problem
considered in this paper. Finally, three examples are provided to illustrate the effectiveness of
the developed results.

2. Problem Formulation

The framework of NCSs considered in the paper is depicted in Figure 1. The plant to be con-
trolled is modeled by linear discrete-time system:

x(k + 1) = (A + ΔA)x(k) + (B + ΔB)u(k), (2.1)

where k ∈ Z+ is the time step, x(k) ∈ R
nx and u(k) ∈ R

nu are the system state and control
input, respectively. x0 � x(0) is the initial state. A and B are known real constant matrices
with appropriate dimension.ΔA andΔB are unknown matrices describing parameter uncer-
tainties.

In this paper, the parameter uncertainties are assumed to be of the form
[
ΔA ΔB

]
=

DF(k)
[
E1 E2

]
, where D, E1, and E2 are known real constant matrices of appropriate
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Figure 1: Networked control systems with packet loss.

dimensions, and F(k) is an unknown real-valued time-varying matrix satisfying F(k)FT (k) ≤
I.

Networks exist between sensor and controller and between controller and zero-order
holder (ZOH). The sensor is clock driven, the controller and ZOH are event driven and the
data are transmitted in a single packet at each time step. As have beenmentioned in Section 1,
this paper only considers the network packet loss. Then it is assumed that there is not any
network-induced delay.

Let S � {i1, i2, i3, . . .} ⊂ {0, 1, 2, 3, . . .} denote the sequence of time points of successful
data transmissions from the sensor to the zero-order hold at the actuator side and in < in+1 for
any n = 1, 2, 3, . . ..

Assumption 2.1. The number of consecutive packet loss in the network is less thanm, that is

in+1 − in − 1 ≤ m, ∀n ∈ {1, 2, 3, . . .}. (2.2)

Remark 2.2. Assumption 2.1 is similar to that in Liu et al. [8]. From the physical point of view,
it is natural to assume that only a finite number of consecutive packet losses can be tolerated
in order to avoid the NCS becoming open loop. Thus, the number of consecutive packet loss
in the networks should be less than the finite number m.

The networked controller is a state-feedback controller:

u = Kx. (2.3)

From the viewpoint of the ZOH, the control input is

u(k) = u(in) = Kx(in), in ≤ k < in+1. (2.4)

The initial inputs are set to zero: u(k) = 0, 0 ≤ k < i1. Hence the closed-loop system becomes

x(k + 1) = (A + ΔA)x(k) + (B + ΔB)Kx(in), (2.5)

for k ∈ [in, in+1). The objective of this paper is to analyze the robust stability of NCS (2.5).
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Remark 2.3. The packet loss process can take place in the sensor-controller link and the con-
troller-actuator link. Since the considered controller is static in this paper, it is equivalent to
incorporate the double-sided packet loss as a single-packet loss process. This is just the reason
that this paper only considers the single-packet loss process. However, if the controller is on-
line implemented, then one should clearly consider the double-sided packet loss rather than
incorporate them as a single-packet loss process. For such case, readers can be referred to
Ding [16], which systematically addressed the modeling and analysis methods for double-
sided packet loss process.

3. Stability of Networked Control Systems

In this section, we analyze the stability property of NCSs. Here we firstly investigate the sta-
bility of NCS (2.5) when the plant (2.1) without any uncertainty, that is, ΔA = 0 and ΔB = 0.
we have the following result.

Theorem 3.1. Assuming ΔA = 0 and ΔB = 0, NCS (2.5) with arbitrary packet-loss process is
asymptotically stable if there exist matrices P > 0, Z > 0, Q1, Q2, M, N, and S such that the fol-
lowing LMI holds

Φ1 � Ξ1 + Ξ2 + ΞT
2 +m(Ξ3 + Ξ5) − (m + 1)Ξ4 < 0, (3.1)

⎡

⎣
Φ̃2 N

∗ − 1
m − 1

Z

⎤

⎦ < 0, (3.2)

Φ3 � Ξ1 + Ξ6 + ΞT
6 − Ξ4 − 1

m
Ξ7 < 0, (3.3)

[
P + (m + 1)Λ1 (m + 1)Λ2

∗ (m + 1)Λ3

]
> 0, (3.4)

where Φ̃2 � Ξ1 + Ξ2 + ΞT
2 + Ξ3 + Ξ5 − 2Ξ4 and

Ξ1 =diag{P,−P, 0}, Ξ6 =
[
S −SA −SBK]

,

Ξ2 =
[
M −MA +N −MBK −N]

, Λ1 =
Q1 +QT

1

2
,

Λ2 = −Q1 +Q2, Λ3 =
Q1 +QT

1

2
−Q2 −QT

2 ,

Ξ3 =

⎡

⎣
Λ1 0 Λ2

∗ 0 0
∗ ∗ Λ3

⎤

⎦, Ξ4 =

⎡

⎣
0 0 0
∗ Λ1 Λ2

∗ ∗ Λ3

⎤

⎦,

Ξ5 =

⎡

⎣
Z −Z 0
∗ Z 0
∗ ∗ 0

⎤

⎦, Ξ7 =

⎡

⎣
0 0 0
∗ Z −Z
∗ ∗ Z

⎤

⎦.

(3.5)
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Proof. Define

dk = k − in, in ≤ k < in+1, (3.6)

then the NCS (2.5) can be represented as a delay system:

x(K + 1) = Ax(K) + BKx(k − dk), k ∈ [in, in+1). (3.7)

Inspired by Fridman [15], we construct the following new functional candidate as:

V (k) � V1(k) + V2(k) + V3(k), (3.8)

with V1(k) = xT (k)Px(k) and

V2(k) =(in+1 − in − dk)
[

x(k)
x(k − dk)

]T

×

⎡

⎢⎢
⎣

Q1 +QT
1

2
−Q1 +Q2

∗ Q1 +QT
1

2
−Q2 −QT

2

⎤

⎥⎥
⎦

[
x(k)

x(k − dk)

]
,

V3(k) = (in+1 − in − dk)
k−1∑

i=k−dk

ηT (i)Zη(i),

(3.9)

where η(i) = x(i + 1) − x(i) and P > 0, Z > 0, Q1, Q2 are to be determined.
From (2.2) and (3.6), we know that dk ≤ m. Therefore, similar with the discussion

of Fridman [15], it can be seen that (3.4) guarantees (3.8) to be a Lyapunov functional. For
k ∈ [in, in+1), we, respectively, calculate the forward difference of the functional (3.8) along
the solution of system (3.7) by two cases.

Case 1 (in ≤ k < in+1 − 1). In this case, we have dk+1 = dk + 1. Then,

ΔV1(k) = xT (k + 1)Px(k + 1) − xT (k)Px(k), (3.10)

ΔV2(k) =(in+1 − in − dk − 1)ξT (k)Ξ3ξ(k)

− (in+1 − in − dk)ξT (k)Ξ4ξ(k),

ΔV3(k) = (in+1 − in − dk − 1)[x(k + 1) − x(k)]T

× Z[x(k + 1) − x(k)] −
k−1∑

i=k−dk

ηT (i)Zη(i),

(3.11)

where ξ(k) = [x (k + 1)T x(k)T x(k − dk)
T ]

T
.
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In addition, for any appropriately dimensioned matricesM andN the following rela-
tionships always hold:

0 = 2ξT (k)M[x(k + 1) −Ax(k) − BKx(k − dk)] , (3.12)

0 ≤ 2ξT (k)N[x(k) − x(k − dk)],

+ dkξ
T (k)NZ−1NTξ(k) +

k−1∑

i=k−dk

ηT (i)Zη(i).
(3.13)

Then, from (3.10)–(3.13), we have

ΔV (k) ≤ ξT (k)Ωξ(k), (3.14)

where Ω = Ξ1 + Ξ2 + ΞT
2 + (in+1 − in − dk − 1)(Ξ3 + Ξ5) − (in+1 − in − dk)Ξ4 + dkNZ−1NT .

Now we prove (3.1) and (3.2) guaranteeing that Ω < 0. By Schur complement, (3.2) is
equivalent to

Φ2 � Φ̃2 + (m − 1)NZ−1NT < 0. (3.15)

Then from (3.1) and (3.15), we know that Φ1 < 0 and Φ2 < 0. Hence for any scalar α ∈ [0, 1],
the following inequality holds:

αΦ1 + (1 − α)Φ2 < 0. (3.16)

Noting that in this case 0 ≤ dk ≤ in+1 − in − 2, then we have 0 ≤ in+1 − in − 2 − dk ≤ m − 1.
Therefore, 0 ≤ (in+1 − in − dk − 2)/(m − 1) ≤ 1. By setting α = (i(n+1) − in − dk − 2)/(m − 1), from
(3.16) we obtain that Ω + (m − (in+1 − in − 1))NZ−1NT < 0. Due to m − (in+1 − in − 1) ≥ 0, the
inequality above implies Ω < 0 holds. Therefore, in this case ΔV (k) < 0 holds.

Case 2 (k = in+1 − 1). In this case, we have dk = in+1 − in − 1 and dk+1 = 0. The

ΔV1(k) = xT (k + 1)Px(k + 1) − xT (k)Px(k), (3.17)

ΔV2(k) = −ξT (k)Ξ4ξ(k),

ΔV3(k) = −
k−1∑

i=k−dk

ηT (i)Zη(i).
(3.18)

By the Jensen’s inequality [17], we have

−
k−1∑

i=k−dk

ηT (i)Zη(i)

≤ − 1
m
(x(k) − x(k − dk))

TZ(x(k) − x(k − dk)).

(3.19)
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In addition, for any appropriately dimensioned matrix S the following relationship always
holds:

0 = 2ξT (k)S[x(k + 1) −Ax(k) − BKx(k − dk)]. (3.20)

Then, from (3.17)–(3.20), we have

ΔV (k) ≤ ξT (k)
[
Ξ1 + Ξ6 + ΞT

6 − Ξ4 − 1
m
Ξ7

]
ξT (k). (3.21)

In this case, we can see that (3.3) guarantees ΔV (k) < 0.
From both Cases 1 and 2, we can conclude ΔV (k) < 0 for k ∈ [in, in+1), for all n ∈

{1, 2, 3, . . .}. Then, from the Lyapunov stability theory, the NCS (2.5) with arbitrary packet-
loss process satisfying (2.2) is asymptotically stable.

Remark 3.2. The proposed stability criterion in Theorem 3.1 is dependent on the bound of the
packet loss. Furthermore, from the proof of Theorem 3.1, we can see that the varying rate
of packet-loss-induced delays is fully utilized to obtain the stability condition. According
to the difference of induced delays’ varying rates, we separate k ∈ [in, in+1) into two parts,
that is in ≤ k < in+1 − 1 and k = in+1 − 1. For the two cases, we, respectively, calculate the
forward difference of the functional and guarantee it less than zero, such that the NCS is
asymptotically stable. Theorem 3.1 is more effective to deal with packet loss than the existing
time-varying delay system approaches in the sense that Theorem 3.1 can allow a larger upper
bound of the packet loss, which will be demonstrated in an example in next section.

Remark 3.3. In Fridman [15], the continuous-time sampled control system is considered. The
varying rate of sampling-induced delays is constant when the derivative of the Lyapunov
functional is calculated. However, in our paper, the varying rate of packet-loss-induced
delays will be changing when the difference of the Lyapunov functional is calculated. There-
fore, the method of Fridman [15] for continuous-time domain cannot directly be applied to
the problem of discrete-time domain considered in this paper.

Note that in LMIs (3.1)–(3.3) the system matrices A and B appear in affine form, thus
the stability condition presented in Theorem 3.1 can be readily extended to cope with uncer-
tain systems (2.1). By using Theorem 3.4 and the well-known S-procedure, we can easily
obtain the following theorem, and hence its proof is omitted.

Theorem 3.4. NCS (2.5) is robustly asymptotically if there exist matrices P > 0, Z > 0,Q1,Q2,M,
N, S and scalar ε1, ε2, ε3 satisfying (3.4) and the following LMIs:

⎡

⎣
Φ1 MD ε1ΠT

∗ −ε1I 0
∗ ∗ −ε1I

⎤

⎦ < 0,

⎡

⎣
Φ3 SD ε3ΠT

∗ −ε3I 0
∗ ∗ −ε3I

⎤

⎦ < 0,

⎡

⎢⎢⎢⎢
⎣

Φ̃2 N MD ε2ΠT

∗ − 1
m − 1

Z 0 0

∗ ∗ −ε2I 0
∗ ∗ ∗ −ε2I

⎤

⎥⎥⎥⎥
⎦

< 0,

(3.22)

where Φ1, Φ̃2, Φ3 are given in (3.5) and Π =
[
0 −E1 −E2K

]
.
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Remark 3.5. Because the LMIs of Theorem 3.1 are affine in the system matrices A and B, it
is readily extended to deal with the systems with norm-bounded parameter uncertainty (i.e.,
Theorem 3.4). With similar reason it can also be easily extended to deal with the systems with
polytopic-type uncertainty. The reason why we only consider one of the cases is to avoid the
paper being too miscellaneous.

Remark 3.6. It is worth to reiterate that if there is only packet loss, the method of this paper
is more suitable than the general time-delay method. However, if there simultaneously exist
network-induced delay and packet loss, the method of this paper is not applicable, but the
general time-delay method is still valid. For example, Yue et al. [18], Gao and Chen [19],
and Huang and Nguang [20] considered the networked control systems with both network-
induced delay and packet loss, where Yue et al. [18] and Gao and Chen [19] are the methods
of continuous-time domain, Huang and Nguang [20] is the method of discrete-time domain.
Yue et al. [18] investigated the H∞ regulating control for network-based uncertain systems.
Gao and Chen [19] studied the H∞ output tracking control for network-based uncertain
systems. For the uncertain networked control system with random time delays, Huang
and Nguang [20] analyzed robust disturbance attenuation performance and proposed the
corresponding design method for the controllers.

4. Numerical Examples

In this section, three examples are provided to illustrate the effectiveness and advantage of
the proposed stability results.

Example 4.1. Borrow the system considered by Gao and Chen [10], where ΔA = 0, ΔB = 0
and

A =
[
1.0078 0.0301
0.5202 1.0078

]
, B =

[−0.0001
−0.0053

]
. (4.1)

Here we are interested in the allowable maximum bound of dropout loss that guar-
antees the asymptotic stability of the closed-loop system. For extensive comparison purpose,
we let the controller gain matrices take two different values: K1 =

[
105.2047 25.3432

]
and

K2 =
[
110.6827 34.6980

]
. By using different methods, the calculated results are presented

in Table 1. From the table, it is easy to see that the method proposed in this paper is more
effective than the others. But it is never to say that the proposed method in this paper is more
suitable to deal with the time-delay; it is only to show that the proposed method is more
suitable to deal with the packet-loss than the general time-delay methods.

Example 4.2. Borrow the system considered by Wang et al. [14], where ΔA = 0, ΔB = 0 and

A =

⎡

⎢⎢
⎣

1 0.01 0 0
0 1 0 0
0 0 1 0.01
0 0 0 1

⎤

⎥⎥
⎦, B =

⎡

⎢⎢
⎣

0 0
0.01 0
0 0
0 0.01

⎤

⎥⎥
⎦,

K =
[−0.0166 −0.2248 0.0006 0.0016
0.0004 0.0016 −0.0165 −0.2271

]
.

(4.2)
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Table 1: Calculated maximum bound of dropout loss.

Controller gain matrix K = K1 K = K2

[10, Theorem 1] 7 5
[11, Theorem 1] 6 5
[12, Theorem 1] 6 4
[13, Theorem 1] 7 5
Theorem 3.1 in this paper 13 10

When lower bound of the equivalent delay is 0, the allowable maximum upper bound
of the equivalent delay is 13 as reported in Wang et al. [14]. Therefore, if there is only
bounded packet loss, by using the method of Wang et al. [14], the allowable maximum
bound of dropout loss is 13. However, by using Theorem 3.1 of this paper, one can obtain
that the allowable maximum bound of dropout loss is 190. This example shows again that the
proposed method is more suitable to deal with the packet-loss than the general time-delay
methods.

Example 4.3. Consider the following uncertain system:

x(k + 1) =
[
1.0078 + α(k) 0.0301

0.5202 1.0078

]
x(k) +

[ −0.1
−5.3 + α(k)

]
u(k), (4.3)

where |α(k)| ≤ α. The system matrices can be written in the form of (2.1)with matrices given
by

A =
[
1.0078 0.0301
0.5202 1.0078

]
, B =

[−0.1
−5.3

]
, D = α,

E1 =
[
1 0
0 0

]
, E2 =

[
0
1

]
, F(k) =

α(k)
α

.

(4.4)

Now assume that the controller gain matrix is K =
[
0.1052 0.0253

]
, and our purpose is to

determine the upper value of α such that the closed-loop system is robustly stable. By using
Theorem 3.4, the detail calculated result is shown in Table 2.

In the following, we will present some simulation results. Assume the initial condition
to be x(k) = [1 − 1]T for k ≤ 0. Let α(k) changes randomly between −0.0027 and 0.0027, which
is shown in Figure 2(a). In addition, let the upper of dropout loss is 13, which is shown in
Figure 2(b). Then, the state response of the close-loop system is given in Figure 2(c). It can
be seen from this figure that the system is robustly asymptotically stable, which shows the
validity of the method proposed in this paper.

5. Conclusions

The problem of robust stability analysis for uncertain systems over network with bounded
packet loss has been considered in this paper. A new Lyapunov functional is constructed.
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Table 2: Calculated upper values of α for different cases.

m 3 5 7 9 11 13
Upper value of α 0.0105 0.0104 0.0101 0.0096 0.0077 0.0027

0 60 120 240180
−0.0027

0.0027

α
(k
)

k

(a)

0 60 120 240180

k

0

13

d
k

(b)

0 60 120 240180

k

−1

0

1

x
(k
)

(c)

Figure 2: Simulation results.

This Lyapunov functional not only utilizes the bound of the packet loss but also utilizes
the varying rate of the packet-loss-induced delays, which aims at reducing the conservatism
of the results. Numerical examples are also presented to demonstrate the effectiveness and
advantages of the proposed approach.
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