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The criteria for complete synchronization of strictly different chaotic systems using feedback
control are presented in this paper. Complete synchronization is achieved when all the states in
the slave system are synchronous with the corresponding state in the master system. We illustrate
that using a single input and single output control scheme, the synchronization of a class of strictly
different systems is obtained in partial form. To overcome this problem we show that a multiple
input and multiple output control scheme with an equal number of inputs and outputs than the
order system is required in order to obtain the complete synchronization. This procedure is used
to synchronize the Rössler and the Chen systems as an example. We also demonstrate that if
the synchronization scheme considers less inputs and outputs, the partial-state synchronization
is obtained.

1. Introduction

The definition of synchronization is, in general, to make to coincide two or more events at the
same time. Applying this universal concept to dynamical systems, we consider the problem
of complete synchronization of strictly different systems. We can divide the synchronization
problem into two parts: (i) complete synchronization of chaotic systems with equal or similar
models and (ii) complete synchronization of strictly different chaotic systems. The former
comprises the synchronization of systems whose models are equal or are slightly different
but only in parameters. The latter considers the synchronization of chaotic systems whose
models have no similarity.

Since chaos synchronization appears in 90s [1], the problem has attracted the attention
of the research community. The problem has been studied due to its potential applications,
for instance, applications in secure communication [2], in biological systems [3], robotics [4],
and more recently the synchronization of complex networks [5, 6].
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Chaos synchronization problem has been treated using control techniques where
synchronization can be addressed as a tracking or as a stabilization problem. We applied
stabilization control techniques instead of tracking issues. Applying these stabilization
control techniques to a dynamical system called the synchronization error system, a controller
can be designed which renders the stabilization of the error trajectories at the origin. Such
a dynamical error system is constructed from the difference between the master and slave
systems.

It has been demonstrated that two chaotic systems with the same model even
with different parameters can be completely synchronized [7–9]. Once the complete
synchronization between systems with same model is solved, a natural question arises: is
it possible to completely synchronize two chaotic systems with strictly different models?;
The answer is affirmative, however, the problem of synchronizing two chaotic systems with
strictly different models can lead to some other chaos synchronization phenomena [10],
which depends on the control scheme used. In order to avoid such phenomena and achieve
complete synchronization, the control scheme should satisfy certain condition particularly
the number of inputs and outputs of the systems and the controllers.

On the other hand, published results show that complete synchronization between
two chaotic systems with strictly different models is achieved under the consideration of a
Multiple Input and Multiple Output (MIMO) control. However, such results consider MIMO
control systems with the number of inputs and outputs equal to the system order, but they
do not consider the case where the number of inputs and outputs is less than the system
order (ρ < n). In this sense here it is illustrated that partial or generalized synchronization is
obtained if ρ < n.

We used the concept of relative degree, observability, and controllability of nonlinear
systems to show how amultiple input andmultiple output control scheme achieves complete
synchronization of strictly different chaotic systems. To begin with, the controller should
consider a number of inputs and outputs equal to the system order (ρ = n). However, in
some cases the number of inputs and outputs can be strictly less than the systems order.
We will demonstrate when is possible to reduce the number of inputs and outputs in such
manner that both systems synchronize in complete form. Therefore, we present a procedure
to completely synchronize two chaotic systems with strictly different models, for instance,
Lorenz and Rössler, Rössler and Chen, and so on. The problem is solved proposing aMultiple
Input and Multiple Output (MIMO) control [11]; afterwards, we prove if the control scheme
could be relaxed. This is, whether the MIMO control can be reduced to an MIMO control
with less number of inputs and outputs. The paper is organized as follows, in the next
section the synchronization of strictly different systems is defined and the main contribution
is presented, in Section 3, numerical examples are presented to corroborate the results, and in
Section 4 some conclusions are provided.

2. Complete Synchronization of Strictly Different Chaotic Systems

As was discussed above chaos synchronization can be addressed as a stabilization problem,
which means that the trajectories of the synchronization error have to be stabilized at the
origin. First of all, let us consider the definition for a complete chaos synchronization.

Definition 2.1. It is said that two chaotic systems are completely synchronized if the error
‖xM − xS‖ = 0 as t → ∞, where xM, xS ∈ R

n.
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Note that this definition does not depend on the synchronization technique, it is a
global definition for complete synchronization [12]. Definition 2.1 means that each state in
the slave system is identical or is very close to its corresponding state in the master system
along the time. Chaos synchronization can be addressed as a stabilization problem or as a
tracking problem. On the one hand, stabilization consists in to find a control command that
leads the trajectories of a dynamical system that represents the synchronization error to a
particular point which is the origin. whereas, the tracking problem is related to find a control
command that makes the slave system trajectories track the trajectories of the master system.

To begin with, consider that strictly different systems referred to those systems that
pose vector fields F,G ∈ R

n with real-valued functions fi and gi all different, for i = 1, 2, . . . , n;
otherwise the systems are called partially different.

Now let us consider two same-order strictly different chaotic systems in affine form
ΣM := ẋM = F(xM), yM = CMxM, and ΣS := ẋS = G(xS) + Σiγi(xS)ui, yS = CSxS, where yk are
the output vector with k = M,S, F(xk), G(xS) and γi(xS) are smooth vector fields defined in
a manifold M ∈ R

n. Now the synchronization error system is given by ΣE = ΣM − ΣS := ẋe =
F(xM)−(G(xS)+Σiγi(xS)ui), and performing the exchange xe = xM−xS, we find the so-called
synchronization error system ẋe = Fe(xe) − Σiγi(xe, xS)ui, and ye = Cexe, Fe is defined into
an open subset d ⊂ M. Note that the trajectories must be leaded into a small neighborhood
δ ⊂ d such that the complete synchronization is obtained. The small neighborhood δ is called
synchronization manifold and contains the point xoe which is the origin.

In order to lead the synchronization error trajectories of the synchronization error
system to the origin xoe via control feedback, ΣE must satisfy local controllability and local
observability [11]. In other words both master and slave should be synchronizable (see
[13] for details on synchronizability of similar chaotic systems). Moreover, if both master
and slave are synchronizable then the synchronization error system is feedback linearizable
around xoe . Therefore, the complete chaos synchronization between strictly different systems
can be solved by means of a control system that stabilizes every state of the synchronization
error system at the origin. To begin with this problem, let us consider the definition of the
relative degree which involves the observability and controllability condition for multiple
input and multiple output system. From this condition one can determine a set of stabilizing
controllers.

Definition 2.2. The Multiple Input and Multiple Output affine system ẋe = Fe(xe) −
Σiγi(xe, xS)ui, ye = Cexe, has relative degree vector ρ = (ρ1, ρ2, . . . , ρn) at the point xoe if:

(i) LγiL
k
Fe
yi,e(e) = 0, for all 1 ≤ j, i ≤ n, k < ρi − 1, and for all xe in the neighborhood of

xoe ,

(ii) the n × nmatrix

Axe =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Lγ1L
ρ1−1
Fe

y1,e · · · LγnL
ρ1−1
Fe

y1,e

Lγ1L
ρ2−1
Fe

y2,e · · · LγnL
ρ2−1
Fe

y2,e

· · · · · · · · ·

Lγ1L
ρn−1
Fe

yn,e · · · LγnLρn−1Fe
yn,e

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.1)

is nonsingular at xoe .
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Remark 2.3. The previous definition for the relative degree is for systems with the same
number of inputs and outputs than the order system; therefore, the relative degree matrix
Axe is square.

Now let us consider that the synchronization error system provides a nonsingular
relative degree matrix Axe , and it is considered that only one input control (ui) is acting in
each system state; thus Σn

i=1ρi = n implies that ρi = 1, then the relative degree matrix is given
as follows:

Axe =

⎛
⎜⎜⎜⎝

Lγ1y1,e 0 · · · 0
0 Lγ2y2,e · · · 0
... · · · . . . · · ·
0 0 · · · Lγnyn,e

⎞
⎟⎟⎟⎠. (2.2)

Due to the invertibility of the matrix Axe , a diffeomorphic transformation can be
determined. Such a transformation can be given by z = Φ(xe) = [y1,e, y2,e, . . . , yn,e]

T , since
the relative degree ρi = 1 the linearizable system is given by

żi = ζi(z) + ϑi(z)ui,

yi,e = zi, i = 1, 2, . . . , n,
(2.3)

where ζi(z) = LFeyi,e(Φ(z)−1) and ϑi(z) = Lγiyi,e(Φ(z)−1). Thus, from (2.3) the set Uc of
linearizing controllers is given by

ui =
1

ϑi(z)
(−ζi(z) + νi) i = 1, 2, . . . , n, (2.4)

where νi = Ki(zi − z∗i ) is the new control input that leads the system trajectories to the
prescribed reference z∗i = 0. This is, the state zi = 0which implies that zi = yi,e = xi,exi,M−xi,S =
0; therefore, xi,M = xi,S for all i.

Theorem 2.4. Consider two same order strictly different chaotic systems. If anMIMO control scheme
with n inputs and n outputs is used, then complete synchronization as defined in (2.3) is obtained.

Proof. Let us consider that the strictly different systems have n inputs and n outputs; thus,
from the definition of the relative degree, one has that there exist control commands that
stabilize each state of the synchronization error system at the origin. The transformation
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z = Φ(xe) = [y1,e, y2,e, . . . , yn,e]
T is such that the transformed synchronization error system is

given by

żi = ζi(z) + ϑi(z)ui,

yi,e = zi, i = 1, 2, . . . , n,
(2.5)

thus applying the controllers (2.4) the previous system is stabilized at the origin as follows:

z1 = y1,e = x1,M − x1,S = 0,

z2 = y2,e = x2,M − x2,S = 0,

...

zn = yn,e = xn,M − xn,S = 0

(2.6)

from where the complete synchronization is obtained as in Definition 2.1.

Remark 2.5. Note that in case of the number of inputs and outputs is less than the order system
then partial synchronization in the states is obtained.

3. Numerical Results

seeking clarity of the complete synchronization of strictly different systems the result is
illustrated by means of two examples, the first one for the case of partial synchronization
and the second for complete synchronization; in both cases we consider the Chen system as
the master and the Rössler system as the slave.

3.1. Partial Synchronization of Strictly Different Systems

First we show that under certain conditions the synchronization of strictly different systems
can lead to partial or generalized synchronization. To begin with, let us consider that the
synchronization is carried out by means of a single input and single output control scheme.

Now from synchronization error system, we need to calculate a set of controllers that
lead the trajectories to the origin xoe . Such controllers are determined from the relative degree
for a single input and single output system defined as (i) LgLkFe

(xe) = 0 for k = 1, 2, . . . , r − 1;
(ii) LgLrFe

(xoe)/= 0. The idea is to transform the synchronization error system into a partially or
fully linearizable system via feedback. To this end, once the relative degree is determined, if
r = n, then the transformed system is fully linearizable whereas if r < n the system is partially
linearizable via feedback; thus the transformation is given by

Φ(xe) =
[
φ1, φ2, . . . , φr , . . . , ν1, ν2, . . . , νn−r

]T (3.1)



6 Journal of Applied Mathematics

from this transformation the transformed synchronization error system is given by

ż1 = z2,

ż2 = z3,

...

żr = LrFe
h(z) + LgLr−1Fe

h(z)u,

ξ̇ = ψ(z, ξ).

(3.2)

Applying the control command, the first r states in the transformed system are leaded
to zero and the internal dynamics is at least bounded; therefore, the synchronization is given
by the elements of the transformation as follows:

z1 = x1,M − x1,S = 0,

z2 = ẋ2,M − ẋ2,S = 0,

z3 = ẍ3,M − ẍ3,S = 0,

...

zr = x
(r−1)
r,M − x(r−1)

r,S = 0.

(3.3)

It is clear that the states of both master and slave systems are synchronous by means of their
time derivatives. In this sense, the synchronization is called partial synchronization in states,
which is different than the complete synchronization as defined before. To illustrate this fact
let us consider the following example, where we consider the Chen system as the Master and
the Rössler system as the Slave:

ẋ1,M = α(x2,M − x1,M),

ẋ2,M =
(
γ − α)x1,M − x1,Mx3,M + γx2,M,

ẋ3,M = x1,Mx2,M − βx3,M,
yM = x1,M,

ẋ1,S = − (x2,S + x3,S),

ẋ2,S = x1,S + ax2,S + u,

ẋ3,S = b + x3,S(x1,S − c),
yS = x1,S

(3.4)
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Figure 1: Synchronization errors between system states, only the output states (x1,M, x1,S) are synchronous.

from where the synchronization error system is given by

ẋ1,e = − (x2,e + x3,e) + α(x2,M − x1,M) + x2,M + x3,M,

ẋ2,e = x1,e + ax2,e
(
γ − α − x3,M − 1

)
x1,M +

(
γ − a) − u,

ẋ3,e = − b − x3,e(x1,e − c) + x1,Mx2,M + x3,M
(
c − β − x1,M

)
+ x3,Mx1,e + x3,ex1,M,

ye = x1,e.

(3.5)

The relative degree is r = 2 and the transformation can be given as z = Φ(xe) =
[x1,e;LFeye; ν]

T , where LFeye = −(x2,e +x3,e)+α(x2,M −x1,M)+x2,M +x3,M and ν is the state for
the internal dynamics, which is given by ν̇ = −b−x3,e(x1,e −c)+x1,Mx2,M +x3,M(c−β−x1,M)+
x3,Mx1,e + x3,ex1,M. Note that if x1,M − x1,S = 0 and ẋ2,M − ẋ2,S = 0, thus the zero dynamics
are obtained and given by ν̇ = −b + cν + x1,Mx2,M + x3,M(c − β − x1,M) + νx1,M. Therefore,
the synchronization errors are illustrated in Figure 1. Recall that x2,S is given by the first
derivative of the output state, therefore in Figure 2 the functions LFeye, and x2,e are plotted,
and note that they are equals, which means that x2,S is given by a function of the master
system states. It is clear that the synchronization is partial in the states [10], but the main fact
is that the unique state that synchronizes is the measured state is; thus, to obtain complete
synchronizationwe look for a transformationwhose elements are given by zk = xk,M−xk,S = 0
and no derivatives of the Master and Slave states are involved.
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3.2. Complete Synchronization of Strictly Different Systems

The requirements for obtaining complete synchronization are fulfilled by the multiple input
and multiple output control scheme as stated in Theorem 2.4. Thus every controller stabilizes
each transformed state at the origin. To illustrate the complete chaos synchronization between
two strictly different systems, we consider again the Chen system as the master and the
Rössler system as the slave but with 3 outputs and inputs:

ẋ1,M = α(x2,M − x1,M),

ẋ2,M =
(
γ − α)x1,M − x1,Mx3,M + γx2,M,

ẋ3,M = x1,Mx2,M − βx3,M,

yM =

⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠

⎛
⎝
x1,M
x2,M
x3,M

⎞
⎠,

ẋ1,S = − (x2,S + x3,S) + u1,

ẋ2,S = x1,S + ax2,S + u2,

ẋ3,S = b + x3,S(x1,S − c) + u3,

yS =

⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠

⎛
⎝
x1,S
x2,S
x3,S

⎞
⎠,

(3.6)
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where the parameters for Rössler system are a = 0.2, b = 0.2, and c = 5.7 and for Chen system
are α = 35, γ = 28, and β = 3. The synchronization error system is given by

ẋ1,e = − (x2,e + x3,e) + α(x2,M − x1,M) + x2,M + x3,M − u1,

ẋ2,e = x1,e + ax2,e +
(
γ − α − x3,M − 1

)
x1,M +

(
γ − a) − u2,

ẋ3,e = − b − x3,e(x1,e − c) + x1,Mx2,M + x3,M
(
c − β − x1,M

)
+ x3,Mx1,e + x3,ex1,M − u3

(3.7)

with outputs ye = CMxM − CSxS, and the relative degree vector ρ = [1, 1, 1] for system (3.7);
thus, the transformation is given by

z = Φ(xe) = [x1,e, x2,e, x3,e]T . (3.8)

Now the control commands for this system are as follows:

u1(xe, xM) = − x2,e − x3,e + α(x2,M − x1,M) + x2,M + x3,M − k1
(
x1,e − xoe,1

)
,

u2(xe, xM) = x1,e + ax2,e +
(
γ − α − x3,M − 1

)
x1,M +

(
γ − a)x2,M − k2

(
x2,e − xo2,e

)
,

u3(xe, xM) = − b − x3,e(x1,e − c) + x1,Mx2,M + x3,M
(
c − β − x1,M

)

+ x3,Mx1,e + x3,ex1,M − k3
(
x3,e − xo3,e

)
,

(3.9)

where xoe = [xo1,e, x
o
2,e, x

o
3,e]

T = [0, 0, 0]T are the coordinates for the stabilization point. With
this controllers the trajectories of the synchronization error are stabilized at the origin which
by Theorem 2.4, z1 = x1,e = x1,M − x1,S = 0, implies that x1,M = x1,S and the same for z2 =
x2,e = 0 and z3 = x3,e = 0. Figure 3 shows the stabilization of the synchronization error into
the small synchronization manifold δ. Note that the states in the slave system that follow
the corresponding master states after the control commands are activated at t = 30. Besides,
the states of the slave system have a slow dynamics (low frequencies) whereas those of the
master system have fast dynamics (high frequencies), although the synchronization between
states is attained.



10 Journal of Applied Mathematics

0 10 20 30 40 50 60
0

20

40

Time

0 10 20 30 40 50 60
0

20

40

Time

0 10 20 30 40 50 60
0

20

40

Time

㐙x
3,
M

−x
3,
S
㐙

60

㐙x
1,
M

−x
1,
S
㐙

㐙x
2,
M

−x
2,
S
㐙

Figure 3: Stabilization of the synchronization error states at the origin.

Now let us consider a reduction in one of the input controls and output measures.
To this end again we consider the Chen system as the master and Rössler system as the
slave

ẋ1,M = α(x2,M − x1,M),

ẋ2,M =
(
γ − α)x1,M − x1,Mx3,M + γx2,M,

ẋ3,M = x1,Mx2,M − βx3,M,

yM =

⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠

⎛
⎝
x1,M
x2,M
x3,M

⎞
⎠,

ẋ1,S = − (x2,S + x3,S) + u1,

ẋ2,S = x1,S + ax2,S + u2,

ẋ3,S = b + x3,S(x1,S − c),

yS =

⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠

⎛
⎝
x1,S
x2,S
x3,S

⎞
⎠.

(3.10)
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From this case the synchronization error systems is given by

ẋ1,e = − (x2,e + x3,e) + α(x2,M − x1,M) + x2,M + x3,M − u1,
ẋ2,e = x1,e + ax2,e +

(
γ − α − x3,M − 1

)
x1,M +

(
γ − a) − u2,

ẋ3,e = − b − x3,e(x1,e − c) + x1,Mx2,M + x3,M
(
c − β − x1,M

)
+ x3,Mx1,e + x3,ex1,M,

(3.11)

and the outputs are given by ye = CMxM − CSxS = Cexe, and calculating the relative degree
vector ρ = [1, 1], note that in this case the number r = 2, which means that a complementary
φ function should be determined in order to complete the transformation and it implies that
there is a state that cannot be neither controlled nor observed. For the synchronization error
system the transformation is given by

z = Φ(xe) =
[
x1,e, x2,e, φ(xe)

]T (3.12)

the controllers for this system are given by

u1(xe, xM) = − x2,e − x3,e + α(x2,M − x1,M) + x2,M + x3,M − k1
(
x1,e − xoe,1

)
,

u2(xe, xM) = x1,e + ax2,e +
(
γ − α − x3,M − 1

)
x1,M +

(
γ − a)x2,M − k2

(
x2,e − xo2,e

)
.

(3.13)

In this case there is one state that is not synchronous and the partial-state synchronization is
obtained as it is illustrated in Figure 4, where the synchronization errors corresponding to the
measured states are stabilized whereas the unmeasured state synchronizes via its derivative.
Again from the transformation it is easy to see that only the z1 and z2 states can be stabilized
at the origin.

The synchronization errors corresponding to x1,e and x2,e are leaded to zero, this means
that the controllers in (3.13) are unable to stabilize the synchronization error trajectories at
the origin. In other words the uncontrolled and unobserved state provoke the partial-state
synchronization between two strictly different systems. Therefore, to synchronize the Rössler
system to the Chen system in the sense of Definition 2.1 is strictly required a MIMO control
scheme with an equal number of inputs and outputs than the system order. Note that the
third state is not synchronous, and the stabilization of the error trajectories is illustrated in
Figure 5, where it can be observed that the synchronization error trajectory is leaded into a
thin region, given by an infinitesimal cylinder, which provides synchronization in the x1,e and
x2,e axes, this means that the synchronization manifold is deformed in the direction given
by the unsynchronized states. It is important to stress that the third state is not free, it is
synchronized in a generalized form via the transformation z = Φ(xe).

4. Conclusions

In this work we present the complete synchronization problem between two chaotic systems
with strictly different models. We show that both systems cannot be completely synchronized
via feedback, using an MIMO control scheme with less inputs and outputs than the system
order. Thus using anMIMO control scheme with an equal number of inputs and outputs than
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Figure 4: Stabilization of the synchronization error states x1 and x2.
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Figure 5: Stabilization of the synchronization error trajectory and its canonical projections.

the system order and a diffeomorphic transformation obtained from the local controllability
and local observability conditions, the complete synchronization is achieved. To determine
such a transformation, the synchronization error system outputs are compulsory. Since the
control scheme considers a number of control commands and outputs equal to the system
order, one can calculate a set of controllers that stabilizes the synchronization errors at the
origin. On the other hand, if the control scheme uses a number of control commands and
outputs less than the system order, the partial-state synchronization is obtained, as it was
illustrated in the second example (see Figure 5). Finally, this result can be considered as
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the base for the generalization of complete synchronizability of chaotic systems with same
order via nonlinear feedback. On the other hand, the result also can be used as a method to
determine the generalized synchronization function between states.
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uncertain parameters,” Chaos, Solitons and Fractals, vol. 21, no. 3, pp. 657–667, 2004.

[8] Y. Yu and S. Zhang, “Adaptive backstepping synchronization of uncertain chaotic system,” Chaos,
Solitons and Fractals, vol. 21, no. 3, pp. 643–649, 2004.

[9] H. Fang, “Synchronization of two rank-one chaotic systemswithout andwith delay via linear delayed
feedback control,” Journal of Applied Mathematics, vol. 2012, Article ID 325131, 15 pages, 2012.

[10] R. Femat and G. Solı́s-Perales, “On the chaos synchronization phenomena,” Physics Letters A, vol. 262,
no. 1, pp. 50–60, 1999.

[11] A. Isidori, Nonlinear Control Systems, Springer, Berlin, Germany, 2nd edition, 1989.
[12] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization a Universal Concept in Nonlinear Sciences,

Cambridge Nonlinear Science Series 12, Cambridge University Press, Cambridge, UK, 2001.
[13] G. Solı́s-Perales, V. Ayala, W. Kliemann, and R. Femat, “Complete synchronizability of chaotic

systems: a geometric approach,” Chaos, vol. 13, no. 2, pp. 495–501, 2003.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


