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The problems of delay-dependent exponential passivity analysis and exponential passification of
uncertain Markovian jump systems (MJSs) with partially known transition rates are investigated.
In the deterministic model, the time-varying delay is in a given range and the uncertainties are
assumed to be norm bounded. With constructing appropriate Lyapunov-Krasovskii functional
(LKF) combining with Jensen’s inequality and the free-weighting matrix method, delay-dependent
exponential passification conditions are obtained in terms of linear matrix inequalities (LMI).
Based on the condition, desired state-feedback controllers are designed, which guarantee that the
closed-loop MJS is exponentially passive. Finally, a numerical example is given to illustrate the
effectiveness of the proposed approach.

1. Introduction

In recent years, more and more attention has been devoted to the Markovian jump systems
since they are introduced by Krasovskii and Lidskii [1]. It is known that systems with
Markovian jump parameters are a set of systems with transition among the models governed
by a Markov chain taking values in a finite set. They have the character of stochastic hybrid
systems with two components in the state. The first one refers to the mode which is described
by a continuous-time finite-state Markov process, and the second one refers to the state
which is represented by a system of differential equations. Markovian jump systems have
got the virtue of modeling the abrupt phenomena such as random failures and repairs of the
components changes in the interconnections of subsystems, sudden environment changes,
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and so forth, which often takes place in many dynamical systems [2–4]. So due to extensive
applications of such systems in manufacturing systems, power systems, communication
systems, and network-based control systems, recently, many works have been reported
about MJSs, which including filtering problems [5–7], stability analysis problems [8–12], and
control problems [13–20], and so forth.

However, the aforementioned references almost considered that the transition
probabilities are known exactly. In some practical applications, the mode information is
transmitted through unreliable networks, it may be lost or observed simultaneously. That
means the systems mode is neither totally accessible or inaccessible. So the ideal assumption
on the transition probabilities inevitably limits the application of the traditional Markovian
jump systems theory. Therefore, whether in theory or in practice, it is necessary to further
consider more general systems with partially mode information [21–27].

Recently, the passivity problems for a variety of practical systems have been attracting
renewing attention [28–31]. The passivity theory was first proposed in the circuit analysis
[32] so it has played an efficient role in both electrical network and nonlinear control systems.
The main point of passivity theory is that the passive properties of system can keep the
system internal stability. Thus, the passivity theory provides a nice tool for analyzing the
stability of a nonlinear system, and the passivity analysis has received a lot of attention and
has found applications in diverse areas such as signal processing, complexity, chaos control
and synchronization, and fuzzy control [33–38]. In [33] authors dealt with global robust
passivity analysis for stochastic interval neural networks with interval time varying delays
and Markovian jumping parameter; in [34] both delay-independent and delay-dependent
stochastic passivity conditions are presented for uncertain neural networks; in [35–37]
authors discussed the robust passivity and passification of Markovian jump systems and
fuzzy time-delay systems; in [38], the exponential passivity of neural networks with time-
varying are studied and the results are extended to two types of uncertainties.

In practice, input delays are often encountered in control systems because of the
transmission of measurement information. Especially, in networked control systems, sensors
controllers, and plants are often connected by a net medium hence it is quite meaningful to
study the effect of the input delay in the design of controllers. However, to the best of the
authors’ knowledge providing less conservative delay-dependent exponential passification
criteria for uncertain MJS with input delays and partially known transition rates to desired
performance are still open problems.

Motivated by this observation, in this paper, we study the exponential passification
problem of nonlinear Markovian jump systems with partially known transition rates,
including state and input delays, the aim of this problem is to design a controller such that
the resulting closed-loop systems satisfy a certain passivity performance index. Comparing
with the large amount of the literature on the analysis of stability of Markovian jump systems,
passivity analysis and passification for these systems have many obvious advantages. Thus,
research in this area should be of both theoretical and practical importance, which motivates
us to carry out the present work. Based on the LKF theory and the free-weighting matrix
method, some desired exponentially passification controllers are designed, which guarantee
that the closed-loop MJS is exponential passive. Finally, a numerical example is used to
illustrate the designed method.

Notations. The notations are quite standard. Throughout this letter R
n and R

n×m denote, resp.,
the n-dimensioned Euclidean space and the set of all n ×m real matrices. The notation X ≥ Y
(resp., X > Y ) means that X and Y are symmetric matrices, and that X − Y is positive
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semidefinitive (resp., positive definite). ‖ · ‖ is the Euclidean norm in R
n. I is the identity

matrix with compatible dimension. If A is a matrix, λmax (A) (respective λmin (A)) means
the largest (respective smallest) eigervalue of A. Moreover, let (Ω,F, (Ft)t≥0,P) be a complete
probability space with a filteration. (Ft)t≥0 satisfies the usual conditions (i.e, the filtration
contains all P -null sets and is right continuous). E{·} stands for the mathematical expectation
operator with respect to the given probability measure. Denote by L2

F0
([−τ2, 0] : R

n) the
family of all F0 measurable C([−τ2, 0] : R

n)-valued random variables ϕ = {ϕ(s) : −τ2 ≤ s ≤ 0}
such that sup−τ2≤s≤0 E‖ϕ(s)‖2 < ∞. The asterisk ∗ in a matrix is used to denote term that is
induced by symmetry. Matrices, if not explicitly specified, are assumed to have appropriate
dimensions. Sometimes, the arguments of function will be omitted in the analysis when no
confusion can be arised.

2. Problem Formulation and Preliminaries

Consider the following uncertain MJS with time-varying delays

ẋ(t) = A(t, rt)x(t) +Ad(t, rt)x(t − τ(t, rt)) + B1(t, rt)u(t) + E1(t, rt)u(t − τ(t, rt))

+D0(rt)f(x(t), rt) +D1(rt)ω(t).
(2.1)

z(t) = C(t, rt)x(t) + Cd(t, rt)x(t − τ(t, rt)) + B2(t, rt)u(t) + E2(t, rt)u(t − τ(t, rt))

+D2(rt)ω(t),
(2.2)

Here x(t) ∈ R
n is the state vector, u(t) ∈ R

p is the control input, z(t) ∈ R
q is the control output,

and ω(t) ∈ R
l is the exogenous disturbance input which belongs to L2 [0,∞], {rt, t ≥ 0} is a

homogenous finite-state Markov process with right continuous trajectories, which takes value
in a finite-state space S = {1, 2, . . . ,N} with generator Π = {πij}, i, j ∈ S and has the mode
transition probabilities

Pr
{
rt+Δt = j | rt = i

}
=

{
πijΔt + o(Δt) i /= j,

1 + πiiΔt + o(Δt) i = j,
(2.3)

where Δt > 0, limΔt→ 0 (o(Δt)/Δt) = 0, πij is the transition rete from i to j, and

πii = −
∑

j /= i

πij , πij ≥ 0, j /= i. (2.4)

For notational simplicity, which rt = i, i ∈ S, the matrices A(t, rt), Ad(t, rt),
B1(t, rt), E1(t, rt), C(t, rt), Cd(t, rt), B2(t, rt), E2(t, rt), D0(rt), D1(rt), and D2(rt) will be
described by Ai(t), Adi(t), B1i(t), E1i(t), Ci(t), Cdi(t), B2i(t), E2i(t), D0i, D1i, and D2i. We
denote that

Ai(t) = Ai + ΔAi(t), Adi(t) = Adi + ΔAdi(t), B1i(t) = B1i + ΔB1i(t),

E1i(t) = E1i + ΔE1i(t), Ci(t) = Ci + ΔCi(t), Cdi(t) = Cdi + ΔCdi(t),

B2i(t) = B2i + ΔB2i(t), E2i(t) = E2i + ΔE2i(t),

(2.5)



4 Journal of Applied Mathematics

where Ai,Adi, B1i, E1i, Ci, Cdi, B2i, E2i, and D0i, D1i, D2i are known constant matrices with
appropriate dimensions. In this paper, the transition rates of Markov chain are partially
known, that is, some elements in matrix Π are unknown. We denote that

Iikn =
{
j : if πij is know

}
Iiuk =

{
j : if πij is unknow

}
(2.6)

moreover, if Iikn /= ∅, it is further described as Iikn = {ki
1, k

i
2, . . . , k

i
m}, 1 ≤ m ≤ N − 2.

Remark 2.1. ki
l
∈ N+, l ∈ {1, 2, . . . , m} represents the index of the lth known element in the ith

row of transition rate matrix. The case m = N − 1 is excluded, which means if we have only
one unknown element, one can naturally calculate it from the known elements in each row
and the transition rate matrix property.

Now the mode-dependent state-feedback controller is taken to be as follows:

u(t) = Kix(t), (2.7)

then, the closed-loop MJS can be represented as

ẋ(t) = (Ai(t) + B1i(t)Ki)x(t) + (Adi(t) + E1i(t)Ki)x(t − τi(t)) +D0if(x(t), i) +D1iω(t),

z(t) = (Ci(t) + B2i(t)Ki)x(t) + (Cdi(t) + E2i(t)Ki)x(t − τi(t)) +D2iω(t).
(2.8)

Before proceeding further, we will introduce the following assumptions, definition and
some lemmas which will be used in the next section.

Assumption 1. The uncertain parameters are assumed to be of the form:

(
ΔAi(t) ΔAdi(t) ΔB1i(t) ΔE1i(t)
ΔCi(t) ΔCdi(t) ΔB2i(t) ΔE2i(t)

)
=
(
T1i

T2i

)
Fi(t)

(
N1i N2i N3i N4i

)
, (2.9)

where T1i, T2i, and Nki, k = 1, 2, 3, 4, i ∈ S are known real constant matrices with appropriate
dimensions and Fi(t), for all i ∈ S, are unknown time-varying matrix functions satisfying

FT
i (t)Fi(t) ≤ I. (2.10)

Remark 2.2. It is assumed that all the elements Fi(t), for all i ∈ S, are Lebesgue measurable.
The matrices ΔAi(t),ΔAdi(t),ΔB1i(t),ΔE1i(t),ΔCi(t),ΔCdi(t),ΔB2i(t), and ΔE2i(t) are said to
be admissible if and only if both (2.9) and (2.10) hold. The parameter uncertainty structure as
in Assumption 1 is an extension of the so-called matching condition, which has been widely
used in the problems of control and robust filtering of uncertain linear systems.

Assumption 2. The time-varying delay τi(t) satisfies 0 ≤ τ1i ≤ τi(t) ≤ τ2i, τ̇i(t) ≤ μi, with τ1i, τ2i,
and μi being real constant scalars for each for all i ∈ S.
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Assumption 3. For a fixed system mode rt = i ∈ S, there exists a know real constant mode-
dependent matrix Γi = diag(k1i, k2i, . . . , kni) > 0 such that the nonlinear vector function f(·, ·)
satisfy the following conditions:

fT (x(t), i)
(
f(x(t), i) − Γix(t)

) ≤ 0. (2.11)

Definition 2.3 (see [39]). The MJS (2.8) is said to be passive if there exists a constant δ such
that

2E

{∫T

0
zT (t)ω(t)dt

}

≥ δ (2.12)

holds for all T ≥ 0.

Definition 2.4. The MJS (2.8) is said to be exponentially passive from input ω(t) to output z(t),
if there exists an exponential Lyapunov function (or called the exponential storage funtion)
V defined on R

n, and positive scalars ρ, γ such that for all ω(t), all initial conditions x(0), all
t ≥ 0, the following inequality holds:

LV (xt, rt) + ρV (xt, rt) − γωT (t)ω(t) ≤ 2zT (t)ω(t). (2.13)

Remark 2.5. From Definition 2.4, if ρ = 0, then the MJS in the form (2.8) is passive, in other
words, exponential passivity implies passivity. It follows from (2.13) that

2E

{∫T

0
zT (t)ω(t)dt

}

≥ −E{V (x0)} − γE

{∫T

0
ωT (t)ω(t)dt

}

= δ. (2.14)

Then from Definition 2.3, we can see that MJS (2.8) is passive. But the converse does not
necessarily hold, that is, we can not obtain the exponential passive if systems are passive.

Lemma 2.6 (see [36]). Let Q(x) = QT (x), R(x) = RT (x), and S(x) depend affinely on x. Then the
following linear matrix inequality:

[
Q(x) S(x)
ST (x) R(x)

]
> 0 (2.15)

holds if and only if one of the following conditions holds:

(1) R(x) > 0, Q(x) − S(x)R−1(x)ST (x) > 0;

(2) Q(x) > 0, R(x) − ST (x)Q−1(x)S(x) > 0.

Lemma 2.7 (see [40]). Let A,D, S, F, and P be real matrices of appropriate dimensions with P > 0
and F satisfy FT (t)F(t) ≤ I. Then the following statement holds.
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(1) For any scalar ε > 0

DFS + (DFS)T ≤ ε−1DDT + εSTS. (2.16)

(2) For any vectors x and y with appropriate dimensions

2xTADy ≤ xTAPATx + yTDTP−1Dy. (2.17)

Lemma 2.8 (see [41]). Let A,X be real matrices with appropriate dimensions. Then there exist a
matrix P = PT > 0 such that PAT +AP +X < 0, if and only if, there exists a scalar ε > 0 and Z such
that

⎡

⎣
−Z − ZT ZTAT + P ZT

∗ −ε−1P +X 0
∗ ∗ −εP

⎤

⎦ < 0. (2.18)

3. Main Results

3.1. Exponential Passivity Analysis

In this section, we assumed the transition rates are partially known and given the state-
feedback controller gain matrix Ki, i ∈ S, at first, we will present a sufficient condition, which
guarantees the MLS (2.8) is exponential passive.

Theorem 3.1. Given the state-feedback controller gain matrix Ki, the uncertain MJS (2.8)
is exponentially passive in the sense of expectation if there exists positive definite matrices
Pi,Qi,Q1, Q2, Q3, Q

∗, Z1, Z2, positive scalars γ, ε1i, ε2i, and for any matrices Gi,Mi, Ri,Ui, Vi,Hi

with appropriate dimensions such that the following matrices inequalities hold for all i = 1, 2, . . . ,N:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Ω1
i,9 × 9 Λ1 Λ2 Λ3 Λ4k Λ5k Λ6 Λ7

∗ −Z2 0 0 0 0
√

2τ2Z2T1iε2i 0
∗ ∗ −Z2 0 0 0 0 0
∗ ∗ ∗ −Z2 0 0 0 0
∗ ∗ ∗ ∗ −Z2 0 0 0
∗ ∗ ∗ ∗ ∗ −Z2 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2i 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

< 0 k = 1, 2. (3.1)

Case 1. If πii ∈ Iikn

(
πiiQi −Q∗ Qj

∗ −Qj

)

∀j∈Iiuk

< 0, (3.2)
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

⎛

⎝1 +
∑

j∈Iikn

πij

⎞

⎠(πiiQi −Q∗) √
πiki

1
Qki

1
· · · √πiki

m
Qki

m

∗ −Qki
1

0 0

∗ ∗ . . . 0
∗ ∗ ∗ −Qki

m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

< 0, (3.3)

PiAi +AT
i Pi + Pj < 0 ∀j ∈ Iiuk. (3.4)

Case 2. If πii ∈ Iiuk

Qj −Q∗ > 0 ∀j ∈ Iiuk, j = i, (3.5)

Qj −Q∗ < 0 ∀j ∈ Iiuk, j /= i, (3.6)
⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎝−1 −
∑

j∈Iikn

πij

⎞

⎠Q∗ √
πiki

1
Qki

1
· · · √πiki

m
Qki

m

∗ −Qki
1

0 0

∗ ∗ . . . 0
∗ ∗ ∗ −Qki

m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

< 0, (3.7)

PiAi +AT
i Pi + Pj > 0 ∀j ∈ Iiuk, j = i, (3.8)

PiAi +AT
i Pi + Pj < 0 ∀j ∈ Iiuk, j /= i, (3.9)

where

Ω1
i,11 = Pi

⎛

⎝

⎛

⎝1 +
∑

j∈Iikn
πij

⎞

⎠Ai + B1iKi

⎞

⎠ +

⎛

⎝

⎛

⎝1 +
∑

j∈Iikn
πij

⎞

⎠Ai + B1iKi

⎞

⎠

T

Pi

+
∑

j∈Iikn
πijPj +Qi + τ2iQ

∗ +Q1 +Q2 +Q3 + (τ2i − τ1i)Z1 +GT
1i +G1i,

Ω1
i,12 = −G1i +GT

2i +M1i, Ω1
i,13 = R1i +GT

3i −M1i,

Ω1
i,14 = −R1i +GT

4i +U1i + Pi(Adi + E1iKi), Ω1
i,15 = V1i +GT

5i −U1i,

Ω1
i,16 = −V1i +GT

6i +H1i, Ω1
i,17 = GT

7i −H1i Ω1
i,18 = GT

8i + ε1iΓi + PiD0i,

Ω1
i,19 = PiD1i − (Ci + B2iKi)T , Ω1

i,22 = −GT
2i −G2i +MT

2i +M2i −Q1,

Ω1
i,23 = −GT

3i + R2i +MT
3i −M2i, Ω1

i,24 = −GT
4i − R2i +MT

4i +U2i,

ptΩ1
i,25 = −GT

5i + V2i +MT
5i −U2i, Ω1

i,26 = −GT
6i − V2i +MT

6i +H2i,
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Ω1
i,27 = −GT

7i +MT
7i −H2i, Ω1

i,28 = −GT
8i +MT

8i, Ω1
i,29 = 0,

Ω1
i,33 = RT

3i + R3i −MT
3i −M3i, Ω1

i,34 = RT
4i − R3i −MT

4i +U3i ,

Ω1
i,35 = RT

5i + V3i −MT
5i −U3i, Ω1

i,36 = RT
6i − V3i −MT

6i +H3i,

Ω1
i,37 = RT

7i −MT
7i −H3i, Ω1

i,38 = RT
8i −MT

8i Ω1
i,39 = 0 ,

Ω1
i,44 = −RT

4i − R4i +UT
4i +U4i −

(
1 − μi

)
Qi, Ω1

i,45 = −RT
5i + V4i +UT

5i −U4i,

Ω1
i,46 = −RT

6i − V4i +UT
6i +H4i, Ω1

i,47 = −RT
7i +UT

7i −H4i ,

Ω1
i,48 = −RT

8i +UT
8i, Ω1

i,49 = −(Cdi + E2iKi)T ,

Ω1
i,55 = V T

5i + V5i −UT
5i −U5i, Ω1

i,56 = −UT
6i − V5i + V T

6i +H5i,

Ω1
i,57 = V T

7i −UT
7i −H5i, Ω1

i,58 = V T
8i −UT

8i Ω1
i,59 = 0,

Ω1
i,66 = −V T

6i − V6i +HT
6i +H6i −Q2, Ω1

i,67 = −V T
7i +HT

7i −H6i,

Ω1
i,68 = −V T

8i +HT
8i, Ω1

i,69 = 0, Ω1
i,77 = −HT

7i −H7i −Q3,

Ω1
i,78 = −HT

8i, Ω1
i,79 = 0, Ω1

i,88 = −2ε1iI, Ω1
i,89 = 0,

Ω1
i,99 = −D2i −DT

2i − γI, τ2 = max
i∈S

{τ2i}, τ1 = min
i∈S

{τ1i},

Λ1 =
(√

2τ2Z2(Ai + B1iKi), 0, 0,
√

2τ2Z2(Adi + E1iKi), 0, 0, 0,
√

2τ2Z2D0i,
√

2τ2Z2D1i

)T
,

Λ1(t) =
(√

2τ2Z2(Ai(t) + B1i(t)Ki), 0, 0,
√

2τ2Z2(Adi(t) + E1i(t)Ki), 0, 0, 0,
√

2τ2Z2D0i,

√
2τ2Z2D1i

)T
,

Λ2 =
√
τ2 − τ2iHi, Λ3 =

√
τ1iGi, Λ41 =

√
τ2i − τ1i

2
Mi,

Λ42 =
√

τ2i − τ1i

2
Ui, Λ51 =

√
τ2i − τ1i

2
Ri, Λ52 =

√
τ2i − τ1i

2
Vi,

Λ6 =
(
ε2iT

T
1iPi, 0, 0, 0, 0, 0, 0, 0,−ε2iT

T
2i

)T
,

Λ7 = (N1i +N3iKi, 0, 0,N2i +N4iKi, 0, 0, 0, 0, 0)T ,

Gi =
(
GT

1i GT
2i GT

3i GT
4i GT

5i GT
6i GT

7i GT
8i 0

)T

Mi =
(
MT

1i MT
2i MT

3i MT
4i MT

5i MT
6i MT

7i MT
8i 0

)T
,

Ri =
(
RT

1i RT
2i RT

3i RT
4i RT

5i RT
6i RT

7i RT
8i 0

)T
,

Ui =
(
UT

1i UT
2i UT

3i UT
4i UT

5i UT
6i UT

7i UT
8i 0

)T
,
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Vi =
(
V T

1i V T
2i V T

3i V T
4i V T

5i V T
6i V T

7i V T
8i 0

)T
,

Hi =
(
HT

1i HT
2i HT

3i HT
4i HT

5i HT
6i HT

7i HT
8i 0

)T
,

(3.10)

Proof. First, in order to cast our model involved in the framework of the Markov process,
we define a new process xt(s) = x(t + s), s ∈ [−τ2, 0], and let L be the weak infinitesimal
generator of the random process xt(s), t ≥ 0 and

Lv(xt, rt) = lim
Δ→ 0+

1
Δ
{E[v(xt+Δ, rt+Δ) | xt, rt = i] − v(xt, rt)}. (3.11)

Now consider the Lyapunov-Krasovskii functional as follows for rt = i, i ∈ 1, 2, . . . , S:

v(xt, i) = v1(xt, i) + v2(xt, i) + v3(xt, i) + v4(xt, i) + v5(xt, i), (3.12)

where

v1(xt, i) = xT (t)P(i)x(t), v2(xt, i) =
∫ t

t−τi(t)
xT (s)Q(i)x(s)ds,

v3(xt, i) =
∫0

−τ2i

∫ t

t+θ
xT (s)Q∗x(s)dsdθ,

v4(xt, i) =
∫ t

t−τ1i

xT (s)Q1x(s)ds +
∫ t

t−τ2i

xT (s)Q2x(s)ds +
∫ t

t−τ2

xT (s)Q3x(s)d,

v5(xt, i) =
∫−τ1i

−τ2i

∫ t

t+θ
xT (s)Z1x(s)dsdθ + 2

∫0

−τ2

∫ t

t+θ
ẋT (s)Z2ẋ(s)dsdθ,

(3.13)

where

N∑

j=1

πijQj ≤ Q∗. (3.14)

In order to show the exponential passivity of the MJS (2.8) under the given controller gain
matrix Ki, we set

J∗ = Lv(xt, i) − γωT (t)ω(t) − 2zT (t)ω(t). (3.15)
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Notice that

Lv1(xt, i) = xT (t)
(
Pi(Ai(t) + B1i(t)Ki) + (Ai(t) + B1i(t)Ki)TPi

)
x(t) + xT (t)

N∑

j=1

πijPjx(t)

+ 2xT (t)Pi(Adi(t) + E1i(t)Ki)x(t − τi(t)) + 2xT (t)PiD0if(x(t), i) + 2xT (t)PiD1iω(t),

Lv2(xt, i) ≤ xT (t)Qix(t) −
(
1 − μi

)
xT (t − τi(t))Qix(t − τi(t)) +

∫ t

t−τi(t)
xT (s)

N∑

j=1

πijQjx(s)ds,

Lv3(xt, i) ≤ τ2ix
T (t)Q∗x(t) − ∫ tt−τi(t) xT (s)Q∗x(s)ds ,

Lv4(xt, i) = xT (t)
(
Q1 +Q2 +Q3

)
x(t) − xT (t − τ1i)Q1x(t − τ1i) − xT (t − τ2i)Q2x(t − τ2i)

− xT (t − τ2)Q3x(t − τ2),

Lv5(xt, i) = (τ2i − τ1i)xT (t)Z1x(t) + 2τ2ẋ
T (t)Z2ẋ(t) −

∫ t−τ1i

t−τ2i

xT (s)Z1x(s)ds

− 2
∫ t

t−τ2

ẋT (s)Z2ẋ(s)ds

= (τ2i − τ1i)xT (t)Z1x(t) + 2τ2ẋ
T (t)Z2ẋ(t) −

∫ t−τ2i

t−τ2

ẋT (s)Z2ẋ(s)ds

−
∫ t−(τi(t)+τ2i)/2

t−τ2i

ẋT (s)Z2ẋ(s)ds −
∫ t−τi(t)

t−(τi(t)+τ2i)/2
ẋT (s)Z2ẋ(s)ds

−
∫ t−(τi(t)+τ1i)/2

t−τi(t)
ẋT (s)Z2ẋ(s)ds −

∫ t−τ1i

t−(τi(t)+τ1i)/2
ẋT (s)Z2ẋ(s)ds

−
∫ t

t−τ1i

ẋT (s)Z2ẋ(s)ds −
∫ t−τ1i

t−τ2i

xT (s)Z1x(s)ds −
∫ t

t−τ2

ẋT (s)Z2ẋ(s)ds.

(3.16)

Then using Newton-Leibniz formula, for any matrices Hi,Gi,Mi, Ri,Ui, Vi we have

2ξT (t)Gi

(

x(t) − x(t − τ1i) −
∫ t

t−τ1i

ẋ(s)ds

)

= 0,

2ξT (t)Mi

(

x(t − τ1i) − x

(
t − τ1i + τi(t)

2

)
−
∫ t−τ1i

t−(τ1i+τi(t))/2
ẋ(s)ds

)

= 0,

2ξT (t)Ri

(

x

(
t − τ1i + τi(t)

2

)
− x(t − τi(t)) −

∫ t−(τ1i+τi(t))/2

t−τi(t)
ẋ(s)ds

)

= 0,

2ξT (t)Ui

(

x(t − τi(t)) − x

(
t − τ2i + τi(t)

2

)
−
∫ t−τi(t)

t−(τ2i+τi(t))/2
ẋ(s)ds

)

= 0,
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2ξT (t)Vi

(

x

(
t − τ2i + τi(t)

2

)
− x(t − τ2i) −

∫ t−(τ2i+τi(t))/2

t−τ2i

ẋ(s)ds

)

= 0,

2ξT (t)Hi

(

x(t − τ2i) − x(t − τ2) −
∫ t−τ2i

t−τ2

ẋ(s)dt

)

= 0,

(3.17)

where

ξT (t) =
(
xT (t), xT (t − τ1i), xT

(
t − τi(t) + τ1i

2

)
, xT (t − τi(t)), xT

(
t − τi(t) + τ2i

2

)
,

xT (t − τ2i) xT (t − τ2), fT (x(t), i), ωT (t)
)
.

(3.18)

From the Lemma 2.7 (2.2), it is easy to see that

−2ξT (t)Gi

∫ t

t−τ1i

ẋ(s)ds ≤ τ1iξ
T (t)GiZ

−1
2 GT

i ξ(t) +
∫ t

t−τ1i

ẋT (s)Z2ẋ(s)ds

−2ξT (t)Mi

∫ t−τ1i

t−(τ1i+τi(t))/2
ẋ(s)ds ≤ τi(t) − τ1i

2
ξT (t)MiZ

−1
2 MT

i ξ(t) +
∫ t−τ1i

t−(τ1i+τi(t))/2
ẋT (s)Z2ẋ(s)ds

−2ξT (t)Ri

∫ t−(τ1i+τi(t))/2

t−τi(t)
ẋ(s)ds ≤ τi(t) − τ1i

2
ξT (t)RiZ

−1
2 RT

i ξ(t) +
∫ t−(τ1i+τi(t))/2

t−τi(t)
ẋT (s)Z2ẋ(s)ds

−2ξT (t)Ui

∫ t−τi(t)

t−(τ2i+τi(t))/2
ẋ(s)ds ≤ τ2i − τi(t)

2
ξT (t)UiZ

−1
2 UT

i ξ(t) +
∫ t−τi(t)

t−(τ2i+τi(t))/2
ẋT (s)Z2ẋ(s)ds

−2ξT (t)Vi

∫ t−(τ2i+τi(t))/2

t−τ2i

ẋ(s)ds ≤ τ2i − τi(t)
2

ξT (t)ViZ
−1
2 V T

i ξ(t) +
∫ t−(τ2i+τi(t))/2

t−τ2i

ẋT (s)Z2ẋ(s)ds

−2ξT (t)Hi

∫ t−τ2i

t−τ2

ẋ(s)ds ≤ (τ2 − τ2i)ξT (t)HiZ
−1
2 HT

i ξ(t) +
∫ t−τ2i

t−τ2

ẋT (s)Z2ẋ(s)ds.

(3.19)

Now by Assumption 3, it can be deduced that for any positive scalar ε1i, i ∈ 1, 2, . . . , S,

2ε1if
T (x(t), i)

(
Γix(t) − f(x(t), i)

) ≥ 0. (3.20)

Then from the above discussion, we can see that

J∗ ≤ ξT (t)
(
τi(t) − τ1i

τ2i − τ1i
Φ1(t) +

τ2i − τi(t)
τ2i − τ1i

Φ2(t)
)
ξ(t) −

∫ t−τ1i

t−τ2i

xT (s)Z1x(s)ds

−
∫ t

t−τ2

ẋT (s)Z2ẋ(s)ds,
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Φ1(t) = Ωi,9 × 9(t) + Λ1(t)Z−1
2 Λ1(t)T + (τ2 − τ2i)HiZ

−1
2 HT

i + τ1iGiZ
−1
2 GT

i

+
τ2i − τ1i

2

(
MiZ

−1
2 MT

i + RiZ
−1
2 RT

i

)
,

Φ2(t) = Ωi,9 × 9(t) + Λ1(t)Z−1
2 Λ1(t)T + (τ2 − τ2i)HiZ

−1
2 HT

i + τ1iGiZ
−1
2 GT

i

+
τ2i − τ1i

2

(
UiZ

−1
2 UT

i + ViZ
−1
2 V T

i

)
,

(3.21)

where

Ωi,11(t) = Pi(Ai(t) + B1i(t)Ki) + (Ai(t) + B1i(t)Ki)TPi

+
N∑

j=1

πijPj +Qi + τ2iQ
∗ +Q1 +Q2 +Q3 + (τ2i − τ1i)Z1 +GT

1i +G1i,

Ωi,14(t) = Pi(Adi(t) + E1i(t)Ki) − R1i +GT
4i +U1i Ωi,19(t) = PiD1i − (Ci(t) + B2i(t)Ki)T ,

Ωi,49(t) = −(Cdi(t) + E2i(t)Ki)T

(3.22)

other terms of Ωi,i×j(t) are similar to Ω1
i,i×j . In order to get our results, we will describe that

the Φ1(t) < 0 and Φ2(t) < 0.
By the Schur complement, Φ1(t) < 0 and Φ2(t) < 0 under the restriction of (3.14) if and

only if

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

Ωi,9 × 9 Λ1 Λ2 Λ3 Λ4k Λ5k

∗ −Z2 0 0 0 0
∗ ∗ −Z2 0 0 0
∗ ∗ ∗ −Z2 0 0
∗ ∗ ∗ ∗ −Z2 0
∗ ∗ ∗ ∗ ∗ −Z2

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

k=1,2

+
(
TT

1iPi, 0n×7n,−TT
2i,
√

2τ2T
T
1iZ2, 0n×4n

)T
Fi(k)(N1i+N3iKi, 0n×2n,N2i +N4iKi, 0n×10n)

+ (N1i +N2iKi, 0n×2n,N2i+N4iKi, 0n×10n)TFT
i (k)

(
TT

1iPi, 0n×7n,−TT
2i,
√

2τ2T
T
1iZ2, 0n×4n

)
< 0,

(3.23)

where Ωi,9 × 9 is the nominal matrix of Ωi,9 × 9(t). Then from the Lemma 2.7 (2.1), above matrix
inequality holds, which is equivalent to

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Ωi,9×9 Λ1 Λ2 Λ3 Λ4k Λ5k Λ6 Λ7

∗ −Z2 0 0 0 0
√

2τ2Z2T1iε2i 0
∗ ∗ −Z2 0 0 0 0 0
∗ ∗ ∗ −Z2 0 0 0 0
∗ ∗ ∗ ∗ −Z2 0 0 0
∗ ∗ ∗ ∗ ∗ −Z2 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2i 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

k=1,2

< 0. (3.24)
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Case 1. If πii ∈ Iikn then (3.24) is equivalent to

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

Ω1
i,9 × 9 Λ1 Λ2 Λ3 Λ4k Λ5k Λ6 Λ7

∗ −Z2 0 0 0 0
√

2τ2Z2T1iε2i 0
∗ ∗ −Z2 0 0 0 0 0
∗ ∗ ∗ −Z2 0 0 0 0
∗ ∗ ∗ ∗ −Z2 0 0 0
∗ ∗ ∗ ∗ ∗ −Z2 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2i 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2i

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

k=1,2

+ diag

⎛

⎜⎜⎜
⎝

∑

j∈Iiuk
j /= i

πijPj ,

15
︷ ︸︸ ︷
0, . . . , 0

⎞

⎟⎟⎟
⎠

+ diag

⎛

⎜⎜⎜
⎝

∑

j∈Iiuk
j /= i

πij

(
PiAi +AT

i Pi

)
,

15
︷ ︸︸ ︷
0, . . . , 0

⎞

⎟⎟⎟
⎠

< 0.

(3.25)

Obviously, we can see that if (3.1) and (3.4) hold, then Φ1(t) < 0 and Φ2(t) < 0 under the
restriction of (3.14). Next we will further consider the equivalent form of (3.14).∑N

j=1 πijQj < Q∗ is equivalent to

∑

j∈Iikn
j /= i

πijQj +
∑

j∈Iiuk
j /= i

πijQj + πiiQi −Q∗ +
∑

j∈Iikn

πij(πiiQi −Q∗) +
∑

j∈Iiuk

πij(πiiQi −Q∗) < 0.
(3.26)

If we have the following matrix inequalities hold, we can have that (3.14) is satisfied

⎛

⎝1 +
∑

j∈Iikn

πij

⎞

⎠(πiiQi −Q∗) +
∑

j∈Iikn
j /= i

πijQj < 0,

πiiQi −Q∗ +Qj < 0 j ∈ Iiuk.

(3.27)

Obviously, (3.27) is equivalent to (3.2) and (3.3) by the Schur complement.
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Case 2. If πii ∈ Iiuk then (3.24) is equivalent to

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ω1
i,9 × 9 Λ1 Λ2 Λ3 Λ4k Λ5k Λ6 Λ7

∗ −Z2 0 0 0 0
√

2τ2Z2T1iε2i 0
∗ ∗ −Z2 0 0 0 0 0
∗ ∗ ∗ −Z2 0 0 0 0
∗ ∗ ∗ ∗ −Z2 0 0 0
∗ ∗ ∗ ∗ ∗ −Z2 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2i 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

k=1,2

+ diag

⎛

⎜
⎜
⎜
⎝

∑

j∈Iiuk
j /= i

πijPj ,

15
︷ ︸︸ ︷
0, . . . , 0

⎞

⎟
⎟
⎟
⎠

+ diag

⎛

⎜
⎜
⎜
⎝

∑

j∈Iiuk
j /= i

πij

(
PiAi +AT

i Pi

)
,

15
︷ ︸︸ ︷
0, . . . , 0

⎞

⎟
⎟
⎟
⎠

+ πii diag

⎛

⎜
⎝PiAi +AT

i Pi + Pi,

15
︷ ︸︸ ︷
0, . . . , 0

⎞

⎟
⎠ < 0.

(3.28)

Then if (3.1), (3.8), and (3.9) hold, then Φ1(t) < 0 and Φ2(t) < 0 under the restriction of (3.14),
furthermore, with the similar consideration, we can deduce that if (3.5)–(3.7) are established,
then (3.14) is founded. So there exists a positive scalar ρ1, then

J∗ ≤ −ρ1‖x(t)‖2 − λmin(Z1)
∫ t

t−τ2

‖x(s)‖2ds − λmin(Z2)
∫ t

t−τ2

‖ẋ(s)‖2ds. (3.29)

On the other hand, it is easy to obtain that

v(x(t), i) ≤ ‖P‖‖x(t)‖2 +
(
‖Q‖ + ‖Q∗‖ +

∥∥∥Q1

∥∥∥ +
∥∥∥Q2

∥∥∥ +
∥∥∥Q3

∥∥∥ +
(
τ2 − τ1

)‖Z1‖
)

×
∫ t

t−τ2

‖x(s)‖2ds + 2τ2‖Z2‖
∫ t

t−τ2

‖ẋ(s)‖2ds,
(3.30)

where ‖P‖ = maxi∈S {‖Pi‖}, ‖Q‖ = maxi∈S {‖Qi‖}.
Let ρ > 0 be sufficiently small such that

ρ‖P‖ − ρ1 < 0,

ρ
(
‖Q‖ + ‖Q∗‖ +

∥∥∥Q1

∥∥∥ +
∥∥∥Q2

∥∥∥ +
∥∥∥Q3

∥∥∥ +
(
τ2 − τ1

)‖Z1‖
)
− λmin(Z1) < 0

2τ2ρ‖Z2‖ − λmin(Z2) < 0.

, (3.31)

So, by Definition 2.4, the MJS (2.8) is exponentially passive. This completes the proof.

Remark 3.2. It is easy to derive that the MJS (2.8) is exponential mean square stability with
ω(t) = 0 if the MJS (2.8) is exponentially passive. Moreover, the result of Theorem 3.1 makes
use of the information of the subsystems upper bounds of the time varying delays, which
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may bring us less conservativeness, and from the free-weighting matrix and Newton-Leibnitz
formula, the upper bounds of μi are not restricted to be less than 1 in this paper. Therefore,
our result is more natural and reasonable to the Markovian jump systems.

Remark 3.3. In order to obtain the gain matrices Ki for convenience in the next section, (3.1) is
not LMI, if we substitute ε2i by ε−1

2i and use the Lemma 2.7 (2.1), we can obtain the equivalent
form of LMI.

3.2. Exponential Passification

In this section, we will determine the feedback controller gain matrices Ki, i ∈ S in (2.7),
which guarantee that the closed-loop MJS (2.8) is exponentially passive with partially known
transition rates.

Theorem 3.4. Given a positive constant ε, there exists a state-feedback controller in the form (2.7)
such that the closed-loop MJS (2.8) is exponentially passive if there exist positive definite matrices
Pi,Qi, Q̃1, Q̃2, Q̃3, Q

∗
, Z1, Z2, positive scalar ε1i, ε2i, and for any matrices Gi,Mi, Ri,Ui, V i,Hi, Zii

with appropriate dimensions satisfying the following LMIs under the two cases for all i = 1, 2, . . . ,N.

Case 1. If πii ∈ Iikn

(
πiiQi −Q

∗
Qj

∗ −Qj

)

∀j∈Iiuk

< 0, (3.32)

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

⎛

⎝1 +
∑

j∈Iikn

πij

⎞

⎠
(
πiiQi −Q

∗) √
πiki

1
Qki

1
· · · √πiki

m
Qki

m

∗ −Qki
1

0 0

∗ ∗ . . . 0
∗ ∗ ∗ −Qki

m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

< 0, (3.33)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Ω
1
i,9 × 9 Λ1 Λ2 Λ3 Λ4k Λ5k Λ6 Λ7 Λ8

∗ −Z2 0 0 0 0
√

2τ2T1iε2i 0 0
∗ ∗ Θ 0 0 0 0 0 0
∗ ∗ ∗ Θ 0 0 0 0 0
∗ ∗ ∗ ∗ Θ 0 0 0 0
∗ ∗ ∗ ∗ ∗ Θ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2i 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2i 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ9

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

< 0 k = 1, 2, (3.34)
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⎛

⎜
⎜
⎜
⎝

−Zii − ZT
ii ZT

iiA
T
i + Pi ZT

ii 0
∗ −ε−1Pi 0 Pi

∗ ∗ −εPi 0
∗ ∗ ∗ −Pj

⎞

⎟
⎟
⎟
⎠

∀j∈Iiuk

< 0, (3.35)

Case 2. If πii ∈ Iiuk

Qj −Q
∗
> 0 ∀j ∈ Iiuk, j = i, (3.36)

Qj −Q
∗
< 0 ∀j ∈ Iiuk, j /= i, (3.37)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎝−1 −
∑

j∈Iikn
πij

⎞

⎠Q
∗ √

πiki
1
Qki

1
· · · √πiki

m
Qki

m

∗ −Qki
1

0 0

∗ ∗ . . . 0
∗ ∗ ∗ −Qki

m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

< 0, (3.38)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Ω
2
i,9 × 9 Λ1 Λ2 Λ3 Λ4k Λ5k Λ6 Λ7 Λ8

∗ −Z2 0 0 0 0
√

2τ2T1iε2i 0 0
∗ ∗ Θ 0 0 0 0 0 0
∗ ∗ ∗ Θ 0 0 0 0 0
∗ ∗ ∗ ∗ Θ 0 0 0 0
∗ ∗ ∗ ∗ ∗ Θ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2i 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2i 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ9

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

< 0 k = 1, 2, (3.39)

⎛

⎜
⎝

−Zii − ZT
ii −ZT

iiA
T
i + Pi ZT

ii

∗ −ε−1Pi − Pj 0
∗ ∗ −εPi

⎞

⎟
⎠

∀j∈Iiuk
j=i

< 0, (3.40)

⎛

⎜⎜⎜
⎝

−Zii − ZT
ii ZT

iiA
T
i + Pi ZT

ii 0
∗ −ε−1Pi 0 Pi

∗ ∗ −εPi 0
∗ ∗ ∗ −Pj

⎞

⎟⎟⎟
⎠

∀j∈Iiuk
j /= i

< 0, (3.41)
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where

Ω
1
i,11 =

⎛

⎝

⎛

⎝1 +
∑

j∈Iikn
πij

⎞

⎠AiPi + B1iYi

⎞

⎠ +

⎛

⎝

⎛

⎝1 +
∑

j∈Iikn
πij

⎞

⎠AiPi + B1iYi

⎞

⎠

T

+ πiiP i +Qi + τ2iQ
∗

+ Q̃1 + Q̃2 + Q̃3 + (τ2i − τ1i)Z1 +G
T

1i +G1i,

Ω
2
i,11 =

⎛

⎝

⎛

⎝1 +
∑

j∈Iikn
πij

⎞

⎠AiPi + B1iYi

⎞

⎠ +

⎛

⎝

⎛

⎝1 +
∑

j∈Iikn
πij

⎞

⎠AiPi + B1iYi

⎞

⎠

T

+Qi + τ2iQ
∗
+ Q̃1

+ Q̃2 + Q̃3 + (τ2i − τ1i)Z1 +G
T

1i +G1i,

Ω
1
i,12 = Ω

2
i,12 = −G1i +G

T

2i +M1i, Ω
1
i,13 = Ω

2
i,13 = R1i +G

T

3i −M1i,

Ω
1
i,14 = Ω

2
i,14 = −R1i +G

T

4i +U1i +
(
AdiP i + E1iYi

)
Ω

1
i,15 = Ω

2
i,15 = V 1i +G

T

5i −U1i,

Ω
1
i,16 = Ω

2
i,16 = −V 1i +G

T

6i +H1i, Ω
1
i,17 = Ω

2
i,17 = G

T

7i −H1i,

Ω
1
i,18 = Ω

2
i,18 = G

T

8i + PiΓi +D0iε1i,

Ω
1
i,19 = Ω

2
i,19 = D1i −

(
CiPi + B2iYi

)T
, Ω

1
i,22 = Ω

2
i,22 = −GT

2i −G2i +M
T

2i +M2i − Q̃1,

Ω
1
i,23 = Ω

2
i,23 = −GT

3i + R2i +M
T

3i −M2i, Ω
1
i,24 = Ω

2
i,24 = −GT

4i − R2i +M
T

4i +U2i,

Ω
1
i,25 = Ω

2
i,25 = −GT

5i + V 2i +M
T

5i −U2i, Ω
1
i,26 = Ω

2
i,26 = −GT

6i − V 2i +M
T

6i +H2i,

Ω
1
i,27 = Ω

2
i,27 = −GT

7i +M
T

7i −H2i, Ω
1
i,28 = Ω

2
i,28 = −GT

8i +M
T

8i, Ω
1
i,29 = Ω

2
i,29 = 0,

Ω
1
i,33 = Ω

2
i,33 = R

T

3i + R3i −M
T

3i −M3i, Ω
1
i,34 = Ω

2
i,34 = R

T

4i − R3i −M
T

4i +U3i,

Ω
1
i,35 = Ω

2
i,35 = R

T

5i + V 3i −M
T

5i −U3i, Ω
1
i,36 = Ω

2
i,36 = R

T

6i − V 3i −M
T

6i +H3i,

Ω
1
i,37 = Ω

2
i,37 = R

T

7i −M
T

7i −H3i, Ω
1
i,38 = Ω

2
i,38 = R

T

8i −M
T

8i, Ω
1
i,39 = Ω

2
i,39 = 0,

Ω
1
i,44 = Ω

2
i,44 = −RT

4i − R4i +U
T

4i +U4i −
(
1 − μi

)
Qi,

Ω
1
i,45 = Ω

2
i,45 = −RT

5i + V 4i +U
T

5i −U4i,

Ω
1
i,46 = Ω

2
i,46 = −RT

6i − V 4i +U
T

6i +H4i, Ω
1
i,47 = Ω

2
i,47 = −RT

7i +U
T

7i −H4i,

Ω
1
i,48 = Ω

2
i,48 = −RT

8i +U
T

8i, Ω
1
i,49 = Ω

2
i,49 = −

(
CdiP i + E2iYi

)T
,

Ω
1
i,55 = Ω

2
i,55 = V

T

5i + V 5i −U
T

5i −U5i, Ω
1
i,56 = Ω

2
i,56 = −UT

6i − V 5i + V
T

6i +H5i,

Ω
1
i,57 = Ω

2
i,57 = V

T

7i −U
T

7i −H5i, Ω
1
i,58 = Ω

2
i,58 = V

T

8i −U
T

8i Ω
1
i,59 = Ω

2
i,59 = 0,
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Ω
1
i,66 = Ω

2
i,66 = −V T

6i − V 6i +H
T

6i +H6i − Q̃2, Ω
1
i,67 = Ω

2
i,67 = −V T

7i +H
T

7i −H6i,

Ω
1
i,68 = Ω

2
i,68 = −V T

8i +H
T

8i, Ω
1
i,69 = Ω

2
i,69 = 0, Ω

1
i,77 = Ω

2
i,77 = −HT

7i −H7i − Q̃3,

Ω
1
i,78 = Ω

2
i,78 = −HT

8i, Ω
1
i,79 = Ω

2
i,79 = 0, Ω

1
i,88 = Ω

2
i,88 = −2ε1iI, Ω

1
i,89 = Ω

2
i,89 = 0,

Ω
1
i,99 = Ω

2
i,99 = −D2i −DT

2i − γ, Θ = JTZ2J − JTP i − Pi,

Λ1 =
(√

2τ2

(
AiPi + B1iYi

)
, 0, 0,

√
2τ2

(
AdiP i + E1iYi

)
, 0, 0, 0,

√
2τ2D0iε1i,

√
2τ2D1i

)T
,

Λ2 =
√
τ2 − τ2iHi, Λ3 =

√
τ1iGi, Λ41 =

√
τ2i − τ1i

2
Mi,

Λ42 =
√

τ2i − τ1i

2
Ui, Λ51 =

√
τ2i − τ1i

2
Ri, Λ52 =

√
τ2i − τ1i

2
V i,

Λ6 =
(
ε2iT

T
1i, 0, 0, 0, 0, 0, 0, 0,−ε2iT

T
2i

)T
,

Λ7 =
(
N1iP i +N3iYi, 0, 0,N2iP i +N4iYi, 0, 0, 0, 0, 0

)T
,

Λ8 =

(√
πiki

1
Pi

√
πiki

2
Pi · · · √πiki

m
P i

08n×n 08n×n · · · 08n×n

)

,

Λ9 = diag
(
−Pki

1
,−Pki

2
, . . . ,−Pki

m

)
, Z2 = Z−1

2 , Yi = KiPi, ε1i = ε−1
1i ,

P i = P−1
i , Qi = P−1

i QiP
−1
i , Q̃1 = P−1

i Q1P
−1
i , Q̃2 = P−1

i Q2P
−1
i ,

Q̃3 = P−1
i Q3P

−1
i ,

Σ = diag

⎛

⎜⎜
⎝

7
︷ ︸︸ ︷
Pi, . . . , P i

⎞

⎟⎟
⎠, Gi =

(
G

T

1i, . . . , G
T

8i, 0
)T

=
(
Pi

(
GT

1i, . . . , G
T
7i

)
Σ, ε1iP iG

T
8i, 0

)T
,

Hi =
(
H

T

1i, . . . ,H
T

8i, 0
)T

=
(
Pi

(
HT

1i, . . . ,H
T
7i

)
Σ, ε1iP iH

T
8i, 0

)T
,

Mi =
(
M

T

1i, . . . ,M
T

8i, 0
)T

=
(
Pi

(
MT

1i, . . . ,M
T
7i

)
Σ, ε1iP iM

T
8i, 0

)T
,

Ri =
(
R

T

1i, . . . , R
T

8i, 0
)T

=
(
Pi

(
RT

1i, . . . , R
T
7i

)
Σ, ε1iP iR

T
8i, 0

)T
,

Ui =
(
U

T

1i, . . . , U
T

8i, 0
)T

=
(
Pi

(
U

T

1i, . . . , U
T

7i

)
Σ, ε1iP iU

T

8i, 0
)T

,

V i =
(
V

T

1i, . . . , V
T

8i, 0
)T

=
(
Pi

(
V T

1i , . . . , V
T
7i

)
Σ, ε1iP iV

T
8i , 0

)T
,

(3.42)
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when the LMIs are feasible, a desired state-feedback controller can be obtained in the form of (2.7) with
the controller gains given by Ki = YiPi for all i ∈ S.

Proof. At first, we list the following fact:

JTZ2J − JTP i − PiJ + PiZ2Pi =
(
Z2J − Pi

)T
Z2

(
Z2J − Pi

)
≥ 0 (3.43)

which implies that

−PiZ2P ≤ Θ = JTZ2J − JTP i − PiJ. (3.44)

Now perform a congruence transformation to (3.1) by

diag

⎛

⎜
⎝

7
︷ ︸︸ ︷
P−1
i , . . . , P−1

i , ε−1
1i , I, Z

−1
2 ,

4
︷ ︸︸ ︷
P−1
i , . . . , P−1

i , I, I

⎞

⎟
⎠. (3.45)

If πii ∈ Iikn, then by the Schur complement and (3.44), we can infer that (3.34) is
established. In the same way, if πii ∈ Iiuk, (3.39) is established.

From Lemma 2.8, we can see that (3.35) is equivalent to AiPi + PiA
T
i + PiPjP i <

0 for all j ∈ Iiuk, so (3.4) can be established. Furthermore, using the same method that
proposed above, we can deduced that (3.32), (3.33), (3.36)–(3.38), and (3.40) are equivalent
to (3.2) (3.3), (3.5)–(3.7), and (3.8), respectively. In conclusion, the gain matrix of desired
controller in the form of (2.7) is given by Ki = YiPi. This completes the proof.

Remark 3.5. To reduce the conservatism, when estimating Lv5(xt, i),−
∫ t
t−τ2

ẋT (s)Z2ẋ(s)ds

is not simply enlarged as − ∫ tt−τi(t) ẋT (s)Z2ẋ(s)ds, but − ∫ t−(τ1i+τi(t))/2
t−τi(t) ẋT (s)Z2ẋ(s)ds,

− ∫ t−τi(t)t−(τ2i+τi(t))/2 ẋ
T (s)Z2ẋ(s)ds are considered as well, and different free-weighting matrices

are introduced. This method above may lead to obtain improved feasible region for
delay-dependent exponential passivity criteria.

Remark 3.6. In fact, Theorem 3.1 gives a exponential passivity criteria for MJS (2.8) with τ1i ≤
τi(t) ≤ τ2i, τ̇i(t) ≤ μi, where μi is a given constant. In many cases, μi is unknown. Considering
this case, a rate-independent criteria for a delay satisfying τ1i ≤ τi(t) ≤ τ2i is derived as follows
by setting Qi = Q∗ = 0, for all i ∈ S in the proof of Theorem 3.1.
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4. Examples

In this section, we will consider a interval time-varying delay MJS in the form of (2.8) with
three modes, and the parameters of the system are given as follows:

A1 =
(−0.05 −0.05

0.5 −0.5

)
, A2 =

(−0.05 −0.09
1.5 −0.1

)
, A3 =

(−0.03 −0.015
0.05 −0.01

)
,

Ad1 =
(

0.11 0.24
−0.53 −0.37

)
, Ad2 =

(−0.59 0.01
−0.07 −0.61

)
, Ad3 =

(
0.52 0.24
0.02 −0.45

)
,

D01 =
(

0 0
−0.02 0

)
, D02 =

(−0.02 0
0 −0.02

)
, D03 =

(
0 −1.2
0 0

)
,

B11 =
(

2.0
1.0

)
, B12 =

(
1.0
0.5

)
, B13 =

(
1.0
2.0

)
, E11 =

(
0.5
1.0

)
,

E12 =
(

0.8
2.0

)
, E13 =

(
1.0
0.5

)
, D11 =

(
1.0
0.2

)
, D12 =

(
1.0
1.0

)
,

D13 =
(

0.5
0.5

)
, C1 =

(
1.0 0.2

)
, C2 =

(
0.5 1.0

)
,

C3 =
(
0.5 0.5

)
, Cd1 =

(−1.0 0.2
)
, Cd2 =

(
0.1 −0.1

)
,

Cd3 =
(
0.5 −0.5

)
, B21 = 1.0, B22 = −0.5, B23 = 0.5,

D21 = 1.0, D22 = 0.5, D23 = −0.5, T11 = T12 = T13 =
(

0.02
0.01

)
,

N11 = N12 = N13 =
(
0.02 0.01

)
, N21 = N22 = N23 =

(
0.01 0.02

)
,

N31 = N32 = N33 = N41 = N42 = N43 = 0.01, T21 = T22 = T23 = 0.1,

μ1 = 0.2, μ2 = 0.3, μ3 = 0.1, Γ1 = Γ2 = Γ3 =
(

0.06 0
0 0.06

)
,

τ11 = 0.12, τ12 = 0.11, τ13 = 0.13, τ21 = 0.23,

τ22 = 0.28, τ23 = 0.25,

(4.1)

The two cases of the transition rates matrices are described as follows:

Case 1 : Π =

⎛

⎝
−0.5 0.2 0.3
0.2 −0.6 0.4
0.5 0.3 −0.8

⎞

⎠,

Case 2 : Π =

⎛

⎝
−0.5 ? ?
0.2 −0.6 0.4
0.5 ? ?

⎞

⎠,

(4.2)
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Table 1: Calculated the controller gains matrix for different cases.

Case 1 Case 2
K1 (−0.2256, 0.0218) (−2.4527, 0.2749)
K2 (−0.4330, −0.1248) (−0.4842, 0.1157)
K3 (−0.2800, −0.1641) (−1.0109, −0.1008)

where ? means the unknown element. With the choice of ε = 0.2 and J =
( 0.3 0

0 0.3

)
, we can

obtain the feasibility solution of case 1 and case 2 as follows.
Case 1:

P 1 =
(

3.2525 −0.1821
−0.1821 4.2081

)
, P 2 =

(
2.6050 −0.2795
−0.2795 3.6119

)
, P 3 =

(
3.2386 −0.2026
−0.2026 3.8813

)
,

Q1 =
(

1.8478 −0.0727
−0.0727 2.0824

)
, Q2 =

(
1.5779 −0.5056
−0.5056 1.7197

)
, Q3 =

(
1.4462 0.2109
0.2109 1.8895

)
,

Q̃1 =
(

0.5074 −0.1035
−0.1035 0.7639

)
, Q̃2 =

(
0.3321 −0.0760
−0.0760 0.5493

)
, Z1 =

(
1.4315 −0.2159
−0.2159 1.8214

)
,

Z2 =
(

3.0280 −0.2085
−0.2085 4.1893

)
, Y1 =

(−0.7376 0.1326
)
, Y2 =

(−1.0932 −0.3296
)
,

Y3 =
(−0.8734 −0.5801

)
.

(4.3)

case 2:

P 1 = 1.0e + 004 ∗
(

0.1304 0.3586
0.3586 2.6532

)
, P 2 = 1.0e + 004 ∗

(
0.5768 0.4664
0.4664 3.9812

)
,

P 3 = 1.0e + 004 ∗
(

0.4962 0.7608
0.7608 4.3848

)
, Q1 = 1.0e + 004 ∗

(
0.0864 0.2330
0.2330 1.7220

)
,

Q2 = 1.0e + 003 ∗
(

0.1918 0.3925
0.3925 3.7184

)
, Q3 = 1.0e + 004 ∗

(
0.0537 0.2133
0.2133 1.5653

)
,

Q̃1 = 1.0e + 003 ∗
(

0.0658 0.3281
0.3281 2.4649

)
, Q̃2 = 1.0e + 003 ∗

(
0.0429 0.2206
0.2206 1.6811

)
,

Z1 = 1.0e + 003 ∗
(

0.2312 0.9273
0.9273 7.3269

)
, Z2 = 1.0e + 004 ∗

(
0.6754 1.4246
1.4246 5.4089

)
,

Y1 = 1.0e + 003 ∗ (−2.2126 −1.5022
)
, Y2 = 1.0e + 003 ∗ (−2.2530 2.3481

)
,

Y3 = 1.0e + 004 ∗ (−0.5783 −1.2112
)
.

(4.4)

Under the two cases above, Table 1 lists the state-feedback controller gains matrix Ki,
which can be determined by the method of Theorem 3.4. If the ρ is sufficiently small, we can
check that the MJS (2.8) is exponentially passive under the condition of Theorem 3.4. Given
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Figure 1: State response of case 1 and the switch signal.
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Figure 2: State response of case 2 and the switch signal.

the initial condition as x(t) = (2.0 − 2.0)T and r(t) = 2, from Figures 1 and 2, we can easily
see that the closed-loop system in (2.8) is mean square exponential stable with ω(t) = 0.

Remark 4.1. In order to illustrate the effectiveness of the proposed approach, a numerical
example is given which included two cases, that is, case 1, the transition rate matrix is
completely known; case 2, some elements in the transition rate matrix are inaccessible. By
using Matlab Toolbox, we can obtain the gain matrix Ki, which guarantees that the Markovian
jump systems (2.8) is robust exponential passivity. If we choose the switch signal as
Figures 1 and 2, we can know that the closed-loop system (2.8) is exponentially stable in
the mean square under the state-feedback controllers obtained above, which have been listed
in Table 1.

5. Conclusions

In this paper, the problems of exponential passification of uncertain MJS have been
investigated. To reflect more realistic dynamical behaviors of the system, both the partially
known transition rates, state and input delays have been considered. With utilizing
the Lyapunov functional method and free-weighting matrix method, delay-dependent
exponential passivity conditions are established. Finally, an illustrative example has been
given to demonstrate the effectiveness of the proposed approach.
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