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Learning Bayesian network (BN) structure from data is a typical NP-hard problem. But almost
existing algorithms have the very high complexity when the number of variables is large. In order
to solve this problem(s), we present an algorithm that integrates with a decomposition-based
approach and a scoring-function-based approach for learning BN structures. Firstly, the proposed
algorithm decomposes the moral graph of BN into its maximal prime subgraphs. Then it orientates
the local edges in each subgraph by the K2-scoring greedy searching. The last step is combining
directed subgraphs to obtain final BN structure. The theoretical and experimental results show that
our algorithm can efficiently and accurately identify complex network structures from small data
set.

1. Introduction

Bayesian networks (BNs), also known as belief networks, are becoming a popular tool for
representing uncertainty in artificial intelligence. They have been applied to a wide range
of tasks such as natural spoken dialog systems, vision recognition, expert systems, medical
diagnosis, and genetic regulatory network inference [1–5]. A BN consists of two important
components: a directed acyclic graph (DAG) representing the dependency structure among
the variables and a conditional probability table (CPT) for each variable given its parent
set. There has been a lot of work in the last ten years on the learning of BNs for both
graph structure and probability parameters. However, learning the structure is harder and,
arguably, more critical [6–8]. Most of these algorithms can be grouped into two different
categories: constraint-based methods and search-and-score methods. The algorithms based
on constraint generate a list of conditional independence (CI) relationships among the
variables in the domain and attempt to find a network that represents these relationships as
far as possible [9–11]. The number, complexity, and reliability of the required independence
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tests are the main concerns regarding this type of algorithms. The algorithms based on the
score-and-search paradigm see the learning task as a combinatorial optimization problem,
where a search method operates on a search space associated with BNs. They evaluate the
degree of fitness between each element and the available data by a scoring function [12–
14]. Among the search-and-score algorithms, the K2 algorithm [15] is commonly used which
learns the network structure from data by requiring a prior ordering of nodes as input.
However, searching for the best structure is difficult because the search space increases
exponentially with the number of variables [16].

In this paper, we propose a BN structure learning algorithm, which combined with
the merits of the constraint-based method and the K2 algorithm. The proposed algorithm
not only employs constraint knowledge to decompose the search space but also uses the K2
score as heuristic knowledge to induce the process of local greedy search. It uses the property
that the local information of variables in each maximal prime sub-graph cannot be destroyed
by decomposing the undirected independence graph. At the same time, the K2 algorithm
can be used to learn the local structure of each undirected subgraph and obtain a group
of directed subgraphs. Thus, by combining these directed subgraphs, we obtain the final
structure. Theoretical results and large number of experiments show that the new algorithm
is effective and efficient, especially in small data set. Moreover, the proposed algorithm uses
maximal prime decomposition to identify the whole graph structure, which reduces the
search space significantly and greatly enhances learning speed.

The remainder of this paper is organized as follows. Section 2 introduces notation
and definitions. We describe our algorithm and its theoretical proofs in Section 3. Section 4
discusses how to construct the moral graph from observed data. Simulation studies are
conducted to demonstrate the performance of our algorithm and existing algorithms in
Section 5. Finally, in Section 6, we conclude and outline our future work. All proofs will be
presented in the Appendix section.

2. Notation and Definitions

In this section, we provide some basic technical terminologies that are sufficient for
understanding this paper.

A BN is a tuple (G, P), where G = (V, E) is a directed acyclic graph (DAG)with nodes
representing the random variables in V and P a joint probability distribution on V . A node Vi

is called a parent of Vj if the directed edge Vi → Vj ∈ E. The set of all parents of Vj is denoted
as pa(Vj). A path from Vi to Vj is a sequence [Vi = Vi0, Vi1, . . . , Vin = Vj] of distinct nodes such
that Vi(k−1) → Vik or Vik → Vi(k−1) for k = 1, 2, . . . , n. We say that Vj is an ancestor of Vi and
Vi is a descendant of Vj if there is a directed path from Vj to Vi in G. In addition, G and P
must satisfy the Markov condition: every variable Vi ∈ V is independent of any subset of its
nondescendant variables conditioned on the set of its parents, denoted by pa(Vi). We denote
the conditional independence of the variable sets X and Y given Z in some distribution P
with IndP (X;Y | Z). A path ρ is said to be d-separated by a set Z in a DAG G, if and only
if (1) ρ contains a “head-to-tail meeting”: Vi → Vj → Vk or a “tail-to-tail meeting”: Vi ←
Vj → Vk such that the middle node Vj is in Z, or (2) ρ contains a “head-to-head meeting”:
Vi → Vj ← Vk such that the middle node Vj is not in Z and no descendant of Vj is in Z. Two
distinct setsX and Y of nodes are said to be d-separated by a setZ inG ifZ d-separates every
path from any node in X to any node in Y . We use DsepG(X;Y | Z) to denote the assertion
that X is d-separated from Y given Z in G.
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For a DAG G = (V, E), its moral graph Gm = (V, Em) is an undirected graph obtained
by connecting every pair of nodes with a common child which are not already connected in
G and then dropping the directionality of all directed edges. An undirected path ρ is said
to be separated by a set Z in a moral graph Gm, if and only if ρ passes through Z. A BN
(G, P) satisfies the faithfulness condition if the d-separations in G identify all and only the
conditional independencies in P , that is, IndP (X;Y | Z) if and only if DsepG(X;Y | Z).
We will drop the subscript G or P in the notation of conditional independence when the
faithfulness condition holds. Let G(V ) denote a graph consisting of a finite set V of nodes.

Definition 2.1 (see [17]). Suppose the triplet (V ′, S, V ′′) denote a partition of V where V =
V ′ ∪ S ∪ V ′′; if every path in Gm(V ) between Vi ∈ V ′ and Vj ∈ V ′′ contains a node in S
and Gm(S) is complete, then Gm is decomposable and (V ′, S, V ′′) is a decomposition of Gm

into subgraphs Gm(V ′ ∪ S) and Gm(V ′′ ∪ S); otherwise Gm is prime. Moreover, S is called a
complete separator of Gm with respect to (V ′, S, V ′′).

Furthermore, an undirected graph Gm is said to be decomposed maximally if Gm and
all its sub-graphs can be decomposed recursively until all sub-graphs are not decomposable.
These sub-graphs are the maximal prime sub-graphs of Gm. Transformation of a BN into
its maximal prime sub-graphs is equivalent to recursively decomposing the moral graph of
DAG. The most well-known algorithm is the MPD-JT algorithm [17] which first triangulates
the moral graph Gm by adding a fill-in edge to every cycle whose length is greater than three
and then identifies all the cliques of triangulation graph and arranges them as a junction tree
(JT), and finally, recursively aggregates cliques connected by incomplete separators (in the
moral graph). Figure 2 schematically illustrates the process of the MPD-JT algorithm.

Example 2.2. Consider the Asia network [18] in Figure 1(a). Its moral graph Gm is shown
in Figure 1(b). By our definition, Gm is decomposable. Figure 1(c) provides one of its
triangulation graphs of Gm and Figure 2(a) gives its corresponding junction tree. Since
Gm(BL) is an incomplete separator in the moral graph Gm, we aggregate cliques BLS and
BEL according to the MPD-JT algorithm. The resulting graph is shown in Figure 2(b). From
Figure 2(b), we can see that all the separators are complete inGm, so, there are no cliques that
need to be aggregated. We obtain five maximal prime sub-graphs (Figure 2(c)).

The K2 algorithm is a greedy search algorithm that learns the network structure from
data. It attempts to select the network structure which maximizes the network’s posterior
probability, given the observed data. Its scoring function can be expressed as follows:

fK2(G,D) = log p(G) +
n∑

i=1

⎡

⎣
qi∑

j=1

[
log

(
(ri − 1)!(

Nij + ri − 1
)
!

)
+

ri∑

k=1

log
(
Nijk!

)
]⎤

⎦. (2.1)

Nijk is the number of cases in D where Vi is in its kth state and its parents are in their jth
state. Nij =

∑ri
k=1 Nijk denotes the number of cases in D where pa(Vi) is in its jth state, ri

denotes the number of states of variable Vi, and qi is the number of parent configurations
of Vi. It is obvious that the search space is the main element influencing the performance
of the K2 algorithm. In theory, the more constraint conditions, the smaller the search space
of BNs. And then the search efficiency will be much higher. Hence, it is very necessary to
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Figure 1: Asia network, its moral graph, and one of its triangulation graphs.
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Figure 2: The process of decomposing the Asia moral graph into its maximal prime subgraphs.

reduce the search space. Considering the BN’s own characteristic, we combine the constraint
approach with maximal prime decomposition to learn a BN structure.

3. The Structure Learning Algorithm and Its Correctness

In this section, theoretical results are presented for learning the structure of BN. We show
how the problem of learning the structure over the full set of all variables can be split
into its subproblems. Below we first give two theorems based on which we propose the
decomposition algorithm for structural learning of BNs.

Theorem 3.1. Let Gm be a moral graph for a DAG G = (V, E). Then a subset of variables S ⊂ V
d-separates Vi ∈ V from Vj ∈ V in G if and only if S separates Vi from Vj in Gm.

By Theorem 3.1, we can know that the condition of d-separation in a DAG is equivalent
to the separation in its moral graph.
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(1) Input: Data set D; Variable set V = (V1, V2, . . . , Vn); Node ordering ρ.
(2) Construct the moral graph Gm = (V, Em) from the data set D.
(3) Decompose the moral graph Gm into its maximal prime subgraphs Gm

1 , G
m
2 , . . . , G

m
k
.

(4) For each sub-graph Gm
l
(l = 1, 2, . . . , k) of Gm, call the K2 algorithm with the local node

ordering of Gm
l
to construct a directed acyclic graph Gl (l = 1, 2, . . . , k).

(5) Combine G1, G2, . . . , Gk into a directed graph G = (V, E) where
V = V (G1) ∪ V (G2) ∪ · · · ∪ V (Gk) and E = E(G1) ∪ E(G2) ∪ · · · ∪ E(Gk).

(6) Output: A directed acyclic graph G.

Algorithm 1: Decomposition algorithm for learning BNs.

Example 3.2. Consider the Asia network in Figure 1(a). By the definition of d-separation, we
can see that A and X are d-separated by E, because the path A → T → E → X is blocked
at E. Since there is a path A → T → E ← L ← S → B → D and E is a head-to-head node,
A and D are not d-separated by E. Thus, we can conclude that in the moral graph of Asia
network in Figure 1(b), A and X are separated by E and E does not separate A from D. In
fact, it is obviously held in Figure 1(b).

Theorem 3.3. Let Gm be a moral graph for a DAG G = (V, E) and let Gm
1 , G

m
2 , . . . , G

m
k
be maximal

prime sub-graphs of Gm. For any variable Vi ∈ V , there exists at least one maximal prime sub-graph
of Gm which contains Vi and Pa(Vi).

A consequence of Theorem 3.3 is that a problem of structural learning from a data
set can be decomposed into problems of local structural learning from a subdata set. The
guarantee of such approach is that each subdata must contain sufficient data information of
variable and its parent set.

Based on the previous analysis, an improved algorithm was proposed combined with
the merits of previous two basic methods for BN structure learning. First, according to the
observed data or domain knowledge, we construct the independent graph (the moral map)
of the target DAG applying constraint-based approach and then decompose the independent
graph. It is shown that each maximal prime sub-graph contains the sufficient information of
local variables, so, the search space of the score function can be effectively reduced. Second,
the local structure of each sub-graph is learned by using the score function and a directed
acyclic graph is obtained for each sub-graph. Finally, we combine all these directed acyclic
sub-graphs. Theoretical and experimental results show that the new algorithm is effective
and reasonable. Now we formalize our algorithm in Algorithm 1.

As shown in Algorithm 1, the proposed algorithm first decomposed the entire variable
set into its subsets. Then the local directed graph of each subset is recovered by K2 algorithm.
Unlike the case of the X-G-Z algorithm [19], the final result of our algorithm is a DAG,
not a partial directed graph, and the procedure of finding minimal d-separators is avoided.
Furthermore, the computational complexity of Algorithm 1 is less than that of the K2
algorithm. In fact, the triangulation used to construct a junction tree from an undirected
independence graph is the main cost of the MPD-JT algorithm. Although the problem of
optimally triangulating an undirected graph is NP hard, suboptimal triangulation methods
may be used provided that the obtained tree does not contain too large cliques. Two most
well-known algorithms are the lexicographic search [20] and themaximum cardinality search
[21], and their complexities are O(ne) and O(n + e), respectively, where n is the number



6 Journal of Applied Mathematics

(1) Input: Data set D; Variable set V = (V1, V2, . . . , Vn); Target variable T .
(2) Initialization: PC = V \ T, SP = ∅.
(3) Order-0 CI test: for each variable Vi ∈ PC, if Ind(Vi; T) is hold, then PC = PC \ Vi, S(Vi) = ∅.
(4) Order-1 CI test: for each variable Vi ∈ PC, if there is a variable Vj ∈ PC \ Vi such that

Ind(Vi; T | Vj), then PC = PC \ Vi, S(Vi) = S(Vi) ∪ Vj .
(5) Find superset of spouses: for each variable Vi ∈ PC, if there is a variable

Vj ∈ V \ {T ∪ PC}, such that ¬Ind(Vj ; T | S(Vj) ∪ Vi), then SP = SP ∪ Vj .
(6) Find parents and children of T : call the MMPC algorithm to get

PC(T) = MMPC (T,D(PC ∪ SP)). For each Vi ∈ PC \ PC(T), if T ∈MMPC (Vi,D),
then PC(T) = PC(T) ∪ Vi.

(7) Find spouses of T : for each variable Vi ∈ PC(T), if there is a variable
Vj ∈MMPC (Vi,D) \ {PC(T) ∪ T} and a subset Z ⊂ PC ∪ SP \ {T ∪ Vj}, such that
Ind(T ;Vj | Z) and ¬Ind(T ;Vj | Z ∪ Vi), then SP(T) = SP(T) ∪ Vj .

(8) Return MB(T) = PC(T) ∪ SP(T).
(9) Output: A Markov boundary MB(T) of T .

Algorithm 2: Algorithm for discovering Markov boundary.

of nodes and e is the number of edges in the graph. Thus, decomposition of Gm is a
computationally simple task compared to the exhaustive search using the K2 score. Let n
denote the number of variables in V , and m the number of cases in data set D. In the worst
case, the complexity of the K2 algorithm is O(mn4r) [15] where r is the largest number of
states of a variable in V . Suppose that Gm is decomposed into k subgraphs, where k ≤ n. Let
n0 denote the number of variables in the largest subgraph, that is, n0 = maxl|Gm

l
|, where |Gm

l
|

denotes the number of variables in Gm
l
. The complexity for constructing a directed acyclic

subgraph Gl in Algorithm 1 isO(mn4
0r), and thus that of all directed subgraphs isO(kmn4

0r).
Since n0 is usually much less than n, our algorithm is less computationally complex than the
K2 algorithm. We now establish the correctness of our algorithm by showing that our final
result is a DAG.

Theorem 3.4. Given a data setD and a variable (node) set V , then the graph G = (V, E) returned by
Algorithm 1 is a DAG.

4. Construction of the Moral Graph from Observed Data

In general, the moral graph of an underlying BN can be obtained from the observed data
based on the conditional independence tests. An edge Vi − Vj is included in the moral graph
if and only if Vi and Vj are not conditionally independent given all other variables. However,
these require sufficient data for estimating the parameters and for improving the power of
tests. To avoid testing high order conditional independence relations, we propose a Markov
boundary discovery algorithm which is based on a subroutine MMPC [22]. The Markov
boundary of a variable T , denoted as MB(T), is a minimal set of variables conditioned on
which all other variables that are probabilistically independent of the target T . Furthermore,
the set of parents, children, and spouses of T is its unique Markov boundary under the
faithfulness condition [23]. The MMPC algorithm is sketched in the appendix section.

According to Algorithm 2, we can see that our algorithm starts with a two-phase
approach. A shrinking phase attempts to remove the most irrelevant variables to T , followed
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by a growing phase that attempts to add as many dependent variables as possible. The
growing phase is interleaved with the shrinking phase. Interleaving the two phases allows to
eliminate some of the false positives in the current boundary as the algorithm progresses
during the growing phase. Theoretically, the more the constraint knowledge obtained by
CI tests, the smaller the search space, and the higher the searching efficiency. However, the
results of higher-order CI tests may be unreliable. Steps 3 and 4 of Algorithm 2 only use order-
0 and order-1 CI tests to reduce the search space whose number of CI tests is bound byO(n3).
In Steps 6 and 7 of Algorithm 2, we only condition on subsets of sizes up to one instead of
conditioning on all subsets of the PC ∪ SP. The order of the complexity is O(t · |PC|2) where
PC is the largest set of parents and children over all variables in V and t is the number of
variables in PC ∪ SP, t
 n. Thus, the total complexity of Algorithm 2 is O(n · t · |PC|2).

Theorem 4.1. Suppose (G, P ) satisfies the faithfulness condition, where G = (V, E) is a DAG and P
is a joint probability distribution of the variables in V . For each target variable T , Algorithm 2 returns
the Markov boundary of T .

By Theorem 4.1, a moral graph can be constructed from observed data.
On the other hand, Gm can be constructed based on the prior or domain knowledge

rather than conditional independence tests. The domain knowledge may be experts’ prior
knowledge of dependencies among variables, such as Markov chains, chain graphical
models, and dynamic or temporal models. Based on the domain knowledge of dependencies,
data patterns of databases can be represented as a collection of variable sets D =
{D1, D2, . . . , Dk}, in which variables contained in the same set may associate each other
directly but variables contained in different sets associate each other through other variables.
This means that two variables that are not contained in the same set are independent
conditionally of all other variables. From the k data patterns, we get separately k undirected
subgraphs. Combining them together, we obtain the undirected graph Gm.

5. Experimental Results

In this section, we present the experimental results carried out with our algorithm on two
standard network data sets (Alarm [24] and Insurance [25]). The first one is a medical
diagnostic system for patient monitoring. It consists of 37 nodes and 46 edges. The random
variables in the Alarm network are discrete in nature and can take two, three, or four states
(Figure 3). The second example is a network for estimating the expected claim costs for
a car Insurance policyholder. It consists of 27 nodes and 52 edges connecting them. Our
implementation is based on the Bayesian network toolbox written by Murphy [26] and the
Causal Explorer System developed by Aliferis et al. [27]. The experimental platform was a
personal computer with Pentium 4, 3.06GHz CPU, 0.99 GB memory, and Windows XP.

5.1. Learning Networks with Node Ordering

In this subsection, we show simulations of the Alarm network when the node ordering is
known. Although our algorithm is based on a constraint-based method and a search-and-
score method, given that the result of network returned by Algorithm 1 is a DAG, which has
some similarities with the search-and-score methods, it is interesting to include one of these
methods in comparison. We have selected the well-known K2 algorithm. We begin with a BN
G0 which is completely specified in terms of structure and parameters, and we obtain a data
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Figure 3: Alarm network.

set of a given size by sampling from G0. Then, using our algorithm and the K2 algorithm,
respectively, we obtain two learned networks G1 and G2, which must be compared with the
original network G0. More precisely, the experiments are carried out on different data set
randomly selected from the database (100000 data points). The size of the data set is varied
from 500 to 10000, and 10 replicates are done for each of the different network parameters
and sample sizes. The average number of missing edges, extra edges, and reversed edges in
the learned networks with respect to the original one is computed.

We compare our methods with two different significance levels on Alarm network,
that is, α = 0.01 and. The results are shown in Table 1 for different sample sizes 500, 1000,
2000, 5000, and 10000. In the second row of table, four values in a bracket denote the number
of missing edges, extra edges, reversed edges, and computation time, respectively, and other
rows give values relative to the second row, which are obtained by dividing their real values
by the values in the second row. A relative value larger than 1 denotes that its real value is
larger than the corresponding value in the second row. From Table 1, the first thing that can be
observed is that these results seem to confirm our intuition about the need to use Algorithm 1
with a smaller significance level α than those typically used for independence tests, since
Algorithm 1 with the value α = 0.01 offers better results than that with α = 0.05. It also shows
that the structure obtained by our algorithm (α = 0.01) has the least number of missing edges,
extra edges, and reversed edges. And further, our algorithm costs the least time.

Table 2 displays the K2 scores obtained for the original Alarm network, network
returned by Algorithm 1 and network returned by K2 algorithm, respectively. It is easy to
see that the larger the dataset size is, the closer the score to the original one. However, when
the dataset size is smaller than 5000, the score returned by our algorithm is more approximate
to the original one. At the same time, it can be found that our algorithm performs better than
the K2 algorithm in terms of the running results on all data sets. Moreover, the advantage
is very obvious when the data set is small; namely, the smaller the data set size, the more
obvious the improvement.

5.2. Learning Networks without Node Ordering

From the previous experimental results, we can see that our algorithm is capable of
identifying structures that are close to optimal ones, given a prior ordering of the variables.
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Table 2: Scores on Alarm for different dataset size n: score of original network Sc (G0), score of network
returned by Algorithm 1 Sc (G1), and score of network returned by K2 algorithm Sc (G2).

Score n = 500 n = 1000 n = 2000 n = 5000 n = 10000
Sc (G0) −5.2004e + 003 −1.0000e + 004 −1.9440e + 004 −4.7737e + 004 −9.4515e + 004
Sc (G1) −4.9831e + 003 −1.0652e + 004 −2.0502e + 004 −4.7558e + 004 −9.4514e + 004
Sc (G2) −6.8038e + 003 −1.9824e + 004 −3.0308e + 004 −4.7826e + 004 −9.4533e + 004

However, this ordering information may not be available in real-life applications. Thus, in
this subsection, Algorithm 1 is extended to manage the problem in which the node ordering
is not available. In fact, we only need to delete the directed cycles after combining all directed
subgraphs at the expense of introducing a little complexity.

Now we compare our extended method with the X-G-Z [19], RAI [28], and MMHC
[22] algorithms. Similar with Section 5.1, the size of the data set is varied from 1000 to
10000, and 10 replicates are done for each of the different network parameters and sample
sizes. We use two significance levels (α = 0.01 and α = 0.05) in the simulations. Unlike the
situation of Section 5.1, algorithms that return a DAG are converted to the corresponding
partial directed acyclic graph (PDAG) before comparing the quality of reconstruction. The
PDAG is equivalent to its DAG. The average number of missing edges, extra edges, and
reversed edges in the learned PDAG with respect to the underlying PDAG is computed.

We summarize the simulation results in Tables 3 and 4. In the second row of tables,
five numbers in a bracket denote the number of missing edges, extra edges, reversed edges,
the sum of the first three values, and computation time, respectively. Other rows give values
relative to the second row, which are obtained by dividing their real values by the values
in the second row. A relative value larger than 1 denotes that its real value is larger than
the corresponding value in the second row. In each column, the best of the eight results
are displayed in bold. From a general point of view, we can see that the X-G-Z algorithm
obtains the least number of missing edges, the MMHC obtains the least number of extra
edges, and Algorithm 1 has the least number of reversed edges. In terms of the sum of
the three kinds of edges, the RAI and MMHC algorithms perform better than the X-G-Z
algorithm and Algorithm 1 performs best. Although it can be seen that Algorithm 1 seems
to have a similar performance with RAI in most cases, the running time on all data sets cost
for Algorithm 1 is least. Moreover, the advantage is very obvious when the data set is large;
namely, the bigger the sample size, the more obvious the improvement. The main reason
is that Algorithm 1 uses lower-order CI tests and employs maximal prime decomposition
technique to effectively decompose the search space which cut down many computings of
statistic factors, scorings of the structures, and comparisons of the solutions and thus greatly
enhances the time performance. Contrast Table 4 with Table 3, since the Insurance network
has more variables than the Alarm network, it can be found that the running time of X-G-Z
fast increases as the number of variable increases. However, Algorithm 1 is not sensitive to the
increase of the variable capacity. In conclusion, our algorithm has a better overall performance
compared to the other state-of-the-art algorithms.

6. Conclusions

In this paper, we have given a more accurate characterization of moral graph and proposed
a new algorithm for structural learning, which substantially improves on the K2 algorithm.
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We also extend our algorithm to manage networks without node ordering. Although the new
algorithm depends on the quality of constructed moral graph, simulation studies illustrate
that our method yields good results in a variety of situations, especially when the underlying
data set is small.

The results in this paper also raised a number of interesting questions for future
research. We briefly comment on some of those questions here. First, maximal prime
decomposition plays a key role in Algorithm 1. Although decomposition of an undirected
graph into its maximal prime sub-graphs has been discussed a lot, we believe that there is
room for further improvements. Second, we have applied the K2 algorithm for the learning
of local structures in Algorithm 1. It will be interesting to see whether there exists some
alternative approach to serve the same purpose here. Finally, although we assume in this
paper that the data are completely observed, missing data or data with latent variables may
arise in practice. Generalization of the proposed algorithm to missing data or data with latent
variables is of great research interest.

Appendix

Proofs of Theorems

In this appendix, we give the proofs of all the theorems.

Proof of Theorem 3.1. The proof of Theorem 3.1 can be obtained from the document [29].

Proof of Theorem 3.3. If Pa(Vi) is empty, it is trivial.
If Vi has only one parent, since no set can separate Vi from a parent, there must be a

sub-graph of Gm that contains Vi and the parent. Thus we obtained the theorem.
If Vi has two or more parents, we suppose, by reduction to absurdity, that Vi has two

parents Vj and Vk which are not contained in a single clique but are contained in two different
cliques, say {Vi, Vj} ⊆ Gm

P and {Vi, Vk} ⊆ Gm
q , respectively, since all variables in V appear

in Gm. On the path from Gm
P to Gm

q in Gm, all separators must contain Vi; otherwise they
cannot separate Gm

P from Gm
q . By Theorem 3.1, Vi d-separates Vj from Vk in G. Thus we got a

contradiction.

Proof of Theorem 3.4. It is easy to see thatG is a directed graph.We need only show the absence
of cycles in the graph G.

Without loss of generality, we suppose that there is a cycle from node Vp to Vq and the
global node ordering is ρg : Vi1 ≺ Vi2 ≺ · · · ≺ Vp ≺ · · · ≺ Vq ≺ · · · ≺ Vin . Because each sub-
graph Gl (l = 1, 2, . . . , k) returned by Step 4 is a directed acyclic graph, there exist at least two
direct paths Vp → · · · → Vq and Vq → · · · → Vp which are contained in two different sub-
graphs, sayGl andGk, respectively. By the definition of global node ordering ρg , we conclude
Vp ≺ Vq in the local node ordering ρk of graphGk. Furthermore, according to themethod in K2
algorithm for constructing sub-graph Gk with the local node ordering ρk, we know that the
only edges pointing at the direction toward Vp are those from each variable in ρk preceding
Vp. This contradicts the supposition that graph Gk has the direct path Vq → · · · → Vp.

Proof of Theorem 4.1. Before proving Theorem 4.1, we give the definition of the embedded
faithfulness condition and three lemmas.
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(1) Input: Data set D; Variable set V = (V1, V2, . . . , Vn); Target variable T .
(2) CPC = ∅;
(3) repeat
(4) for Vj ∈ (V \ CPC \ {T}) do
(5) S(Vj) = arg min

Z⊆CPC
dep (T, Vj | Z);

(6) end for
(7) Y = arg max

Vj∈(V \CPC\{T})
dep (T, Vj | S(Vj));

(8) if ¬Ind(T ;Y | S(Y )) then
(9) CPC = CPC ∪ {Y};
(10) end if
(11) until CPC has not changed;
(12) for Vj ∈ CPC do
(13) if Ind(T ;Vj | Z) for some Z ⊆ CPC \ {T} then
(14) CPC = CPC \ Vj ;
(15) end if
(16) end for
(17) return CPC
(18) Output: The parents and children PC(T) of T .

Algorithm 3: MMPC.

Definition A.1 (see [23]). Let PW be a joint probability distribution of the variables inW where
W ⊆ V , and let G = (V, E) be a DAG. 〈G, PW〉 satisfies the embedded faithfulness condition if
G entails all and only conditional independencies in PW for subsets including only elements
ofW .

Lemma A.2. Let P be a joint probability distribution of the variables in V with W ⊆ V , and let
G = (V, E) be a DAG. If (G, P) satisfies the faithfulness condition and PW is the marginal distribution
of W , then (G, PW) satisfies the embedded faithfulness condition.

The proof of Lemma A.2 can be found in [23].

Lemma A.3. Suppose (G, P) satisfies the faithfulness condition, where G = (V, E) is a DAG and P

is a joint probability distribution of the variables in V . For each target variable T , PC ∪ SP returned
by the Algorithm 2 is a superset of MB(T).

Proof. By the faithfulness condition, MB(T) = PC(T)∪SP(T), where PC(T) is the set of parents
and children of T and SP(T) is the set of spouses of T . We only need to show that PC(T) ⊆ PC
and SP(T) ⊆ SP. If Vi ∈ PC(T), then because of the faithfulness condition, for any subset Z ⊆
V , ¬Ind(Vi; T | Z). Thus, Vi will be not removed by Steps 3 and 4 of Algorithm 2. Similarly, if
Vj ∈ SP(T), then, for each variable Vi ∈ PC(T) ⊆ PC, there is a subset Z ⊆ V , Ind(T ;Vj | Z)
and ¬Ind(T ;Vj | Z ∪Vi). We set Z = S(Vj), where S(Vj) is the d-separation set between T and
Vj . By Step 5 of Algorithm 2, Vj ∈ SP. Thus, SP(T) ⊆ SP.

Remark A.4. ¬Ind(X;Y | Z) denotes that X is not independent of Y conditioned on Z.

Lemma A.5. Suppose (G, P) satisfies the faithfulness condition, where G = (V, E) is a DAG and
P is a joint probability distribution of the variables in V with W ⊆ V . For each target variable T , if
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MB(T) ⊆ W ⊆ V , then, there is a unique Markov boundary MBW(T) of T over W and MBW(T) =
MB(T).

Proof. By the faithfulness condition and Lemma A.2, it is obvious that T admits a unique
Markov boundary over W . We only need to show that MBW(T) = MB(T) is held under the
condition MB(T) ⊆ W ⊆ V . Clearly, MB(T) ⊆ MBW(T) as MB(T) ⊆ W ⊆ V . Next, we show
MBW(T) ⊆MB(T).

Without loss of generality, we suppose that there is a variable Vi ∈ MBW(T), Vi /∈
MB(T). Then, on the one hand, we would have IndP (Vi; T | MB(T)) because MB(T) is a
Markov boundary of T in V . On the other hand, since MBW(T) = PCW(T) ∪ SPW(T), we
consider the problem from two aspects.

If Vi is a parent or child of T in W , that is, Vi ∈ PCW(T), then we would not have
DsepG(Vi; T |MB(T)) in G. This contradicts the faithfulness condition.

If Vi is a spouse of T in W , that is, Vi ∈ SPW(T), let Vj be their common child in W . If
Vj ∈ MB(T), we again would not have DsepG(Vi; T | MB(T)) in G. If Vj /∈ MB(T), we would
have IndP (Vj ; T | MB(T)) in V , but we would not have DsepG(Vj ; T | MB(T)) in G because T
is a parent of Vj in G. So again we would get a contradiction.

Now we are ready to prove Theorem 4.1.

Proof. Suppose Step 6 of Algorithm 2 returns the parents and children of T . According to the
definition of spouse, it is easy to see that Step 7 of Algorithm 2 identifies the spouse of T in G.
We only need to show that Step 6 of Algorithm 2 returns all and only the parents and children
of T in G.

From Lemmas A.2 and A.3, we have that (G, PPC(T)∪SP(T)) satisfies the embedded
faithfulness condition. We set PC(T) ∪ SP(T) = W , W ⊆ V . Since MMPC is correct under
the faithfulness condition, Step 6 of Algorithm 2 returns the parents and children of T in W ,
denoted by PCW(T). We next show PCW(T) = PCV (T).

By Lemma A.5, we know that MBW(T) = MBV (T) ⊆ W , thus, PCV (T) ⊆ PCW(T).
Similar to proof of Lemma A.5, we show below that PCW(T) ⊆ PCV (T). Without loss of
generality, we suppose that there is a variable Vi ∈ PCW(T), Vi /∈ PCV (T). Because all
nonadjacent nodes may be d-separated in G by a subset of its Markov boundary, then
∃Z ⊆ MBV (T) \ Vi such that IndP (Vi; T | Z). As MBW(T) = MBV (T) owing to Lemma A.5,
Vi could be d-separated in W \ {Vi, T}. Therefore, Vi cannot be adjacent to T in W , that is,
Vi /∈ PCW(T). We got a contradiction.

The MMPC algorithm is sketched in Algorithm 3.
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