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1. Introduction

The automatic classification of the components of a structure of multiple tables remains a
vast field of research and investigation. The components are matrix objects, and the difficulty
lies in the definition and the delicate choice of an index of distance between these objects
(see Lerman and Tallur [1]). If the matrix objects are tables of measurements of the same
dimension, we introduced in Rebbouh [2] an index of distance based on the inner product
of Hilbert Schmidt and built a classification algorithm of k-means type. In this paper, we
are interested by the case when matrix objects are tables gathering the description of the
individuals by nominal variables. These objects are transformed into complete disjunctive
tables containing 0/1 data (see Agresti [3]). It is thus a particular structure of multiple data
tables frequently encountered in practice each time one is led to carry out several observations
on the individuals whom one wishes to classify (see [4, 5]). We quote for example the case
when we wish to classify administrative departments according to indices measuring the
level of economic idE and human development idH which are weighted averages calculated
starting from measurements of selected parameters. Each department i gathers a number Li
of subregions classified as rural or urban. Each department is thus described by a matrix
with 2 columns and Li lines of positive numbers ranging between 0 and 1. But the fact that
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the values of the indices do not have the same sense according to the geographical position
of the subregion, and its urban or rural specificity led the specialists to be interested in the
membership of the subregion to quintile intervals. Thus, each department will be described
by a matrix object with 10 columns and Li lines. This matrix object is thus a juxtaposition
of 2 tables of the same dimension containing only one 1 on each line which corresponds to
the class where the subregion is affected and the remainder are 0. The use of conventional
statistical techniques to analyze this kind of data requires a reduction step. Several criteria
of good reduction exist. The criterion that gives results easily usable and interpretable is
undoubtedly the least squares criterion (see, e.g., [6]). These summarize each table of data
describing each object for each variable in a vector or in subspace. Several mathematical
problems arise at this stage:

(1) the choice of the value which summarizes the various observations of the
individual for each variable, do we take the most frequent value or another value,
for example an interval [7]; why this choice? and which links exist between
variables,

(2) the second problem concerns the use of homogeneity analysis or multiple correspon-
dence analysis (MCA) to reduce the data tables. We make an MCA for each of the
n data tables describing, respectively, the n individuals. We get n factorial axis
systems. To compare elements of the structure, we must seek a common system or
compromise system of the n ones. This issue concerns other mathematical discipline
such as differential geometry (see [8]). The proposed criteria for the choice of the
common space are hardly justified (see Bouroche [9]). This problem is not fully
resolved,

(3) the problem of the number of observations that may vary from one individual to
another. We can use the following procedure to complete the tables. We assume
that Li > 1, for all i = 1, . . . , n, Li is the number of observation of the individual
ωi and define L as the least common multiple of Li. Hence, there exists ri such
that L = Li × ri. Now, we duplicate each table T , ri times, we obtain a new table
T ∗
i of dimension L × d, d is the number of variables. But if Li is large, the least

common multiple becomes large itself, and the procedure leads to the structure of
large tables. Moreover, this completion removes any chronological appearance of
data. This cannot be a good process of completion, and it seems more reasonable to
carry out the classification without the process of completion.

To overcome all these difficulties with the proposed solutions which are not rigorously
justified, we introduce a formalism borrowed from the theory of signal and communication
see (Shannon [10]) and which is used to classify the elements of the data structure [11].
Our approach is based on simple statistical tools and on techniques used in information
theory (physical system, entropy, conditional entropy, etc.) and requires the introduction of
the concept of discrete physical systems as models for the observations of each individual
for the variables which describe them. If we consider that an observation is a realization
of a random vector, it appears reasonable to consider that each value of the variable or the
random vector represents a state of the system which can be characterized by its frequency
or its probability. If the variable is discrete, the number of states is finite, each state will be
measured by its frequency or its probability. This approach gives a new version and in the
same time an explanation of the distance introduced by Kullback [12]. This index makes it
possible to build an indexed hierarchy on the elements of the structure and can be used if the
matrix objects do not have the same dimension.
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In Section 2, we introduce an adapted formalism and the notion of physical random
system as a model of description of the objects. We define in Section 3 a distance between
the elements of the structure. The numerical example and an application are presented in
Section 4. Concluding remarks are made in Section 5.

2. Adapted formalism

Let Ω = {ω1, . . . , ωn} be a finite set of n elementary objects, {V 1, . . . , V d} be d discrete
variables defined over Ω and taking a finite number of values in D1, . . . , Dd, respectively,
Dj = {mj

1, . . . , m
j
rj} and m

j
t is the tth modality or value taken by V j. We suppose that the

observations of the individual ωi for the variable V j are given in the table

E
j

i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V j(1)
V j(2)

...
V j(l)

...
V j(Li)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

V j

, l = 1, . . . , Li, (2.1)

and Li represents the number of the observations of the individual ωi, V j(l) = m
j
t if the lth

observation of the individual ωi for the the variable V j is mj
t where t = 1, . . . , rj . E

j

i is the
vector with Li components corresponding to the different observations of ωi for V j.

The structure of a juxtaposition of categorical data tables is

E =
[
E1, . . . , En

]
with Ei =

[
E1
i , . . . , E

d
i

]
, (2.2)

Ei is a matrix of order Li × d. For the sake of simplicity, we transform each vector Eji in a 0/1
data matrix Δj

i :

Δj

i =

m
j

1 m
j

2 · · · mj
t · · · mj

rj

1
2
...
l
...
Li

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 · · · 0 · · · 0
1 0 · · · 0 · · · 0
...

...
...

...
· · · (Zj

i )lt · · ·
...

...
...

0 0 · · · 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(
Z
j

i

)
lt
=

{
1, if at the lth observation ωi takes the modality m

j
t ,

0, otherwise.

(2.3)

The structure of a juxtaposition of 0/1 data tables is

Δ =
[
Δ1, . . . ,Δn

]
with Δi =

[
Δ1
i , . . . ,Δ

d
i

]
, (2.4)

Δi is a matrix of order L ×M where M =
∑d

j=1rj .
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p
j

it=Pr(V j = m
j
t) is estimated by the relative frequency of the value 1 observed in the

tth column of the matrix Δj

i .

Let Sji be the random single physical system associated to ωi for V j :

S
j

i =
r∧
t=1

{
(S) � m

j
t ; Pr

[
(S) � m

j
t

]
= pjit

}
, (2.5)

where the symbol (S) � mt means that the system lies in the statemt, and
∧

is the conjunction
between events.

In the multidimensional case, the associated multiple random physical system S is

S =
r1∧
l1=1

. . .
rd∧
ld=1

{
(S) �

(
m1
l1
, . . . , md

ld

)
; Pr

[
(S) �

(
m1
l1
, . . . , md

ld

)
= pl1,...,ld

]}
, (2.6)

where

r1∑
l1=1

. . .
rd∑
ld=1

pl1,...,ld = 1. (2.7)

The multiple random physical system associated to the marginal distributions is

Ŝ =
d∧̃
j=1

Sj, (2.8)

where
∧̃

is the conjunction between single physical systems, and {Sj, j = 1, . . . , d} are the
single random physical systems given by

∀j = 1, . . . , d; Sj =
rj∧
t=1

[
(S) � m

j
t ; Pr

[
(S) � m

j
t

]
= pjt

]
, (2.9)

p
j

l = Pr
[
(S) � m

j

l

]
=

r1∑
l1=1

· · ·
rj−1∑
lj−1=1

rj+1∑
lj+1=1

· · ·
rd∑
ld=1

pl1,...,ld . (2.10)

3. Distance between multiple random physical systems

3.1. Entropy as a measure of uncertainty of states of a physical system

For measuring the degree of uncertainty of states of a physical system or a discrete
random variable, we use the entropy which is a special characteristic and is widely used
in information theory.
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3.1.1. Shannon’s [10] formula for the entropy

The entropy of the system is the positive quantity:

H(S) = −
r∑
t=1

ptlog2

(
pt
)
. (3.1)

The function H has some elementary properties which justify its use as a characteristic
for measuring the uncertainty of a system.

(1) If one of the states is certain (∃l ∈ {1, . . . , r} such that pt = Pr[(S) � mt] = 1), then
H(S) = 0.

(2) The entropy of a physical system with a finite number of states (m1, . . . , mr) is
maximal if all its states are equiprobable: for all t ∈ {1, . . . , r}; pt = Pr[(S) � mt] =
1/r. We have also 0 ≤ H(S) ≤ log2(r).

The characteristic of the entropy function expresses the fact that probability
distribution with the maximum of entropy is the more biased and the more consistent with
the information specified by the constraints [10].

3.2. Entropy of a multiple random physical system

Let S be a multiple random physical system given by (2.6). If the single physical systems
(Sj ; j = 1, . . . , d) given by (2.9) are independent, then

H(S) =
d∑
j=1

H
(
Sj
)
. (3.2)

The conditional random physical system S1/[(S2) � m2
l
] is given by

S1/
[(
S2

)
� m2

l

]
=

r1∧
j=1

[(
S1

)
� m1

j /
(
S2

)
� m2

l ; Pr
[(
S1

)
� m1

j /
(
S2

)
� m2

l

]
= pj/l

]
,

(3.3)

where pj/l is a conditional probability.
The entropy of this system is

H
(
S1/

[(
S2

)
� m2

l

])
= −

r1∑
j=1

pj/llog2

(
pj/l

)
. (3.4)

The multiple random physical system (S1/S2) is written by

(
S1/S2

)
=

r2∧
l=1

[ r1∧
t=1

[(
S1

)
� m1

t /
(
S2

)
� m2

l ; Pr
[(
S1

)
� m1

t /
(
S2

)
� m2

l

]
= pt/l

]]
, (3.5)
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which implies

H
(
S1/S2

)
= −

r2∑
l=1

[
r1∑
j=1

pj/llog2

(
pj/l

)]
. (3.6)

Hence,

H(S) = H
(
S1

)
+H

(
S2/S1

)
+H

(
S3/S1

∧̃
S2

)
+ · · · +H

(
Sd/S1

∧̃
S2

∧̃
· · ·

∧̃
Sd−1

)
.

(3.7)

The quantity

K(P,Q) = −
r∑
i=1

pilog2

(
qi/pi

)
(3.8)

is nonnegative. We have

K(P,Q) = K(Q,P) ⇐⇒ P = Q almost surely. (3.9)

It is clear that K(·, ·) is not a symmetric function, thus it is not a distance in the
classical sense but characterizes (from a statistical point of view) the deviation between the
distributions P and Q. It should be noted that K(P,Q) +K(Q,P) is symmetrical.

Kullback [12] explains that the quantityK(P,Q) evaluates the average lost information
if we use the distribution P while the actual distribution is Q.

Let SΠd be a set of random physical systems with
∏d

j=1rj states

S ∈ SΠd =⇒ S =
r1∧
l1=1

· · ·
rd∧
ld=1

[
(S) �

(
ml1 , . . . , mldi

)
; pl1···ld

]
. (3.10)

Let dist be the application defined by

dist: SΠd × SΠd −→ R+

[(
S1

)
,
(
S2

)] −→ dist
(
S1, S2

)
=
[
Kd

(
P 1, P 2) +Kd

(
P 2, P 1)] − [

H
(
S1

)
+H

(
S2

)]
.

(3.11)

P 1 and P 2 are the multivariate distributions of order d governing, respectively, the
random physical systems S1 and S2. Kd is defined as follows:

Kd

(
P 1, P 2) = −

r1∑
I1

· · ·
rd∑
Id

p
(1)
I1···Id log2

(
p
(2)
I1···Id

)
. (3.12)
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dist verifies

(1) dist (S1, S2) ≥ 0,

(2) dist (S1, S2) = 0 ⇔ S1 = S2,

(3) dist (S1, S2) = dist (S2, S1) (symmetry).

We admit that dist (S1, S2) = 0 ⇔ S1 = S2 ⇔ ω1 = ω2.
dist measures the similarity between physical systems. The smaller the value of

dist is, the larger the uncertainty of the systems is. dist represents the lost quantity of
average information if we use the distribution P 1 (P 2) to manage the system while the
other distribution is true. dist is nothing else than the Kullback-Leibler distance between the
multivariate distributions P 1 and P 2. Indeed, the Kullback-Leibler distance between P 1 and
P 2 is given by

Ku
(
P 1, P 2) =

r1∑
I1

· · ·
rd∑
Id

(
p
(1)
I1···Id − p

(2)
I1···Id

)
log2

(
p
(1)
I1···Id/p

(2)
I1···Id

)
. (3.13)

Developing this expression will give dist.

4. Numerical application

4.1. Procedure to estimate the joint distribution

In the case where all variables involved in the description of the individuals are discrete,
we give a procedure taken from classical techniques of factor analysis to estimate the joint
distribution and derive the entropy of the multiple physical system.

Let Δi = [Δ1
i , . . . ,Δ

d
i ] be a juxtaposition of d 0/1 data tables. For ωi ∈ Ω fixed, we have

p
(i)
l1···ld = Pr

[
(S) �

(
m1
l1
, . . . , md

ld

)]
=

1
Li
N(i)(l1, . . . , ld

)
. (4.1)

N(i)(·) is the number of simultaneous occurrences of the modalities m1
l1
, . . . , md

ld
:

r1∑
l1=1

· · ·
rd∑
ld=1

p
(i)
l1···ld = 1. (4.2)

4.2. Algorithm

We use an algorithm for ascending hierarchical classification [13]. We call points either the
objects to be classified or the clusters of objects generated by the algorithm.

Step 1. There are n points to classify (which are the n objects).

Step 2. We find the two points x and y that are closest to one another according to distance
dist and clustered in a new artificial point h.
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Table 1: Juxtaposition of the disjunctive data tables describing the 6 objects.

ω1 ω2 ω3

V 1 V 2 V 1 V 2 V 1 V 2

m1
1 m1

2 m2
1 m2

2 m2
3 m1

1 m1
2 m2

1 m2
2 m2

3 m1
1 m1

2 m2
1 m2

2 m2
3

1 0 1 0 0 1 0 0 1 0 1 0 1 0 0

0 1 0 0 1 0 1 0 0 1 0 1 0 0 1

1 0 0 1 0 0 1 1 0 0 1 0 0 1 0

0 1 1 0 0 0 1 1 0 0 0 1 0 1 0

0 1 1 0 0 1 0 0 1 0 0 1 1 0 0

1 0 0 0 1 0 1 1 0 0 1 0 0 0 1

0 1 0 1 0 0 1 0 0 1 1 0 1 0 0

1 0 0 1 0 1 0 0 1 0 0 1 0 1 0

1 0 0 1 0 0 1 0 1 0 0 1 1 0 0

1 0 1 0 0 1 0 0 0 1 1 0 0 1 0
ω4 ω5 ω6

V 1 V 2 V 1 V 2 V 1 V 2

m1
1 m1

2 m2
1 m2

2 m2
3 m1

1 m1
2 m2

1 m2
2 m2

3 m1
1 m1

2 m2
1 m2

2 m2
3

1 0 1 0 0 1 0 0 1 0 1 0 1 0 0

0 1 0 1 0 0 1 1 0 0 1 0 0 0 1

1 0 0 0 1 1 0 0 0 1 0 1 0 1 0

0 1 1 0 0 1 0 0 1 0 1 0 1 0 0

0 1 0 1 0 0 1 0 1 0 0 1 0 0 1

1 0 0 1 0 1 0 0 1 0 0 1 0 0 1

1 0 0 1 0 0 1 0 0 1 0 1 1 0 0

1 0 0 0 1 1 0 0 1 0 1 0 1 0 0

0 1 0 0 1 1 0 0 1 0 1 0 0 1 0

1 0 1 0 0 1 0 1 0 0 1 0 1 0 0

Step 3. We calculate the distances between the new point and the remaining points using the
single linkage of Sneath and Sokal [14] D defined by

D(ω, h) = Min
{

dist (ω, x),dist (ω, y)
}
, ω /=x, y. (4.3)

We return to Step 1 with only (n − 1) points to classify.

Step 4. We again find the two closest points and aggregate them. We calculate the new
distances and repeat the process until there is only one point remaining.

In the case of single linkage, the algorithm uses distances in terms of the inequalities
between them.

4.3. Numerical example

Consider 6 individuals described by 2 qualitative variables with, respectively, 2 and 3
modalities. 10 observations for each individual, the observations are grouped in Table 1.
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Table 2

(m1
1,m

2
1) (m1

1,m
2
2) (m1

1,m
2
3) (m1

2,m
2
1) (m1

2,m
2
2) (m1

2,m
2
3)

F1 0.2 0.3 0.1 0.2 0.1 0.1
F2 0.1 0.2 0.1 0.3 0.1 0.1
F3 0.2 0.2 0.1 0.2 0.2 0.1
F4 0.2 0.2 0.2 0.1 0.2 0.1
F5 0.1 0.4 0.2 0.1 0.1 0.1
F6 0.4 0.1 0.1 0.1 0.1 0.1

Table 3: Entropy of the conditional random physical systems associated to the 6 objects.

S1 S2 S3 S4 S5 S6

S1 2, 4464 2, 6049 2, 5219 2, 6219 2, 6219 2, 8219
S2 2, 6049 2, 4464 2, 6219 2, 8219 2, 8219 2, 9219
S3 2, 6049 2, 7049 2, 5219 2, 6219 2, 8219 2, 8219
S4 2, 7049 2, 8634 2, 6219 2, 5219 2, 7219 2, 8219
S5 2, 4879 2, 6634 2, 6219 2, 5219 2, 3219 3, 0219
S6 2, 6634 2, 8634 2, 6219 2, 6219 3, 0219 2, 3219

4.3.1. Procedure to build a hierarchy on these objects

The empirical distributions which represent the individuals are given by Table 2.
The program is carried out on this numerical example. We obtain the following results

(Table 3).

Step 1. From the similarity matrix, using the single linkage of Sneath (4.3), we obtain

min
l /= t; l,t=1,...,5

{
dist

(
Sl, St

)}
= dist

(
S1, S3

)
= 0, 1585. (4.4)

Then, the objects ω1 and ω3 are aggregated into the artificial object ω7 which is placed at the
last line, and the rows and columns corresponding to the objects ω1 and ω3 are removed in
the similarity matrix.

Step 2. From the new similarity matrix, we obtain

min
l /= t; l,t=2,4,5,6

{
dist

(
Sl, St

)}
= dist

(
S2, S7

)
= 0, 317. (4.5)

The objects ω2 and ω7 are aggregated into the artificial object ω8.

Step 3.

min
l /= t; l,t=4,5,6

{
dist

(
Sl, St

)}
= dist

(
S4, S8

)
= 1, 268. (4.6)

The objects ω4 and ω8 are aggregated into the artificial object ω9.
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Step 4.

min
l /= t; l,t=5,6,9

{
dist

(
Sl, St

)}
= dist

(
S5, S9

)
= 2, 732. (4.7)

The objects ω5 and ω9 are clustered in the new object ω10. The object ω6 is aggregated with
the object ω10 and dist (S6, S10) = 4, 8.

In Figure 1 it can be seen that two separated classes appear in the graph by simply
cutting the hierarchy on the landing above the individual ω2. In this algorithm, we started
by incorporating the two closest objects using the index of distance between corresponding
physical systems. The higher the construction of the hierarchy is, the more dubious the
obtained states of the mixed system are. The example shows that the index of Kullback-
Leibler and the index of aggregation of the minimum bound (single linkage) lead to the
construction of a system with a maximum of entropy, and thus lead to a system for which all
the states are equiprobable.

If the total number of modalities of the various criteria is large compared with the
number of observations, the frequency of choosing a set of modalities becomes small, and a
lot of frequencies are zero. The set of modalities whose frequency is zero will be disregarded
and does not intervene in the calculation of the distances. This can lead to the impossibility
of comparing the systems.

4.3.2. Classification of the six objects after reduction

If each object is described by the highest frequencies “mode,” we obtain the following table:

ω1

ω2

ω3

ω4

ω5

ω6

V 1 V 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1
1 m2

2

m1
2 m2

3

m1
1 m2

1

m1
1 m2

1

m1
1 m2

2

m1
1 m2

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.8)

This table contradicts the fact that in our procedure, the objects ω1 and ω2 are very
close while ω1 and ω5 are not the same. This shows that the classification after reduction, for
this type of data, can lead to contradictory results.

4.4. Application

The data come from a survey concerning the level of development of n departments
E1, E2, . . . , En of a country. The aim is to search the less developed subregions in order
to establish programs of adequate development. Every department Ei is constituted of Li
subregions Ci

1, C
i
2, . . . , C

i
Li

. For every i = 1, . . . , n and l = 1, . . . , Li, we measured the composite
economic development index idE and the composite human development index idH. These
two composite indices are weighted means of variables measuring the degree of economic
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4.8

2.732

1.268

0.317
0.158

ω1 ω3 ω2 ω4 ω5 ω6

Figure 1: Dendogram of the produced hierarchy.

and human development, developed by experts of the program of development of the United
Nations for ranking countries. These indices depend on the geographical situation and on the
specificity of the subregions.

For every i = 1, . . . , n, l = 1, . . . , Li, 0 ≤ idE(Ci
l
) ≤ 1, and 0 ≤ idH(Ci

l
) ≤ 1. The closer

to 1 the value of the index is, the more the economic or human development is judged to
be satisfactory. However, these indices are not calculated in the same manner. They depend
on whether the subregions are classified as farming or urban zone. The ordering of the
subregions according to each of the indices do not have sense anymore. The structure of
data in entry is for every i = 1, . . . , n:

Ei
(Li,2)

�−→

idE idH
Ci1

Ci2
...

CiLi

⎡
⎢⎢⎢⎣

idE(Ci1) idH(Ci1)
idE(Ci2) idH(Ci2)

...
...

idE(CiLi) idH(CiLi)

⎤
⎥⎥⎥⎦ .

(4.9)

The structure is not exploitable in this form. It is therefore necessary to transform
the tables in a more tractable form. The specialists of the programs of development cut
the observations of each index in quintile intervals and affect each of the subregions to the
corresponding quintile. We thus determine for the n series of observations of the two indices
the various corresponding quintiles:

idE −→ q1
i1, q

1
i2, . . . , q

1
i5,

idH −→ q2
i1, q

2
i2, . . . , q

2
i5.

(4.10)
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The quintile intervals are

I1
i1, I

1
i2, . . . , I

1
i5,

I2
i1, I

2
i2, . . . , I

2
i5.

(4.11)

For every i = 1, . . . , n, the table Ei is transformed into a table of 0/1 data.
The problem is to build a hierarchy on all departments of the territory in order to

observe the level of development of each of the subregions according to the two indices and
thus to make comparisons. The observations are summarized in tables Δ1,Δ2, . . . ,Δn which
constitute a structure of juxtaposition of 0/1 data matrices. These data presented are from
a study of 1541 municipalities involved in Algeria. The municipalities are gathered in 48
departments. The departments do not have the same number of municipalities which have
not the same specificities: size, rural, urban, and the municipalities do not have the same
locations: mountain, plain, costal, and so forth. We have to build typologies of departments
according to their economic level and human development according to the United Nations
Organization standards.

The result of the study made it possible to gather the great departments (cities) which
have large and old universities and the municipalities which have a long existence. Another
group emerged which includes enough new departments of the last administrative cutting
and develops activities and services of small and middle companies. The other groups are
distinguished by great disparities between municipalities in their economic level and human
development and according to surface and importance.

5. Conclusion

In this paper, the definition of the entropy is that stated by Shannon [10]. This definition
is still used in the theory of signal and information. The suggested formalism gives an
explanation and a practical use of the distance of Kullback-Leibler as an index of distance
between representative elements of a structure of tables of categorical data. It is possible to
extend these results to the case of a structure of data tables of measurements and to adapt an
algorithm of classification to the case of functional data.
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