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The purpose of this paper is first to introduce the concept of total quasi-¢-asymptotically nonexpansive
mapping which contains many kinds of mappings as its special cases and then to use a hybrid
algorithm to introduce a new iterative scheme for finding a common element of the set of solutions
for a system of generalized mixed equilibrium problems and the set of common fixed points
for a countable family of total quasi-¢-asymptotically nonexpansive mappings. Under suitable
conditions some strong convergence theorems are established in an uniformly smooth and strictly
convex Banach space with Kadec-Klee property. The results presented in the paper improve and
extend some recent results.

1. Introduction

Throughout this paper, we denote by R and R* the set of all real numbers and all nonnegative
real numbers, respectively. We also assume that E is a real Banach space, E* is the dual space
of E, C is a nonempty closed convex subset of E, and (-, -) is the pairing between E and E*.
In the sequel, we denote the strong convergence and weak convergence of a sequence {x,}
by x, — x and x, — x, respectively, and ] : E — 2F is the normalized duality mapping
defined by

J(x) ={x" € E": (x,x") = x| = Ix"|l}, x€E. (L.1)
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Let ¢ : C — R be a proper real-valued function, A : C — E* a nonlinear mapping, and

F : C xC — R a bifunction. The “so called” generalized mixed equilibrium problem for
F, A, is to find x* € C such that

F(x*,y) + (Ax",y —x") +¢(y) —¢p(x*) 20, VyeC. (1.2)
We denote the set of solutions of (1.2) by GMEP(F, A, ¢), that is,
GMEP(F, A, ¢) = {x* € C: F(x",y) + (Ax",y - x*) + ¢s(y) —¢(x*) >0, Vy e C}.  (1.3)

Special Examples

(i) If A = 0, then the problem (1.2) is reduced to the mixed equilibrium problem
(MEP), and the set of its solutions is denoted by

MEP(F,¢) = {x* € C:O(x",y) +¢(y) —¢(x*) >0, Vy € C}. (1.4)

i1 = 0, then the problem (1.2) is reduced to the generalized equilibrium problem
(i) If ¢ = 0, then the problem (1.2) is reduced to the g lized equilibrium probl
(GEP), and the set of its solutions is denoted by

GEP(F, A) = {x* € C: F(x*,y) + (Ax*,y —x*) >0, Yy € C}. (1.5)

(iii) If A = 0, ¢ = 0, then the problem (1.2) is reduced to the equilibrium problem (EP),
and the set of its solutions is denoted by

EP(F) = {x*€C: F(x*,y) >0, Yy € C}. (1.6)

(iv) If F = 0, then the problem (1.2) is reduced to the mixed variational inequality of
Browder type (VI), and the set of its solutions is denoted by

VI(C A ¢) ={x*€C: (Ax",y —x*) +¢(y) —¢(x*) >0, Vy € C}. (1.7)

These show that the problem (1.2) is very general in the sense that numerous problems
in physics, optimization, and economics reduce to finding a solution of (1.2). Recently, some
methods have been proposed for the generalized mixed equilibrium problem in Banach space
(see, e.g., [1-5]).

A Banach space E is said to be strictly convex if [|[x+y| /2 < 1forallx,y e U ={z € E:
||z|| = 1} with x #y. E is said to be uniformly convex if, for each e € (0,2], there exists 6 > 0
such that ||x + y||/2 < 1 -6 for all x, y € U with ||x — y|| > €. E is said to be smooth if the limit

i 1 Y = llxll (1.8)
t—0 t
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exists for all x, y € U. E is said to be uniformly smooth if the above limit exists uniformly in
x,yeUl.

Remark 1.1. The following basic properties for Banach space E and for the normalized duality
mapping J can be found in Cioranescu [6].

(i) If E is an arbitrary Banach space, then | is monotone and bounded;
(ii) If E is a strictly convex Banach space, then ] is strictly monotone;

(iii) If E is a a smooth Banach space, then J is single-valued, and hemicontinuous; that
is, J is continuous from the strong topology of E to the weak star topology of E*;

(iv) If E is a uniformly smooth Banach space, then J is uniformly continuous on each
bounded subset of E;

(v) If E is a reflexive and strictly convex Banach space with a strictly convex dual E*
and J* : E* — E is the normalized duality mapping in E*, then J~! = J*, JJ* = I
and J*J = IE;

(vi) If E is a smooth, strictly convex and reflexive Banach space, then the normalized
duality mapping ] is single valued, one to one and onto;

(vii) A Banach space E is uniformly smooth if and only if E* is uniformly convex. If E is
uniformly smooth, then it is smooth and reflexive.

Recall that a Banach space E has the Kadec-Klee property, if for any sequence {x,} C E
and x € E with x,, — x € E and ||x,|| — ||x]||, then x,, — x (asn — o0). It is well known that
if E is a uniformly convex Banach space, then E has the Kadec-Klee property.

Next we assume that E is a smooth, strictly convex and reflexive Banach space and C
is a nonempty closed convex subset of E. In the sequel, we always use ¢ : Ex E — R* to
denote the Lyapunov functional defined by

¢(x,y) = IIxI* - 2(x, Jy) + ||’ VxyeE (1.9)
It is obvious from the definition of ¢ that

(el = llylD)* < ¢y < (Il + lylD)*, - Yy € E. (110)
Following Alber [7], the generalized projection Ilc : E — C is defined by

Ic(x) = arg ;di)(y’x)’ Vx € E. (1.11)

Let T : C — C be a mapping and F(T') be the set of fixed points of T.

Recall that a point p € C is said to be an asymptotic fixed point of T if there exists a
sequence {x,} C C such that x, — p and ||x,—Tx,|| — 0. We denoted the set of all asymptotic
fixed points of T by F(T). A point p € C is said to be a strong asymptotic fixed point of T, if there
exists a sequence {x,} C C such that x, — p and ||x, — Tx,|| — 0. We denoted the set of all
strong asymptotic fixed points of T by F(T).
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Definition 1.2. (1) Amapping T : C — C is said to be nonexpansive if
|Tx-Ty|| <||x-v|, VYxyeC. (1.12)

(2) Amapping T : C — C is said to be relatively nonexpansive [8] if F(T)#@,F(T) =
F(T) and

d(p,Tx) < Pp(p,x), VYxeC, peF(T). (1.13)

(3) A mapping T : C — C is said to be weak relatively nonexpansive [9] if F(T) #0,
F(T) = F(T) and

d(p,Tx) < Pp(p,x), VxeC, peF(T). (1.14)

(4) A mapping T : C — C is said to be closed, if for any sequence {x,} C C with
x, — xand Tx, — y,thenTx =y.

Definition 1.3. (1) A mapping T : C — C is said to be quasi-¢p-nonexpansive [10] if F(T) #0
and

¢(p,Tx) <Pp(p,x), VxeC, peF(T). (1.15)

(2) A mapping T : C — C is said to be quasi-¢-asymptotically nonexpansive [11], if
F(T) #0 and there exists a real sequence {k,} C [1,00) with k, — 1 such that

¢(p,T"x) <kup(p,x), VYn>1, xeC, peF(T). (1.16)

(3) Amapping T : C — C is said to be uniformly L-Lipschitz continuous, if there exists
a constant L > 0 such that

IT"x =Ty < Lllx -y

, Vx,yeC, Vn>1 (1.17)

Definition 1.4. (1) Amapping T : C — C is said to be total quasi-¢-asymptotically nonexpansive
if F(T)#® and there exist nonnegative real sequences {v,}, {y,} with v, — 0,4, — 0 (as
n — oo) and a strictly increasing continuous function ¢ : R* — R* with {(0) = 0 such that
forall xe C,P e F(T)

d(p, T"x) < P(p,x) +vul(P(p,x)) + pu, Vn>1. (1.18)

(2) A countable family of mappings {T,,} : C — C is said to be uniformly total quasi-
¢-asymptotically nonexpansive, if (2, F(T;) #@ and there exist nonnegative real sequences
{(vu}, {pn} withv, — 0, y, — 0 (asn — oo) and a strictly increasing continuous function
¢:R* — R* with ¢(0) = 0 such that forall x € C,p € N2, F(T;)

¢(p Ti'x) < ¢(p,x) +val(P(p %)) + pn, V2 1. (119)
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Remark 1.5. From the definition, it is easy to know that

(1) each relatively nonexpansive mapping is closed;
(2) taking ¢(t) =t,t 20, v, = (k, — 1) and p, = 0, then (1.16) can be rewritten as

¢(p. T'x) < P(p, x) +vul(d(p,x)) + pn, ¥n21, x€C, p € F(T). (1.20)

This implies that each quasi-¢-asymptotically nonexpansive mapping must be a
total quasi-¢-asymptotically nonexpansive mapping, but the converse is not true;

(3) the class of quasi-¢-asymptotically nonexpansive mappings contains properly the
class of quasi-¢-nonexpansive mappings as a subclass, but the converse is not true;

(4) the class of quasi-¢-nonexpansive mappings contains properly the class of weak
relatively nonexpansive mappings as a subclass, but the converse is not true;

(5) the class of weak relatively nonexpansive mappings contains properly the class of
relatively nonexpansive mappings as a subclass, but the converse is not true.

A mapping A : C — E* is said to be a-inverse strongly monotone, if there exists a > 0
such that

(x -y, Ax - Ay) > a||Ax - Ay|*. (1.21)

Remark 1.6. If A is an a-inverse strongly monotone mapping, then it is 1/a-Lipschitz
continuous.

Iterative approximation of fixed points for relatively nonexpansive mappings in the
setting of Banach spaces has been studied extensively by many authors. In 2005, Matsushita
and Takahashi [12] obtained some weak and strong convergence theorems to approximate
a fixed point of a single relatively nonexpansive mapping. Recently, Ofoedu and Malonza
[4], Zhang [5], Su et al. [13], Zegeye and Shahzad [14], Wattanawitoon and Kumam [15],
Qin et al. [16], Takahashi and Zembayashi [17], Chang et al. [18, 19], Yao et al. [20, 21],
Qin et al. [22], and Cho et al. [23, 24] extend the notions from relatively nonexpansive
mappings, weakly relatively nonexpansive mappings or quasi-¢-nonexpansive mappings to
quasi-¢-asymptotically nonexpansive mappings and also prove some strongence theorems
to approximate a common fixed point of quasi-$-nonexpansive mappings or quasi-¢-
asymptotically nonexpansive mappings.

The purpose of this paper is first to introduce the concept of total quasi-¢-asymptoti-
cally nonexpansive mapping which contains many kinds of mappings as its special cases, and
then by using a hybrid algorithm to introduce a new iterative scheme for finding a common
element of the set of solutions for a system of generalized mixed equilibrium problems
and the set of common fixed points for a countable family of total quasi-¢-asymptotically
nonexpansive mappings in a uniformly smooth and strictly convex Banach space with Kadec-
Klee property. The results improve and extend the corresponding results in [8, 11-25].

2. Preliminaries

First, we recall some definitions and conclusions.
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Lemma 2.1 (see [7, 26]). Let E be a smooth, strictly convex and reflexive Banach space and C be a
nonempty closed convex subset of E. Then the following conclusions hold:

(@) ¢(x,Icy) + ¢(1cy,y) < p(x,y) forall x e Cand y € E;
(b) if x € Eand z € C, then

z=Ilex <= (z-y,Jx-Jz)>0, VyeC; (2.1)

(c) forx,y € E, ¢(x,y) =0ifand only if x = y.

Remark 2.2. 1f E is a real Hilbert space H, then ¢(x,y) = |x — y||* and Tl¢ is the metric
projection Pc of H onto C.

Lemma 2.3 (see [18]). Let E be a uniformly convex Banach space, v > 0 a positive number, and
B,(0) a closed ball of E. Then, for any given sequence {x;};2; C B,(0) and for any given sequence
{Ai}21 of positive numbers with 3,2, X; = 1, then there exists a continuous, strictly increasing and
convex function g : [0,2r) — [0, 00) with g(0) = 0 such that for any positive integers i, j with
i<j,

2 oo}
< D hnllnll” = i ([lxi - x;])- (22)
n=1

[ee)
2 A
n=1

Lemma 2.4. Let E be a real uniformly smooth and strictly convex Banach space with Kadec-Klee
property, and let C be a nonempty closed convex subset of E. Let T : C — C bea closed and total quasi-
¢-asymptotically nonexpansive mapping with nonnegative real sequences {v,}, {yn} and a strictly
increasing continuous functions { : R* — R* such that y; =0,v, — O,u, — 0(asn — oo) and
¢(0) = 0. Then F(T) is a closed convex subset of C.

Proof. Letting {p,} be a sequence in F(T) with p, — p (asn — o), we prove that p € F(T).
In fact, from the definition of T, we have

(P, Tp) < (pn,p) +v15(P(pn,p)) +1 — 0 (as n— o). (2.3)

Therefore we have

1im ¢(py, Tp) = lim ([lpull® = 2(pw, JTp)) + | Tp|?

(2.4)

Ipll* = 2(p, JTp) + || Tp||* = ¢(p, Tp) =0,

thatis, p € F(T).
Next we prove that F(T) is convex. For any p,q € F(T), t € (0,1), putting w = tp+ (1 -
t)q, we prove that w € F(T'). Indeed, in view of the definition of ¢(x, y), we have

P(w, T"w) = |[w|* - 2(w, JT"w) + | T"w]|*

= lw|® - 2t{p, JT"w) - 2(1 - t){q, JT"w) + | T"w]|?
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= ||l + tp (p, T"w) + (1 - )p(q, T"w) ~ t]|p||* - (1 - || q]”
< wlP + 1§ (p,w) + vl ($(p,w)) + ) + (1= )(p(q,w) + vul($(q,w)) + pin)
~tllpll* - - p)lq]’
= [l + t(IplI* - 2(p, Jwo) + l[w]*) + Evag (P (p, w)) + pa) + (1= 1)
< (llal* = 2(q, Jw) + lkol?) + (1= ) (wag($(q,)) + ) = tllpll* = 1 =Bl 4]
= wll* - 2(w, Jw) +[lwl|* + tval (¢ (p, w)) + (1 = ) (val($(g,0)) + pu

=G (P(p,w)) + 1= (vaG(P(q,w)) + pn.
(2.5)

Since p, — 0 and v, — 0, we have ¢(w,T"w) — 0 (asn — oo). From (1.10) we have
IT"w| — ||wl|. Consequently ||JT"w| — ||Jw]||. This implies that {JT"w} is a bounded
sequence. Since E is reflexive, E* is also reflexive. So we can assume that

JT"w — fo € E*. (2.6)

Again since E is reflexive, we have J(E) = E*. Therefore there exists x € E such that Jx = fj.
By virtue of the weakly lower semicontinuity of norm || - ||, we have

0 = lim inf ¢ (w, T"w) = hminf(||w||2 - 2(w, J(T"w)) + ||T”w||2>

= liminf(|[ell” - 2(w, J(T"%0)) + |/ (T"w)|")

> |lwl? - 2(w, fo) + || foll? 2.7)

= [lwl® = 2(w, Jx) + [T x|*

= [lwl* = 2(w, Jx) +||x|I* = $p(w, x),

that is, w = x which implies that fy = Jw. Hence from (2.6) we have JT"w — Jw € E*.
Since ||JT"w| — ||lwl|| and E* has the Kadec-Klee property, we have JT"w — Jw. Since E
is uniformly smooth, E* is uniformly convex, which in turn implies that E* is smooth. From
Remark 1.1(iii) it yields that J™' : E* — E is hemi-continuous. Therefore we have T"w — w.
Again since ||T"w| — ||w]|, by using the Kadec-Klee property of E, we have T"w — w. This
implies that TT"w = T""'w — w. Since T is closed, we have w = Tw.

This completes the proof of Lemma 2.4. O

Lemma 2.5. Let E be a smooth, strictly convex and reflexive Banach space and C be a nonempty
closed convex subset of E. Let f : C x C — R be a bifunction satisfying the following conditions:

(Al) f(x,x)=0, forall xeC,
(A2) f is monotone, that is, f(x,y) + f(y,x) <0, forall x,y € C,
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(A3) lim sup, o f(x +H(z = x),y) < f(x,y) forall x,z,y €C,
(A4) The function y — f(x,y) is convex and lower semi-continuous.
Then the following conclusions hold:

(1) (Blum and Oettli [27]) for any given r > 0 and x € E, there exists a unique z € C such
that

f(z,y)+%<y—z,lz—]x>zo, Vy eC; (2.8)

(2) (Takahashi and Zembayashi [28]) for any given r > 0 and x € E, define a mapping <
E - C by

K{(x) = {zeC:f(z,y)+%<y—z,]z—]x> >0, VyeC}, x€E. (2.9)

Then, the following conclusions hold:

(a) K{ is single-valued;
(b) K{ is firmly nonexpansive-type mapping, that is, for all z,y € E,

(Klz-Kly, JK]z- JKly) < (Kz- Ky, ]2~ Jy); (2.10)

(c) F(K{) = EP(f) and K{ is quasi-¢-nonexpansive;
(d) EP(f) is closed and convex;
(e) ¢(g, Kl x) + (Kl x,x) < ¢p(q,x), for all g€ F(K]).

For solving the generalized mixed equilibrium problem (1.2), let us assume that the following
conditions are satisfied:

(1) E is a smooth, strictly convex, and reflexive Banach space and C is a nonempty closed
convex subset of E;
(2) A: C — E*is p-inverse strongly monotone mapping;

(3) F: C x C — Ris bifunction satisfying the conditions (A1), (A3), (A4) in Lemma 2.5 and
the following condition (A2)':

(A2)' for somey > 0 withy < g
F(x,y) + F(y,x) <y|Ax - Ay|]>, Vx,yeC (2.11)

(4) ¢ : C — Ris a lower semicontinuous and convex function.

Under the assumptions as above, we have the following results.
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Lemma 2.6. Let E, C, A, F, s satisfy the above conditions (1)—(4). Denote by
I'(x,y) =F(x,y) +¢(y) —¢x)+(Ax,y -x), Vx,yeC. (2.12)

For any given r > 0 and x € E, define a mapping K- : E — C by
Kl (x) = {z eC:T(z,y)+ %(y—z,]z—]x} >0, Vy € C}. (2.13)

Then, the following hold:

(a) KV is single-valued;

(b) KT is a firmly nonexpansive-type mapping, that is, for all z,y € E,

(KI(2) - K (v), K[ (2) - JK} (v) ) < (K[ (2) - K} (). J== Ty ) (214)

(c) F(K}) = EP(T) = GMEP(F, A, ¢);
(d) GMEP(F, A, ¢) is closed and convex;
(e)

$(9 Kix) +¢(Klx,x) <d(qx), VqeF(K]). (2.15)

Proof. It follows from Lemma 2.5 that in order to prove the conclusions of Lemma 2.6 it is
sufficient to prove that the function I' : C x C — R satisfies the conditions (A1)-(A4) in
Lemma 2.5.

In fact, by the similar method as given in the proof of Lemma 2.4 in [1], we can prove
that the function I' satisfies the conditions (A1), (A3), and (A4). Now we prove that I' also
satisfies the conditions (A2).

Indeed, for any x, y € C, by condition (A2)’, we have

T(x,y) +T(y,x) = F(x,y) +¢(y) - ¢(x) + (Ax,y - x)
+F(y,x) +¢(x) - ¢(y) + (Ay, x ~y)
=F(x,y) + F(y,x) - (Ax - Ay,x - y)
< (y-p)llAx - Ay|* <o.

(2.16)

This implies that the function I" satisfies the conditions (A2). Therefore the conclusions of
Lemma 2.6 can be obtained from Lemma 2.3 immediately. O

Remark 2.7. Tt follows from Lemma 2.5 that the mapping K! is a relatively nonexpansive
mapping. Thus, it is quasi-¢$-nonexpansive.
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3. Main Results

In this section, we shall use the hybrid method to prove some strong convergence theorems
for finding a common element of the set of solutions for a system of the generalized mixed
equilibrium problems (1.2) and the set of common fixed points of a countable family of total
quasi-¢-asymptotically nonexpansive mappings in Banach spaces.

In the sequel, we assume that E, C, {S;}2;, { A; }f\fl, {F; }f\fl, {wi }f\fl satisfy the following
conditions.

(1) Let E be a uniformly smooth and strictly convex Banach space with Kleac-Klee
property and C a nonempty closed convex subset of E.

(2) Let S; : C — C be a countable family of closed and uniformly total quasi-¢-
asymptotically nonexpansive mappings with nonnegative real sequences {v,}, {4, }
and a strictly increasing continuous functions ¢ : R* — R* such thatv, — 0, u, —
0(asn — o) and 1 = 0,¢(0) = 0. Suppose further that for each i > 1,5; is a
uniformly L;-Lipschitz mapping, that is, there exists a constant L; > 0 such that

|Six-Sy|| < Lil|x-y|, VYxyeC Vn>1. (3.1)

(3) Let A;: C — E* (i=1,2,..., M) be a finite family of f;-inverse strongly monotone
mappings.

4)Let F; : C — R (@ = 1,2,..., M) be a finite family of bifunction satisfying the
conditions (A1), (A3), (A4), and the following condition (A2)":
(A2)' Foreachi=1,2,..., M there exists ¥i 2 0 with y; < f; such that

Fi(x,y) + Fi(y,x) <yi||Aix - Ay|]*>, Vx,yeC; (3.2)

(5) Let¢; : C — R(i = 1,2,..., M) be a finite family of lower semicontinuous and
convex functions.

Theorem 3.1. Let E,C, {S;}%, {A; }f-\fl, {F; }f\fl, {wi }f\fl be the same as above. Suppose that
e} M
F = \F(T:) ([ \GMEP(F;}, A}, ¢5)) (3.3)
i=1 j=1

is a nonempty and bounded subset of C. For any given xo € C, let {x,,} be the sequence generated by

x0 € Cyp=0C,

Zy = ]—1 <an,0]xn + Zanli]SlT’xn>,

i=1
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Yn = ]71 (an]Zn + (1 - “n)]xn)/
U, = KFM K‘FM—I . _Krz KD yn/

T™Mn " STM-1,n n™ "Tn

Cn+1 = {U € Cn : ¢(Urun) < ¢(U/xn) + ﬂn}r

Xnl = HlexO/ Vn > 0/
(3.4)
where
Nn = Vpsup §(P(u, xn)) + pn, VYn2>1, (3.5)
uce§
Kfjn :E — C,i=1,2,..., M is the mapping defined by (2.13) withT =T, r = 1, ,,, and
Ti(x,y) = Fi(x,y) + (Aix,y —x) + ¢i(y) —gi(x), Vx,yeC. (3.6)

Tk € [d,00),k=1,2,...,M,n>1 for some d >0, Ilc,,, is the generalized projection of E onto the
set Cyi1, and {ay,;}, {a, ) are sequences in [0, 1] satisfying the following conditions:

(a) X2pani =1foralln>0;
(b) iminf, _, oty - ani > 0 foralli > 1;
(c) 0<a<a, <1forsomeac(0,1).
Then {x,} converges strongly to I1gxq, where Ilg is the generalized projection from E onto .

Proof. We divide the proof of Theorem 3.1 into five steps.
(i) We first prove that  and C, both are closed and convex subset of C for all n > 0.
In fact, it follows from Lemmas 2.4 and 2.6 that F(S;), i > 1 and GMEP(F;, A, ¢j) (j =
1,2,..., M) both are closed and convex. Therefore ¥ is a closed and convex subset in C.
Furthermore, it is obvious that Cy = C is closed and convex. Suppose that C,, is closed and
convex for some 7 > 1. Since the inequality ¢ (v, u,) < ¢(v, x,,) + 11, is equivalent to

2(v, Jxp, — Jun) < ||xn||2 - ||un||2 + Mn, (3.7)
therefore, we have

Crr = {v € Cu 1240, Tt = Ju) < 10l = a1 + 17} (3.8)

This implies that C,..; is closed and convex. The desired conclusions are proved. These
in turn show that Ilgxy and I'lc, x( are well defined.
(ii) We prove that {x,} and {S!'x,},~, for all i > 1 are both bounded sequences in C.
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By the definition of C,, we have x,, = Ilc,xq for all n > 0. It follows from Lemma 2.1
(a) that

(i’(xn/ xO) = ¢(HCn‘xO/ .X'()) < 4)(”/ xO) - d)(u/ HCn-XO)
<¢(u,x0), Vn>0, ue.

(3.9)

This implies that {$(x,, x0)} is bounded. By virtue of (1.10), {x,} is bounded. Since
d(u,S'xn) < P(u, xn) + vul(P(u, x)) + p for all u € F and i > 1,{S"x,} is bounded for
alli >1, and so {z,}is bounded in E. Denote M by

M = sup {|lxu|,

n>0,i>1

Sixull zall} < oo (3.10)

In view of the structure of {C,}, we have C,1 C C,, x,, = I, x0 and xp,41 = Ilc,,, Xo.
This implies that x,.1 € C, and

@ (xn,x0) < P(xps1,%0), VYn2>1. (3.11)
Therefore {¢(x,, xp)} is convergent. Without loss of generality, we can assume that

,}ijl;g(j)(xn,xo) =r>0. (3.12)

(iii) Next, we prove that F := (N2 F(Si) N ﬂf\fl GMEP(F;, A;, ¢s;) C Cp foralln > 0.
Indeed, it is obvious that ¥ ¢ Cy = C. Suppose that ¥ C C, for some n > 0. Since
u, = KIM KM K)2 K1y, by Lemma 2.6 and Remark 2.7, Kfifn is quasi-¢-nonexpansive.

™M= TM-1,n 20" T,n
Again since E is uniformly smooth, E* is uniformly convex. Hence, For any givenu € ¢ C C,

and for any positive integer j > 0, from Lemma 2.3 we have

P, un) = ¢(w KL KDL, - K2 KT ) < (1)
= ¢<u/]_l(anjzn +(1- ‘xn)]xn)>
< ”u”2 - 2(”/“11]271 + (1 - an)]xn> + ”an]Zn + (1 - “n)]xnnz
<l = 2¢u, anJzn + (1 = an) Jxn) + ctul Jzall* + (1 = ata) || J x|

= [[ull* = 2(u, anJ zn + (1 = @) J2) + | Zal|* + (1 = @) |||

= anp(u, z,) + (1 — an)P(u, xp)

=au¢ (u/ ]_1 <an,0]xn + i“n,i]szlxn>> + (1= au)p(u, x,)

i=1
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(o) o0
<a, <||u||2 = 2an0{u, Jx,) - Zthnﬂ-(u, JSix,) + anollJxall* + Zanli”]S?xn”z

i=1 i=1

(o)
an,O]xn + Zan,ijs?xn
i=1

i=1

=a, <||u||2 = 2an0{u, Jx,) - 22%,;‘(% JSTx,) +

+(1—ay)dp(u, xp)

_“n,Oan,jg<||]xn - ]S;'qxn >> +(1- “n)(;b(ur Xn)

[ee) (o)
<ay <||u||2 = 200,0(1t, J2Xn) =2 {1, JSI%y) + ol + Zcxn,i”Sf’xn”z

i=1 i=1

_anroan,]-g<||]xn - ]S}’xn >> +(1—an)p(u, x,)

—a <an,o¢(u, x0) + 3t igp (1 S70) = tnottn g ([ T = TS0,
i1

)

+ (1= an)p(u, xn)

<ay <an,0¢(u, xn) + Z‘xn,i{d)(ur xn) + Vng(d)(u/ xn)) + ,un}

i=1

~anotnig (|| T2 = 187, )> (1 - an)p (1, )

<a, <¢(u, X)) + Zan,i(vng((])(u, Xn)) + fn) — an,oan,jg<||]xn - JS}xn
i=1

)

)

+ (1 —ay )¢(u/ xn)

< P(u, xn) + an <vnsuP§(¢(u, Xn)) + #n> - anan,oan,jg(”]xn —JSixn

ues

= ¢(u, xn) + antn - anan,oan,jg<||]xn - ]S?xn

< P(u, xn) + 1.

(3.13)

Hence u € Cy4q and so ¥ C C,, for all n > 0. By the way, from the definition of {#,} and ¢ and
(3.10), it is easy to see that

fMn = Vn sug§(¢(u,xn)) + fn < Vn sugé((llull + M)z) +pn—0 (asn— o).  (314)
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(IV) Now, we prove that {x,} converges strongly to some point
peF = F(S) [ \GMEP(F;, Aj, g))- (3.15)
i=1 j=1

First, we prove that {x,} converges strongly to some point p € 2, F(S;).

In fact, since {x,} is bounded in C and E is reflexive, there exists a subsequence {xy,} C
{x,} such that x,,, — p. Again since C, is closed and convex for each n > 1, it is weakly closed,
and so p € C, for each n > 0. Since x,, = I1c, xo, from the definition of I'lc,, we have

¢(xn, x0) < P(p,x0), n>0. (3.16)
Since
liminf ¢ (x,,, %0) = liminf{ |, I = 2(xa, Jx0) + %0’}
e e (3.17)
> |lpl* - 2(p, Jxo) + IIxoll* = $(p, x0),
we have
¢ (p, x0) <liminf ¢ (xn, xo) < limsup (xy,, X0) < p(p, x0).- (3.18)

n; — oo

This implies that lim,,, —, . (xy,, X0) = P(p, x0), thatis, ||x,,|| — [|pll. In view of the Kadec-Klee
property of E, we obtain that lim,, _, . x,,, = p.

Now we prove that x, — p (n — o0). In fact, if there exists a subsequence {x;,,} C
{x,} such that x, , — q,then we have

$p.a) =, lim ()< lim  plaxo) - ¢(Te, x0,x0)

n,-—>oo,n,-—>oo n,-—>oo,n,-—>

(3.19)
= lim  $(xn,x0) — (;l)(xn].,xo) =0 (by (3.12)).
n,-—>oo,n]- — 00
Therefore we have p = g. This implies that
lim x,, = p. (3.20)

n— oo

Now we prove that p € NZ; F(S;). In fact, by the construction of C,, we have that
Cus+1 C Cy and xy4q = Ilc,,, x0. Therefore by Lemma 2.1(a) we have

n+l

@ (xn+1, Xn) = P(xp11, I, x0)
< ¢(xn41, x0) — p(Ic, X0, x0) (3.21)

= ¢(xn+1,%0) = P(xn,x0) — 0 (as n — o0).
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In view of x,.1 € C, and noting the construction of C,,; we obtain that

P(Xns1, Un) < P(Xns1, Xn) + 1 — 0 (as n — o0). (3.22)
From (1.10) it yields (||xu+1]| — ||un||)2 — 0. Since||xp41]] — |Ipll, we have
[unll — [lp||  (as n — o0). (3.23)
Hence we have
IJunll — [[Tpll  (as n — o). (3.24)

This implies that {Ju,} is bounded in E*. Since E is reflexive, and so E* is reflexive,
there exists a subsequence {Ju,,} C {Ju,} such that Ju,, — po € E*. In view of the reflexive
of E, we see that J(E) = E*. Hence there exists x € E such that Jx = py. Since

¢(xni+1'uni) = ”xni+1”2 - 2<x7’li+11 ]uni> + ”unillz
i i (3.25)
= [|xn1ll” = 2(n1, Jtn, ) + || Tt ||

taking liminf,_,,, on the both sides of above equality and in view of the weak lower
semicontinuity of norm || - ||, then it yields that

02 [lpll* ~2(p.po) + llpoll” = lIpll* ~2(p, Jx) + 1%

o . (3.26)
=|lpll” - 2(p, Jx) + IxII* = ¢(p, x).

That is p = x. This implies that py = Jp, and so Ju, — Jp. It follows from (3.24) and the
Kadec-Klee property of E* that Ju,, — Jp (asn — oo). Note that J7' : E* — E is hemi-
continuous, it yields that u,, — p. It follows from (3.23) and the Kadec-Klee property of E
that limy, o, Un, = p.

By the similar way as given in the proof of (3.20), we can also prove that

lim u, = p. (3.27)

n— oo

From (3.20) and (3.27) we have that

|xn —uy|| — 0 (as n — o0). (3.28)

Since ] is uniformly continuous on any bounded subset of E, we have

IJxn = Junl| — 0 (as n — o). (3.29)
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For any j > 1 and any u € ¥, it follows from (3.13), (3.20), and (3.27) that

anan,Oan,ng)]xn - ]S;lxn ) < <])(u, xn) - ¢(ur un) + Aptn.

Since

P, ) = P, ) = lxall® = llenll® = 2(u, Joxn = Jran)
< ”xn”2 - ”un”2 + 2wl - [T xn — Jun||

< oen = wnl[Nlxull + fenll) + 202l - 1T 260 = Juall,
from (3.28) and (3.29), it follows that
o(u,x,) —Pp(u,u,) — 0 (n— o0).
In view of condition (b) and condition (c), we have that

g(||7x - 157

)HO (as 1 — o0).

It follows from the property of g that

|70 - 15

— 0, (asn— o).

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

Since x, — p and J is uniformly continuous, it yields Jx, — Jp. Hence from (3.34) we have

]S;‘xn — Jp (asn— o).

Since J7! : E* — E is hemicontinuous, it follows that
Sixn—p (Vj21).
On the other hand, for each j > 1 we have

This together with (3.36) shows that

S?xn

~ el = |l (=)

Sixy —p (foreach j>1).

|- Wpll| < 78120 - Tp|| — 0 (a5 — o).

(3.35)

(3.36)

(3.37)

(3.38)
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Furthermore, by the assumption that for each j > 1,S; is uniformly L;-Lipschitz
continuous, hence we have

S;‘”xn - S;lxn < S;Hlxn - S;Hlxnﬂ + | S;Hlxnﬂ — Xn+l
+ |41 = x| + {20 — S?xn (3.39)
< (Lj + 1) %1 = 2ull + || ST 201 = X || + || %0 = ST |-

This together with (3.20) and (3.38), yields ||S]’.‘+1xn - S;?an — 0 (asn — o0). Hence from
(3.36) we have S;‘*lxn — p, thatis, S jS;’xn — p. In view of (3.38) and the closeness of S;, it
yields that S;p = p, for all j > 1. This implies that p € NZ; F(S;).

Next, we prove that p € ﬂf\fl GMEP(F;, A, ¢si). Denote that

ul™ = K Kl KR KDy om=1,2, M =1, ul™ =, (3.40)

Tmpn "N m-1,n on” "Tn

By the similar method as in the proof of (3.13), we can prove that
¢<u, u,(f")) <P, xp)+1my, m=12,....M, ue¥F, ¥n>1. (3.41)

It follows from Lemma 2.6, (2.15), (3.32) that for any u € ¥,

¢ <u£lM)l u;M—1>> = (KfM u;M—l), uiM_1)>
< ) - oo K
< 1 -d w2l o

=¢(u, xn) + 1p — ¢<u, u,(qM)>

= ¢, xy) + 1 — P(u,u,) — 0 (as n — o0).

From (1.10) it yields (||u$""] = ™ "|)? — 0. Since [[u™ ]| = lunll — l|pll, we have
uf,Mil)n —|lpll (as n — ). (3.43)

Hence we have

7| = el @s n— o0). (3.44)
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This implies that { ] uilel } isbounded in E*. Since E is reflexive, and so E* is reflexive,

there exists a subsequence {] u(M 1)} c{J u(M 1)} such that | u(M R po € E*. In view of the
reflexive of E, we see that J(E) = E*. Hence there exists x € E such that Jx = py. Since

) () i)
(3.45)
= [l -2t (M1> [
n; nl

taking liminf,, _, ., on the both sides of above equality and in view of the weak lower semi-
continuity of norm || - ||, it yields that

0> [|p|I* = 2(p. po) + [[poll* = lIpll* = 2(p, Jx) + ) x|I”
= lpll* - 2(p, Jx) + [ = $(p, x).

(3.46)

This is, p = x. This implies that py = Jp, and so J u(M RN Jp. It follows from (3.44) and the

Kadec-Klee property of E* that ]u(M R Jp (as n; — o). Note that J™' : E* — E is hemi-

continuous it yields that un M1 _ p. It follows from (3.43) and the Kadec-Klee property of E

that lim,, _)oou(M 2 =p.

By the similar way as given in the proof of (3.20), we can also prove that

nlglgou(M 2 =p. (3.47)
From (3.27) and (3.47) we have that
uﬁlM) - u;M_l) ” — 0 (asn— o0). (3.48)

Since J is uniformly continuous on any bounded subset of E, we have

”]u(M) (M_l) ” — 0 (as n— o0). (3.49)
Since
(l) Kil:nun )/ 1 = 2/ 3/ M u1(10) - yn/ (M) un- (350)

By the similar way as above, we can also prove that

uff) - P, | Un

ufj‘”” 0, ||]ufj> - ]ufj‘”” —0, i=23,...,.M
(3.51)
Yn ~

(et
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From (3.51) and the assumption that r, > d, Vn > 0, we have

- 1)” -
Iim ——— =2,3,...,M; Iim —— =

n— oo Tl,n n— oo rl,n

(3.52)

In the proof of Lemma 2.6 we have proved that the functionI’;,i = 1,2, ..., M defined by (3.6)
satisfies the condition (A1l)-(A4) and

T; (uff),y>

Therefore for any y € C we have

1 i i i
—(y-ul, Jul - Ju") 20, vyecC (3.53)

in

1
Tin

<y ul), Jul)) - S71)> >-T; <u§f>,y> <y, uﬁ?). (3.54)
This implies that
ri(y,u)) < %(y w), Ju - Jui ™)

i)
< (Mi+ IIyII)—

Tin

(3.55)

for some constant M; > 0. Since the function y + Ti(x,y) is convex and lower semi-
continuous, letting n — oo in (3.55), from (3.52) and (3.55), for each i, we have I';(y,p) <
0, for all y € C.

Fort € (0,1] and y € C, letting y; = ty + (1 — t)p, there are y; € C and I'i(y;, p) < 0. By
condition (A1) and (A4), we have

0=Ti(yr,yi) <tTi(y,y) + 1 =HTi(ys,p) <Hi(yr,y)- (3.56)

Dividing both sides of the above equation by t, we have I';(y;, y) > 0,for all y € C. Letting
t | 0, from condition (A3), we have I'i(p,y) >0, forall y € C, foralli=1,2,..., M, thatis,
foreachi=1,2,..., M, we have

Fi(p,y) + (A, y —p) +¢i(y) —¢i(p) 20, Yy eC. (3.57)
This implies that p € ﬂ?ﬁl GMEP(F}, Aj, ¢). Therefore, we have that
peg. (3.58)

(V) Now, we prove x, — Ilgxy.
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Let w = Ilgxy. From w € F C Cpy1 and x4 = Ic,., X0, we have ¢(xn41, x0) < Pp(w, x0),

for all n > 0. This implies that

n+l

¢ (p, x0) = lim p(xn, X0) < (w0, x0)- (3.59)
By the definition of Ilgxy and (3.59), we have p = w. Therefore, x, — Ilgxp. This
completes the proof of Theorem 3.1. O

Theorem 3.2. Let E,C, (K3 M, (A, (Fi) M {gihih, (GMEP(F;, Aj, ¢5j) ) %y be the same as
above. Let {S;}72; : C — C be an infinite family of closed and uniformly quasi-$-asymptotically
nonexpansive mappings with a sequence {k,} C [1,00) and k, — 1. Suppose that for eachi > 1, S;
is uniformly L;-Lipschitz continuous and that

[’} M
G = (F(Si) ()| GMEP(F}, Aj, ¢) (3.60)
i=1 j=1

is a nonempty and bounded subset of C. For any given xo € C, let {x,,} be the sequence generated by

x0 € Co=C,
Zy = ]—1 <an/0]xn + Zan,i]S?xn>,
im1
Y =" ]2+ (1= ) J5), (3.61)

T Tm-
up = Kt KoM K2 Ky,

M-1,n Ton™ Tin

Cpi1 = {U €Ch:P(v,un) < P(v,xy) +§n}/

Xn+l1 = l_-[C X0, Vn > O/

n+l

where &, = sup,c(kn — 1w, xz), 1 € [d, ) for some d > 0, and fori >0, {ay;}, {a,} are
sequences in [0, 1] satisfying the following conditions:

(@) 2 Zan, = 1foralln>0;
(b) lim infﬂ—mog‘n,o C 0y > OfOT’ alli > 1;

(c)0<a<a, <1forsomeac(0,1).
Then {x,} converges strongly to I'¢xy.

Proof. Since {S;}Z; : C — C is an infinite family of closed quasi-¢-asymptotically
nonexpansive mappings, it is an infinite family of closed and uniformly total quasi-¢-
asymptotically nonexpansive mappings with sequence ¢{(t) = t,t > 0,v, = k, = 1,4, = 0.
Hence §y = vusup,, . 6(P(u, xu)) + pn = sup,c (kn — 1)¢(, x,) — 0. Therefore all conditions
in Theorem 3.1 are satisfied. The conclusion of Theorem 3.2 is obtained from Theorem 3.1
immediately. O
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Remark 3.3. Theorems 3.1 and 3.2 improve and extend the corresponding results in [8, 11, 15,
16, 18-24, 28] and others in the following aspects.

(a) For the framework of spaces, we extend the space from a uniformly smooth and
uniformly convex Banach space to a uniformly smooth and strictly convex Banach
space with the Kadec-Klee property (note that each uniformly convex Banach space
must have Kadec-Klee property).

(b) For the mappings, we extend the mappings from nonexpansive mappings,
relatively nonexpansive mappings, quasi-¢-nonexpansive mapping or quasi-¢-
asymptotically nonexpansive mappings to a countable family of total quasi-¢-
asymptotically nonexpansive mappings.

(c) We extend a single generalized mixed equilibrium problem to a system of general-
ized mixed equilibrium problems.
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