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We use additive processes to price options on the Standard and Poor’s 500 index (SPX) for the sake
of comparison of pricing performance across both model class and family of time-one distribution.
Each of the additive processes in this study is defined using one of the following: subordination,
Sato’s (2002) construction of self-similar additive processes from self-decomposable distributions,
or both. We find that during the year 2005: (1) for a given family of time-one distributions, four-
parameter self-similar additive models consistently yielded lower pricing errors than those of
four-parameter subordinated, and time-inhomogeneous additive models, (2) for a given class
of additive models, the time-one marginal given by the normal inverse Gaussian distribution
consistently yielded lower pricing errors than those of the variance gamma distribution. Market
and model benchmarks for the additive models under consideration are obtained via the bid-ask
spreads of the options and Lévy stochastic volatility model prices, respectively.
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1. Introduction

As noted by Carr and Wu [1], Cont and Tankov [2, page 453], and others, Lévy models are
incapable of adequately fitting implied volatility surfaces of equity options across both strike
and maturity. Although stochastic volatility models with jumps have success in pricing across
both strike and maturity [3], [2, page 470], [4, page 98], the use of such models typically
incurs the cost of computing with a significantly larger number of parameters than in the
Lévy case. By using certain additive models with nonstationary increments, one obtains
flexibility in pricing across both strike and maturity, at the cost of one more parameter than a
Lévy model of like time-one distribution.

One class of time-inhomogeneous additive processes which has recently received
much attention is the class of the H-self-similar additive processes of Sato [5, Theorem
16.1(ii), page 99]. In 1998 Barndorff-Nielsen [6] used Sato’s results to construct a self-similar,
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Table 1

Process class\time-one marginal Variance gamma Normal inverse Gaussian
Lévy VG NIG
H-self-similar additive VGSSD NIGSSD
Subordinated additive VHG NHIG

time-inhomogeneous additive process with marginal normal inverse Gaussian distribu-
tions. The financial application of self-similar additive processes determined from self-
decomposable distributions was later recommended by Nolder [7]. In 2007, Carr, Geman,
Madan, and Yor (CGMY) [8] introduced the class of exponential H-self-similar additive
models and showed that these could accurately price SPX and equity options across both
strike and maturity with as few as four parameters. In their work, exponential self-similar
additive models were constructed and calibrated using option data on several underlying
assets. In other words, the self-similar additive model class was fixed, and the in-sample
model pricing error was observed with respect to both the choice of the family of time-one
distribution and the choice of underlying asset. In contrast, our study fixes the underlying
asset (SPX) and observes pricing errors with respect to both the choice of the family of time-
one distribution and choice of the additive model class.

The additive model classes used in this study correspond to the Lévy processes, H-
self-similar additive processes, and those in which a Brownian motion is time-changed by
an independent, increasing H-self-similar additive process with time-one self-decomposable
distribution. For each of the three additive classes, two processes are constructed; one in
which the time-one marginal is a variance gamma distribution, and the other, a normal
inverse Gaussian distribution. The names for each of the additive processes to be compared
are given in Table 1.

The time-inhomogeneous additive processes discussed here require only one more
parameter than a Lévy model of like time-one distribution. This additional parameter is
known as the Hurst exponent, H. In order that this research may be viewed in historical
context, a brief history of option pricing with additive processes now follows.

1.1. Brief history of additive processes in option pricing

The use of additive processes to price options dates back to 1900 when Louis Bachelier,
a student of Henri Poincaré, began the development of the theory of Brownian motion
[9]. In his dissertation, Théorie de la Spéculation, changes in the price of a stock were
modeled with what is now known as a zero mean, Brownian motion [10], a 1/2-self-similar
additive process. Mandelbrot’s exponential stable-Paretian processes [10] and Samuelson’s
“economic” (geometric) Brownian motion [11] overcame the problem of negative stock
prices associated with a Brownian motion model. The latter of the two processes was found
extremely useful to the theory of option pricing developed by Sprenkle [12], Samuelson [11],
and others. Finally, in 1973 the famous closed-form solution for the price of a European call
option was introduced by Black and Scholes [13]. In the same year Merton [14] presented
another derivation of the Black-Scholes formula, using weaker assumptions than in [13], and
extended the theory to include the case of stochastic interest rates.

Not long after the introduction of the Black-Scholes model, Merton [15], and later,
Rubinstein [16], Bates [17], and others documented inconsistencies of this model with market
option prices. Merton [15] introduced the jump-diffusion model in which the logarithm of the
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return on the underlying asset follows a Lévy process whose one-dimensional marginals are
given by the convolution of a Normal distribution with a compound Poisson distribution.
Madan and Seneta [18] (resp., Madan et al. [19]) introduced the two (resp., three) parameter
subordinated Lévy process, known as the variance gamma process, in which a Brownian
motion without (resp., with) drift is time changed by an independent gamma process.
Barndorff-Nielsen [6] introduced the three-parameter normal inverse Gaussian process in
which a Brownian motion is time changed by an independent inverse Gaussian process.
Other well-known Lévy processes include the following: Meixner [20], KoBoL [21, 22]
or equivalently, CGMY [23], hyperbolic [24, 25], generalized hyperbolic [25, 26], and
nonparametric Lévy of Cont and Tankov [27].

Although Lévy processes with jumps could be used to accurately price options across
strike price for a given maturity, they were inadequate to do so across both strike and maturity
[1] and [2, page 453]. One answer to this problem came in 2003 when CGMY [3] showed
that one may subordinate a Lévy process by the time integral of a mean-reverting, positive
process in order to obtain a model which was quite flexible across both strike and maturity.
Such models have been termed “Lévy stochastic volatility” models. Another answer to this
problem came with the simpler Finite Moment Log Stable (FMLS) model of Carr and Wu
[1]. In this model the logarithm of the return on the underlying followed a stable Paretian
process in which the skewness parameter, β, was set to an extreme value of −1. With β fixed
and the drift term set so that the martingale condition was satisfied, the FMLS model was able
to fit relatively well, with two free parameters, the prices observed in SPX option data from
April 1999 to May 2000. In an effort to find models which were more flexible than the FMLS
model and more parsimonious than the stochastic volatility models, researchers pursued the
development of time-inhomogeneous additive processes.

In 2003 Nolder [7] proposed the modeling of asset returns with the H-self-similar
additive processes of Sato. Carr et al. [8] constructed exponential H-self-similar additive
models and showed that they could successfully price equity options of various underlyings
across both maturity and strike. Madan and Eberlein [28] demonstrated that H-self-similar
additive models could be useful for pricing options on annualized realized variance and
annualized realized volatility. Such suitability is attributed to the dependence of the variance
of realized quadratic variation to time t (per unit time) on the Hurst exponent.

1.2. Purpose and organization

The purpose of this paper is to compare the option pricing performance of certain additive
models with respect to the choice of time-one distribution (VG or NIG) and with respect
to the choice of additive model class (Lévy, self-similar, and subordinated additive). We
use SPX option data from the year 2005 to calibrate the exponential additive models
corresponding to the VG, VGSSD, VHG, NIG, NIGSSD, and NHIG processes, along with
the benchmark exponential VG-OU-Γ and NIG-OU-Γ Lévy stochastic volatility models. The
latter are constructed by using the time-integral of a process of O-U type (with associated
stationary gamma distribution) to time change an independent VG or NIG process.

The following describe the organization of this paper. In Section 2 the six additive
models used in this study are defined. The moments of the increments corresponding to the
variance gamma and normal inverse Gaussian families of processes are given in Section 3.
Also included is a discussion of the dependence of increment variance on the Hurst exponent
for both time-inhomogeneous additive classes. In Section 4 the characteristic functions of the
exponential additive models are given, along with those of the Lévy stochastic volatility
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models. Algorithmic and data specifications for the calibration procedure are discussed in
Section 5. The calibration results are presented in Section 6. The conclusion is presented in
Section 7.

2. Construction of additive processes

We first begin with a few definitions and facts associated with self-similar additive processes.

Definition 2.1. An R
d-valued stochastic process {Xt : t ≥ 0} on (Ω,F,P) is an additive

process if

(i) X0 = 0 a.s.

(ii) For any choice of n ∈ N and 0 ≤ t0 < t1 < · · · < tn, the random variables Xt0 , Xt1 −
Xt0 , Xt2 −Xt1 , . . . , Xtn −Xtn−1 are independent.

(iii) {Xt} is stochastically continuous.

(iv) There exists a Ω0 ∈ F with P(Ω0) = 1 such that, for every ω ∈ Ω0, Xt(ω) is right-
continuous in t ≥ 0 and has left limits in t > 0.

Remark 2.2. A Lévy process is a time-homogeneous additive process—an additive process
which satisfies

Xt+δ −Xt
d= Xδ ∀t, δ ≥ 0. (2.1)

Definition 2.3. A stochastic process {Xt : t ≥ 0} is self-similar if, for any a > 0, there exists
b > 0, such that {Xat : t ≥ 0} and {bXt : t ≥ 0} are identical in law.

Furthermore, if {Xt : t ≥ 0} is an R
d-valued, nontrivial, self-similar process which is

stochastically continuous and X0 = constant a.s., then there exists H > 0 such that b = aH [5,
Theorem 13.11, page 73].

Definition 2.4. For d ≥ 1 a probability measure μ on R
d is self-decomposable if, for all b > 1,

there exists a probability measure ρb on R
d such that

μ̂(z) = μ̂
(

z

b

)

ρ̂b(z), (2.2)

where μ̂(z) is the characteristic function of μ.

Since a self-decomposable distribution μ is infinitely divisible, it generates a Lévy
process {Xt : t ≥ 0}. In this case, the characteristic function of the distribution ofXt is μ̂t(z) for
all t ≥ 0 [5, Lemma 7.10(ii), page 35]. The following theorem shows that a self-decomposable
distribution also generates a self-similar additive process.

Theorem 2.5 (Sato [5, Theorem 16.1(ii), page 99]). If μ is a nontrivial self-decomposable
distribution on R

d, then, for any H > 0, there exists, uniquely in law, a nontrivial H-self-similar
additive process {Xt : t ≥ 0} such that PX1 = μ.
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Remark 2.6 (Sato [5, Proof of Theorem 16.1, page 100]). In the previous theorem, the
characteristic function of Xt is given by

ΦXt(ξ) = μ̂
(

tHξ
)

, t ≥ 0, ξ ∈ R. (2.3)

The following representation theorem is useful for the purpose of checking self-
decomposability of a distribution.

Theorem 2.7 (Sato [5, Corollary 15.11, page 95]). A probability measure μ on R is self-
decomposable if and only if

μ̂(z) = exp
(

− 1
2
Az2 + iγz +

∫∞

−∞

(

eizx − 1 − izx1[−1,1](x)
)k(x)
|x| dx

)

, (2.4)

whereA ≥ 0, γ ∈ R, k(x) ≥ 0,
∫∞
−∞(|x|

2 ∧ 1)(k(x)/|x|)dx <∞, and k(x) is increasing on (−∞, 0)
and decreasing on (0,∞).

The following terminology will be used in the application of this theorem.

Definition 2.8. A k-function of the self-decomposable distribution μ [5, page 403] is an R+-
valued function on R \ {0} which is decreasing and left-continuous on R

+ and which is
increasing and right-continuous on R

− with the Lévy density of μ given by k(x)/|x|, x ∈
R \ {0}.

The notation below will be used in the theorems and derivations which follow.

Notation 2.9. Given an R-valued process X ≡ {Xt : t ≥ 0}, we define the following:

Characteristic function: ΦXt(ξ) = E
[

eiξXt
]

, ξ ∈ R

Characteristic exponent: ηXt(ξ) = log
(

ΦXt(ξ)
)

, ξ ∈ R.
(2.5)

If X is R+-valued, then we also have

Laplace exponent: ΨXt(ξ) = log
(

E
[

eξXt
])

, R(ξ) ≤ 0. (2.6)

Remark 2.10. Given a Lévy process X and an independent, increasing additive process Z, the
characteristic function of the time-t marginal of X time changed by Z can easily be computed
by conditioning on Zt, yielding

E
[

eiξ(XZt )
]

= exp
(

ΨZt

(

ηX1(ξ)
))

, ξ ∈ R. (2.7)

This computation is done in [2, page 109], where the directing process Z is assumed to
be time homogeneous. However, the derivation of (2.7) does not use the property of time
homogeneity of Z.
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In the remainder of this section, three sets of additive processes will be defined. For
each set, one process will have a time-one marginal which is variance gamma distributed. The
other process will have a time-one marginal which is normal inverse Gaussian distributed.

2.1. Lévy processes

The three-parameter variance gamma process of Madan et al. [19] can be defined as a
Brownian motion with drift which is time changed by an independent gamma process. Let
σ, ν > 0 and μ ∈ R. On the probability space (Ω,F,P) let X ≡ {Xt : t ≥ 0} be an R-valued
Brownian motion, where X1 is normal(μ, σ2) distributed. On the same probability space let
Z ≡ {Zt : t ≥ 0} be an R+-valued, independent gamma process where, for any t ≥ 0, Zt is
gamma(t/ν, 1/ν) distributed. The variance gamma process, {VGt}, can be constructed as

VGt(ω) = XZt(ω)(ω), ∀t ≥ 0, ω ∈ Ω, (2.8)

which characterizes the distributions of a variance gamma process. Equation (2.7) of
Remark 2.10, Remark 2.2, and the Laplace exponent of Zt,

ΨZt[1/ν,1/ν](ξ) = log
[

(1 − ξν)−t/ν
]

, for t ≥ 0, R(ξ) ≤ 0 (2.9)

are used to obtain the characteristic function of the random variable VGt as follows:

E
[

eiξ(VGt)
]

= exp
(

ΨZt

(

ηX1(ξ)
))

= exp
(

log
[(

1 − ηX1(ξ)ν
)−t/ν])

=
(

1 + ν
[

− iμξ + 1
2
σ2ξ2

])−t/ν
.

(2.10)

The normal inverse Gaussian process of Barndorff-Nielsen [6] can be defined as a
Brownian motion with drift which is time changed by an independent inverse Gaussian
process. Fix δ, γ > 0, and β ∈ R. On the probability space (Ω,F,P) let X ≡ {Xt : t ≥ 0} be an
R-valued Brownian motion, whereX1 is normal(βδ2, δ2) distributed. On the same probability
space let Z ≡ {Zt : t ≥ 0} be an R+-valued, independent inverse Gaussian process where, for
any t ≥ 0, Zt is IG(t, δγ) distributed. The normal inverse Gaussian process, {NIGt}, can be
constructed as

NIGt(ω) = XZt(ω)(ω), ∀t ≥ 0, ω ∈ Ω. (2.11)

Since the Laplace exponent of Zt is given by

ΨZt[1,δγ](ξ) = −t
{

√

−2ξ + (δγ)2 − δγ
}

, for t ≥ 0, R(ξ) ≤ 0, (2.12)
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Table 2: Lévy densities of subordinator distributions.

Distribution Lévy Density

Gamma(a, b) �(x) = a exp(−bx)x−1, x > 0

Inverse Gaussian(a, b) �(x) =
1√
2π

ax−3/2 exp
(

− 1
2
b2x

)

, x > 0

we have, similar to the previous case, the characteristic function of the distribution of NIGt:

E
[

eiξ(NIGt)
]

= exp
(

ΨZt

(

ηX1(ξ)
))

= exp
(

− t
{

√

−2ηX1(ξ) + (δγ)2 − δγ
})

= exp
(

− δt
{
√

ξ2 − 2iβξ + γ2 − γ
})

.

(2.13)

2.2. H-self-similar additive processes

2.2.1. Self-decomposability of time-one distributions

H-self-similar additive processes are constructed using Remark 2.6. Consequently, self-
decomposability of the one-dimensional marginal distribution (at time one) must be verified
for the variance gamma and normal inverse Gaussian processes.

Variance gamma case

As mentioned in the construction of the variance gamma process in Section 2.1, X1 is
Normal(μ, σ2) distributed whileZt is gamma(t/ν, 1/ν) distributed for all t ≥ 0. Let �Z1 denote
the Lévy density of the distribution ofZ1 (see Table 2). By the subordination theorem for Lévy
processes [5, Theorem 30.1, page 197], the Lévy density of the distribution of the time-one
variance gamma random variable, VG1, is given by

�VG1(x) =
∫

(0,∞)

dμXs

dx
(x)�Z1(s)ds

=
∫

(0,∞)

1√
2πσ2s

exp

(

−
(x − μs)2

2σ2s

)

1
νs

exp
(

− s
ν

)

ds

=
1√

2πσν
exp

(

xμ

σ2

)

⎡

⎢

⎢

⎣

2

⎛

⎜

⎝

√

μ2/σ2 + 2/ν

|x| σ

⎞

⎟

⎠

1/2

K1/2

⎛

⎝

|x|
σ

√

μ2

σ2
+

2
ν

⎞

⎠

⎤

⎥

⎥

⎦

=
1
ν|x| exp

⎛

⎝− 1
σ

⎡

⎣

√

μ2

σ2
+

2
ν
|x| −

μ

σ
x

⎤

⎦

⎞

⎠ ,

(2.14)
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where the representation of the modified Bessel function of the second kind of order ν̃ in
(2.15) [2, page 500] is used in the third step with ν̃ = 1/2 and α, β > 0.

∫

(0,∞)
exp

(

− α
2s

2
−
β2

2s

)

s−(1+ν̃) ds = 2
(

α

β

)ν̃

Kν̃(αβ). (2.15)

Identity (2.16) [29, page 109] is used in the final step.

K1/2(z) =
√

π

2z
e−z, z > 0. (2.16)

The product given by x 
→ |x|�VG1(x) is positive, decreasing on R
+ and increasing on R

− if
ν > 0. By Theorem 2.7, the k-function given by

k(x) =
1
ν

exp

⎛

⎝− 1
σ

⎡

⎣

√

μ2

σ2
+

2
ν
|x| −

μ

σ
x

⎤

⎦

⎞

⎠ , x ∈ R \ {0} (2.17)

verifies self-decomposability of the time-one distribution of the variance gamma process,
provided ν > 0. For an alternative proof of self-decomposability using the (C,G,M)
parameterization of the variance gamma process, see CGMY [8].

Normal inverse Gaussian case

Using the same construction as in Section 2.1 for the development of the NIG process, X1 is
normal(βδ2, δ2) distributed whileZt is IG(t, δγ) distributed. Denoting the Lévy density of the
distribution ofZ1 by �Z1 (Table 2), the Lévy density of the distribution of the time-one normal
inverse Gaussian random variable, NIG1, is given by

�NIG1(x) =
∫

(0,∞)

dμXs

dx
(x)�Z1(s)ds

=
∫

(0,∞)

1√
2πδ2s

exp

(

−
(

x − βδ2s
)2

2δ2s

)

1√
2π

s−3/2 exp
(

− 1
2
δ2γ2s

)

ds

=
1

2πδ
exp(βx)

∫

(0,∞)
exp

(

−
[

x2

δ22s
+

(

β2 + γ2)δ2

2
s

])

s−2 ds.

(2.18)

Using (2.15) with ν̃ = 1 yields

�NIG1(x) =
1

2πδ
exp(βx)

⎡

⎢

⎣
2

⎛

⎜

⎝

δ
√

β2 + γ2

|x|/δ

⎞

⎟

⎠K1

(

δ
√

β2 + γ2 |x|
δ

)

⎤

⎥

⎦

=
δ
√

β2 + γ2

π

1
|x| exp(βx)K1

(
√

β2 + γ2|x|
)

, x ∈ R \ {0}.

(2.19)
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Since x 
→ |x|�NIG1(x) is decreasing on R
+ and increasing on R

− if and only if x 
→
e(β/
√
β2+γ2)xK1(|x|) is decreasing on R

+ and increasing on R
−, we make use of identity (2.20)

[30, equation (9.6.24)]:

Kν̃(t) =
∫

(0,∞)
e−t cosh(z) cosh(ν̃z)dz, R(t) > 0. (2.20)

We have, in a manner similar to Laforgia [31],

e(β/
√
β2+γ2)xK1

(

|x|
)

=
∫

(0,∞)
e−|x|cosh(z)+x(β/

√
β2+γ2)cosh(z)dz

=
∫

(0,∞)
e−|x|(cosh(z)−signum(x)(β/

√
β2+γ2))cosh(z)dz, x ∈ R \ {0}.

(2.21)

It follows that the product of �NIG1 and |x| is positive, decreasing on R
+ and increasing on R

−

for all δ > 0, β ∈ R. By Theorem 2.7, the k-function given by

k(x) =
δ
√

β2 + γ2

π
exp(βx)K1

(
√

β2 + γ2|x|
)

, x ∈ R \ {0} (2.22)

verifies self-decomposability of the time-one distribution of the normal inverse Gaussian
process. For an alternative proof of self-decomposability with this parameterization see
Barndorff-Nielsen [6]. CGMY [8] address self-decomposability using a different parame-
terization. Sato’s construction of H-self-similar additive processes from self-decomposable
distributions (Remark 2.6) may now be applied to the variance gamma and normal inverse
Gaussian cases.

2.2.2. Construction ofH-self-similar additive processes

Using the parameterizations for this study, we reproduce the results of CGMY [8] and
Barndorff-Nielsen [6] (NIG case only) for the characteristic functions of the time-t marginal
distributions of the self-similar additive analogs of the variance gamma and normal inverse
Gaussian processes (denoted in [8] as “VGSSD” and “NIGSSD,” resp.). Let σ, ν,H > 0,
μ ∈ R, and m = PVG1 be the self-decomposable variance gamma(σ, μ, ν) distribution on R.
By Theorem 2.5 and Remark 2.6, the characteristic function of VGSSDt is given by

E
[

eiξ(VGSSDt)
]

= m̂
(

tHξ;σ, μ, ν
)

=
(

1 + ν
[

− iμtHξ + 1
2
σ2t2Hξ2

])−1/ν

.
(2.23)

For the characteristic function of the distribution of NIGSSDt, let δ, γ,H > 0, β ∈ R,
and m = PNIG1 be the self-decomposable normal inverse Gaussian(δ, β, γ) distribution on R.
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Similar to the previous case, the characteristic function of the distribution of NIGSSDt is given
by

E
[

eiξ(NIGSSDt)
]

= m̂
(

tHξ; β, δ, γ
)

= exp
(

− δ
{
√

t2Hξ2 − 2iβtHξ + γ2 − γ
})

.
(2.24)

By construction, the distributions given by (2.10) and (2.23) agree at time one. The same is
also true for (2.13) and (2.24).

2.3. Subordinated additive processes

The subordinated, time-inhomogeneous additive processes in this study are a special case
of the class of subordinated processes discussed by Madan and Yor [32]. Such processes are
defined by time-changing a Brownian motion by an independent, increasing Markov process
with independent and time-inhomogeneous increments. The first process to be constructed is
a Brownian motion time changed by an independent H-self-similar additive gamma process
(VHG), while the second is a Brownian motion time changed by an independent H-self-
similar additive inverse Gaussian process (NHIG). In order to construct the self-similar
additive directing processes, self-decomposability of the gamma and inverse Gaussian
distributions must first be verified. The Lévy densities for these distributions are given in
Table 2 where a, b > 0 for both distributions [4]. By Theorem 2.7, the k-functions given by the
following equations:

kΓ(x) = a exp(−bx), x > 0,

kIG(x) =
1√
2π

ax−1/2 exp
(

− 1
2
b2x

)

, x > 0
(2.25)

verify self-decomposability of the time-one distributions of the gamma and inverse Gaussian
processes, respectively.

The characteristic function of the distribution of VHGt is determined as follows. Let
σ, ν,H > 0, and μ ∈ R. On the probability space (Ω,F,P) let X ≡ {Xt : t ≥ 0} be an R-
valued Brownian motion where X1 is normal(μ, σ2) distributed. On the same probability
space, using Theorem 2.5, define Z ≡ {Zt : t ≥ 0} to be an independent, increasing H-self-
similar additive process such that Z1 is gamma(1/ν, 1/ν) distributed. The subordinated,
time-inhomogeneous additive analog of the VG process, {VHGt}, can be constructed as

VHGt(ω) = XZt(ω)(ω), ∀t ≥ 0, ω ∈ Ω. (2.26)

Using (2.7) in Remark 2.10, Remark 2.6, and the Laplace exponent of Z1,

ΨZ1[1/ν,1/ν](ξ) = log
[

(1 − ξν)−1/ν], R(ξ) ≤ 0, (2.27)
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the characteristic function of the distribution of the random variable VHGt is given by

E
[

eiξ(VHGt)
]

= exp
(

ΨZt

(

ηX1(ξ)
))

= exp
(

ΨZ1

(

tHηX1(ξ)
))

= exp

(

log

[

(

1 − tH
[

− 1
2
σ2ξ2 + iμξ

]

ν

)−1/ν
])

=
(

1 + tHν
[

− iμξ + 1
2
σ2ξ2

])−1/ν

.

(2.28)

Consequently, the distributions given by (2.10), (2.23), and (2.28) all agree at time one.
The characteristic function of the distribution of NHIGt is similarly defined. Fix

δ, γ,H > 0, and β ∈ R. On the probability space (Ω,F,P) define X ≡ {Xt : t ≥ 0} to be an R-
valued Brownian motion where X1 is normal(βδ2, δ2) distributed. On the same probability
space, using Theorem 2.5, define Z ≡ {Zt : t ≥ 0} to be an independent, increasing H-
self-similar additive process such that Z1 is IG(1, δγ) distributed. The subordinated, time-
inhomogeneous additive analog of the NIG process, {NHIGt}, can be constructed as

NHIGt(ω) = XZt(ω)(ω), ∀t ≥ 0, ω ∈ Ω. (2.29)

The Laplace exponent of Z1 is given by

ΨZ1[1,δγ](ξ) = −
{

√

−2ξ + (δγ)2 − δγ
}

, R(ξ) ≤ 0. (2.30)

Similar to the previous case, the characteristic function of the distribution of NHIGt is
obtained as follows:

E
[

eiξ(NHIGt)
]

= exp
(

ΨZt

(

ηX1(ξ)
))

= exp
(

ΨZ1

(

tHηX1(ξ)
))

= exp
(

−
{

√

−2tHηX1(ξ) + (δγ)2 − δγ
})

= exp
(

− δ
{
√

tH
[

ξ2 − 2iβξ
]

+ γ2 − γ
})

.

(2.31)

Note that (2.31) agrees at time one with (2.13) and (2.24).

3. Increment moments

Given an R-valued additive process Y ≡ {Yt} on (Ω,F,P), let μYt−Ys denote the distribution of
Yt −Ys where 0 ≤ s < t. By additivity of Y, the characteristic function of the increment is given
by

μ̂Yt−Ys(ξ) =
μ̂Yt(ξ)
μ̂Ys(ξ)

, 0 ≤ s < t, (3.1)
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Table 3: Variance gamma process: increment moments.

Moment VG

Mean
(

Yt − Ys
)

(t − s)μ
Var

(

Yt − Ys
)

(t − s)[σ2 + μ2ν]

Skew
(

Yt − Ys
)

(t − s)
[

3σ2 + 2μ2ν
]

μν
[

Var
(

Yt − Ys
)]−3/2

Ex.Kurt
(

Yt − Ys
)

(t − s)
[

σ4 + 4σ2μ2ν + 2μ4ν2]3ν
[

Var
(

Yt − Ys
)]−2

Table 4: Normal inverse Gaussian process: increment moments.

Moment NIG

Mean
(

Yt − Ys
)

(t − s)δγ−1β

Var
(

Yt − Ys
)

(t − s)δγ−3(β2 + γ2)

Skew
(

Yt − Ys
)

(t − s)3δγ−5β
(

β2 + γ2)[Var
(

Yt − Ys
)]−3/2

Ex.Kurt
(

Yt − Ys
)

(t − s)3δγ−7(5β2 + γ2)(β2 + γ2)[Var
(

Yt − Ys
)]−2

Table 5: Self-similar variance gamma process: increment moments.

Moment VGSSD

Mean
(

Yt − Ys
) (

tH − sH
)

μ

Var
(

Yt − Ys
) (

t2H − s2H)[σ2 + μ2ν
]

Skew
(

Yt − Ys
) (

t3H − s3H)[3σ2 + 2μ2ν
]

μν
[

Var
(

Yt − Ys
)]−3/2

Ex.Kurt
(

Yt − Ys
) (

t4H − s4H)[σ4 + 4σ2μ2ν + 2μ4ν2]3ν
[

Var
(

Yt − Ys
)]−2

Table 6: Self-similar normal inverse Gaussian process: increment moments.

Moment NIGSSD

Mean
(

Yt − Ys
) (

tH − sH
)

δγ−1β

Var
(

Yt − Ys
) (

t2H − s2H)δγ−3(β2 + γ2)

Skew
(

Yt − Ys
) (

t3H − s3H)3δγ−5β
(

β2 + γ2)[Var
(

Yt − Ys
)

]−3/2

Ex.Kurt
(

Yt − Ys
) (

t4H − s4H)3δγ−7(5β2 + γ2)(β2 + γ2)[Var
(

Yt − Ys
)]−2

[5, Theorem 9.7, page 51]. Consequently, the moments of the increment are easily computed
by taking derivatives of the difference of characteristic exponents. The mean, variance,
skewness, and excess kurtosis of the increment Yt−Ys are calculated for each of the previously
defined additive processes in Tables 3–8.

An interesting property among the three classes of additive processes is the
dependence of the variance of the increment Yt+δ − Yt on time t (for any t ≥ 0 and any
fixed δ > 0). The property of time homogeneity of a Lévy process implies that the variance
of a Lévy increment is constant with respect to time. See Tables 3 and 4 for VG and NIG
cases. Using Remark 2.6 and (3.1), the variance of the time-t increment of any H-self-similar
additive process {Xt} is given by

Var
(

Xt+δ −Xt

)

=
(

(t + δ)2H − t2H
)

Var
(

X1
)

, (3.2)
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Table 7: VarianceH-gamma process: increment moments.

Moment VHG

Mean
(

Yt − Ys
) (

tH − sH
)

μ

Var
(

Yt − Ys
) (

t2H − s2H)μ2ν +
(

tH − sH
)

σ2

Skew
(

Yt − Ys
) [(

t3H − s3H)2μ2ν +
(

t2H − s2H)3σ2]μν
[

Var
(

Yt − Ys
)]−3/2

Ex.Kurt
(

Yt − Ys
) [(

t4H − s4H)2μ4ν2 +
(

t3H − s3H)4σ2μ2ν +
(

t2H − s2H)σ4]3ν ·
[

Var
(

Yt − Ys
)]−2

Table 8: NormalH-inverse Gaussian process: increment moments.

Moment NHIG

Mean
(

Yt − Ys
) (

tH − sH
)

δγ−1β

Var
(

Yt − Ys
) [(

t2H − s2H)β2 +
(

tH − sH
)

γ2]δγ−3

Skew
(

Yt − Ys
) [(

t3H − s3H)β2 +
(

t2H − s2H)γ2]3δβγ−5 ·
[

Var
(

Yt − Ys
)]−3/2

Ex.Kurt
(

Yt − Ys
) [(

t4H − s4H)5β4 +
(

t3H − s3H)6β2γ2 +
(

t2H − s2H)γ4]3δγ−7 ·
[

Var
(

Yt − Ys
)]−2

provided the variance of X1 exists. Consequently, these processes have an increment variance
which is constant (resp., decreasing, increasing) with respect to time when H = 1/2 (resp.,
H < 1/2, H > 1/2). See Tables 5 and 6 for self-similar VG and NIG cases. Using (2.7)
in Remark 2.10, Remark 2.6, and (3.1), the variance of the time-t increment of a Brownian
motion {Xt} time changed by an independent, increasingH-self-similar additive process {Zt}
is given by

Var
(

XZt+δ−XZt

)

=
(

(t+δ)2H−t2H
)

E
[

X1
]2Var

(

Z1
)

+
(

(t+δ)H−tH
)

E
[

Z1
]

Var
(

X1
)

, (3.3)

provided the variance of Z1 exists. Consequently, this class of subordinated additive
processes has an increment variance which is decreasing (resp., increasing) in time for
H ≤ 1/2 (resp., H ≥ 1). For H ∈ (1/2, 1) the signum of the rate of change of increment
variance with respect to time depends on the parameter values of the distributions of X1

and Z1, as well as time t. See Tables 7 and 8 for the increment moments associated with the
time-inhomogeneous, subordinated analogs of the VG and NIG processes.

4. Definition of the price processes

4.1. Exponential additive models

Let X ≡ {Xt}t∈[0,T] be an additive process on the stochastic basis (Ω,F,F = {Ft},P), where X
is adapted to the filtration F. The underlying of a European-exercised option is modeled by
the price process {St}t∈[0,T], which is defined, path by path, in (4.1)

St =
S0 exp

(

Xt + [r − q]t
)

EP

[

eXt
] for each t ∈ [0, T], (4.1)

where r and q are the continuously compounded values of both interest rate and dividend
yield, respectively. Note that the property of independent increments of {Xt} implies that
{e−(r−q)tSt} is an (F − P) martingale.
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The characteristic functions of the time-t distributions of the logarithm of the
underlying for the additive processes defined in Sections 2.1–2.3 are given below:

(i) exponential variance gamma

ΦVG
lnSt

(ξ) =
exp

{

iξ
(

lnS0 + t[r − q]
)

− (t/ν) log
(

1 + ν
[

− iμξ + (1/2)σ2ξ2])}

[(

1 − ν
[

μ + (1/2)σ2]
)−t/ν]iξ

; (4.2)

(ii) exponential H-self-similar variance gamma

ΦVGSSD
lnSt

(ξ)=
exp

{

iξ
(

lnS0+t[r−q]
)

−(1/ν) log
(

1+ν
[

−iμtHξ+(1/2)σ2t2Hξ2])}

[(

1 − ν
[

μtH + (1/2)σ2t2H
])−1/ν]iξ

; (4.3)

(iii) exponential variance H-gamma

ΦVHG
lnSt

(ξ)=
exp

{

iξ
(

lnS0 + t[r − q]
)

− (1/ν) log
(

1 + tHν
[

− iμξ + (1/2)σ2ξ2])}

[(

1 − tHν
[

μ + (1/2)σ2
])−1/ν]iξ

; (4.4)

(iv) exponential normal inverse Gaussian

ΦNIG
lnSt

(ξ) =
exp

{

iξ
(

lnS0 + t[r − q]
)

− δt
[√

ξ2 − 2iβξ + γ2 − γ
]}

[

exp
(

− δt
[√

−1 − 2β + γ2 − γ
])]iξ

; (4.5)

(v) exponential H-self-similar normal inverse Gaussian

ΦNIGSSD
lnSt

(ξ) =
exp

{

iξ
(

lnS0 + t[r − q]
)

− δ
[√

t2Hξ2 − 2iβtHξ + γ2 − γ
]}

[

exp
(

− δ
[√

−t2H − 2βtH + γ2 − γ
])]iξ

; (4.6)

(vi) exponential normal H-inverse Gaussian

ΦNHIG
lnSt

(ξ) =
exp

{

iξ
(

lnS0 + t[r − q]
)

− δ
[√

tH
(

ξ2 − 2iβξ
)

+ γ2 − γ
]}

[

exp
(

− δ
[√

tH(−1 − 2β) + γ2 − γ
])]iξ

. (4.7)

4.2. Exponential Lévy stochastic volatility models

We now define, according to CGMY [3] and Schoutens [4], two Lévy stochastic volatility
processes to be used for the creation of model benchmarks for the previously defined models.
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These processes are formed by time changing a Lévy process by the time integral of a
process of Ornstein-Uhlenbeck type with associated stationary gamma distribution. Let {Zt}
be defined by

Zt =
∫ t

0
ys ds, (4.8)

where, for λ > 0, y0 > 0, and subordinator {Lt}, {yt} satisfies the Ornstein-Uhlenbeck type
SDE [5]

yt = y0 + Lt − λ
∫ t

0
ys ds for t ≥ 0. (4.9)

The solution of (4.9) is given by

yt = y0e
−λt +

∫ t

0
e−λ(t−s) dLs. (4.10)

We fix a, b > 0 and specify {Lt} to be a compound Poisson process with exponentially
distributed jump sizes where

ΨL1(ξ) =
λaξ

b − ξ , R(ξ) ≤ 0. (4.11)

CGMY [3] and Cont and Tankov [2, page 488] show that such a choice for {Lt} yields the
following expression for the characteristic function of the distribution of Zt:

ΦZt

(

ξ;λ, a, b, y0
)

= exp

{

iy0λ
−1[1−e−λt

]

ξ+
λa

iξ−λb

[

b log

(

b

b − iλ−1
(

1− e−λt
)

ξ

)

− itξ
]}

, ξ ∈ R

(4.12)

(see [4]).
We now conclude the definition of Lévy stochastic volatility processes via subordi-

nation. Let {Xt} be a variance gamma process or normal inverse Gaussian process which is
independent of the increasing process {Zt}, as determined by (4.8), (4.10), and (4.11). The
VG-OU-Γ and NIG-OU-Γ processes can be constructed such that, for each t ≥ 0 and ω in the
sample space

VG-OU-Γt(ω) = XZt(ω)(ω),
{

Xt

}

is a VG process, (4.13)

NIG-OU-Γt(ω) = XZt(ω)(ω),
{

Xt

}

is a NIG process. (4.14)
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Let {XZt}t∈[0,T] be an R-valued Lévy stochastic volatility process on (Ω,F,F, P) as in
(4.13) or (4.14). The underlying price process at time t is defined, as in [3, 4], to satisfy

St
d=
S0 exp

(

XZt + [r − q]t
)

EP

[

eXZt

] for each t ∈ [0, T], (4.15)

where {e−t(r−q)St} is a (˜F − ˜P) martingale on another filtered probability space ( ˜Ω, ˜F, ˜F, ˜P).
The exponential pricing models corresponding to (4.13) and (4.14) are equivalent to the
“VGSG” and “NIGSG” models of CGMY [3] when the “VGSG” and “NIGSG” correlation
parameters are set to zero. Unlike the exponential additive pricing models, these do not
prohibit dynamic arbitrage. Rather, the intent of definition (4.15) is to prohibit arbitrages
which result from a limited form of dynamic trading, known as “static arbitrages” [3, 33].
CGMY [3] demonstrated that this simple (as opposed to stochastic) exponentiation of Lévy
stochastic volatility processes yielded models which priced out-of-the-money SPX and equity
options quite well, and better than their stochastically exponentiated counterparts. We refer
to Cont and Tankov [2, pages 492, 493] for an alternative formulation in which the discounted
price process is a martingale with respect to the enlarged filtration determined from the
time-changed Lévy process and the directing process. The characteristic functions of the
time-t marginal distributions are given below for the exponential VG-OU-Γ and NIG-OU-Γ
models.

(i) Exponential variance gamma Ornstein-Uhlenbeck-gamma

For σ, ν > 0, and μ ∈ R, define the parameters C, G, M as in [3]:

C =
1
ν
,

G =

(

√

1
4
μ2ν2 +

1
2
σ2ν − 1

2
μν

)−1

,

M =

(

√

1
4
μ2ν2 +

1
2
σ2ν +

1
2
μν

)−1

.

(4.16)

The characteristic function of the time-one marginal of the VG process is given by

ΦVG1(ξ;C,G,M) =

(

GM

GM + i(M −G)ξ + ξ2

)C

. (4.17)

The number of parameters in (4.13) is reduced from seven to six via

ΦVG-OU-Γ
(

ξ;C,G,M, λ, a, b, y0
)

= ΦVG-OU-Γ
(

ξ;Cy0, G,M, λ, a, by0, 1
)

(4.18)
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(see [4]). It follows that the characteristic function of the time-t distribution of the logarithm
of the underlying is given by

ΦVG-OU-Γ
lnSt

(ξ) = exp
(

iξ
(

lnS0 + t[r − q]
))

·
ΦZt

(

− i logϕ(ξ);λ, a, b, 1
)

[

ΦZt

(

− i logϕ(−i);λ, a, b, 1
)]iξ

,
(4.19)

where

ϕ(ξ) = ΦVG1(ξ;C,G,M) (4.20)

(see [4]) and ΦZt is defined in (4.12).

(ii) Exponential normal inverse Gaussian Ornstein-Uhlenbeck-gamma

The characteristic function of the time-one marginal of the NIG process is

ΦNIG1(ξ; β, δ, γ) = exp
{

− δ
[
√

ξ2 − 2iβξ + γ2 − γ
]}

. (4.21)

The number of parameters in (4.14) is reduced from seven to six via

ΦNIG-OU-Γ
(

ξ; β, δ, γ, λ, a, b, y0
)

= ΦNIG-OU-Γ
(

ξ; β, δy0, γ, λ, a, by0, 1
)

(4.22)

(see [4]). It follows that the characteristic function of the time-t distribution of the logarithm
of the underlying is given by

ΦNIG-OU-Γ
lnSt

(ξ) = exp
(

iξ
(

lnS0 + t[r − q]
))

·
ΦZt

(

− i logϕ(ξ);λ, a, b, 1
)

[

ΦZt

(

− i logϕ(−i) ;λ, a, b, 1
)]iξ

,
(4.23)

where

ϕ(ξ) = ΦNIG1(ξ; β, δ, γ) (4.24)

(see [4]) and ΦZt is defined in (4.12).

5. Model implementation and data specifications

In order to calculate European option prices, the “modified call” method of Carr and Madan
[34] is used. This requires an analytical expression for the inverse Fourier transform of a
damped call price function in terms of the characteristic function of the distribution of the
logarithm of the risk-neutral underlying. Put prices are calculated via the call price using
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put-call parity. Let Θ denote the set of model parameter vectors such that for all t, both θ ∈ Θ
and t determine the time-t distribution of the logarithm of the risk-neutral underlying, lnSt.
Given a set of N market option prices {Pi}i=1···N , the set of corresponding model option prices
is denoted by {πθ

i }i=1···N for any θ ∈ Θ. In order to estimate θ, the quadratic pricing error,
E : Θ → R

+, is minimized with

E(θ) =
N
∑

i=1

wi

[

πθ
i

(

r, q, S0, Ti, Ki

)

− Pi
(

Ti,Ki

)]2
, θ ∈ Θ, (5.1)

where wi, Ti, Ki are the weighting factor, maturity, and strike price of option i, respectively.
Following Cont and Tankov [2], the weighting factor of each option is given by the
reciprocal of the square of the Black-Scholes vega evaluated at the associated Black-Scholes
market implied volatility. Consequently, the sum of squared differences between market
and model implied volatilities is approximated by the sum of weighted squared differences
between model and market prices. Cont and Tankov [35] discuss some of the computational
difficulties pertaining to the calibration of a given model, for example, multiple local minima.
For further discussion on sources of error in calibration, we refer to [36].

The option data used to calibrate the risk-neutral models in this study were 4 p.m. EST
time-stamped bid and ask quotes of out-of-the-money Standard and Poor’s 500 index options.
The selected quote dates coincided with the second Tuesday of the month for the time period
spanning January 2005 through December 2005. Market option prices were calculated as the
average of bid and ask, while the closing index value was used as the underlying price. The
interest rate and dividend yield for each quote date were calculated using the daily updated
rate on the three-month Treasury bill [37] and the quarterly updated SPX dividend yield [38],
respectively.

Several filters were applied to the data. First, the nearest-term SPX options were
excluded from this study, leaving options of five maturities ranging from approximately 1
month to 1 year. Second, any option with an ask or bid quote equal to zero was discarded.
Third, options were excluded which violated the requirement of monotonicity of price with
respect to strike. Most of these deep out-of-the-money options were eliminated, as in [8], by
requiring the ratio of option price to underlying price to be bounded below by a sufficiently
large positive number. Here, an empirically determined value of 9.5 × 10−4 was used to filter
out such options. After all of the filters were applied, the moneyness (strike/underlying)
values for all options in this study ranged from 0.5893 to 1.2680, with an average of 117
options per quote date.

6. Calibration results

6.1. Performance measures

In order to measure the pricing performance of each of the eight previously defined models,
the average percentage error (APE) is now defined. Denote by N the number of options
used on a particular quote date, {Pi} the set of observed bid-ask averages, and {πi} the set of
corresponding calculated model prices. The average percentage error is defined in [4] as

APE =
∑N

i=1

∣

∣Pi − πi
∣

∣

∑N
i=1 Pi

. (6.1)



M. L. Galloway and C. A. Nolder 19

Since the market option prices are taken as the set of averages of the bid and ask quotes
on a given quote date, each model price may deviate from the market price by at most (ask −
bid)/2 if it is to lie between the bid and ask quotes. Setting the price difference to be (ask −
bid)/2 and the market price to be (ask + bid)/2 in (6.1) yields the measure of uncertainty in
market prices given below:

APEmarket =
∑N

i=1
(

aski − bidi

)

∑N
i=1
(

aski + bidi

)
. (6.2)

We define the in-sample APE using (6.1) with bid-ask quotes and parameter estimates
corresponding to the same quote date. The one-day-ahead (resp., one-week-ahead) out-of-
sample APE is defined using (6.1) with in-sample parameter estimates and bid-ask quotes
obtained one day (resp., one week) later than the in-sample quote date. The in-sample (resp.,
one-day-ahead out-of-sample, one-week-ahead out-of-sample) market APE is calculated
using (6.2) with bid-ask quotes obtained zero days (resp., one day, one week) later than the
in-sample quote date.

6.2. Individual model performance

In Figures 1, 2, 3 are the bar graphs of the in-sample, one-day-ahead, and one-week-ahead
out-of-sample APE for each quote date and model. The time averages of APE, taken over all
twelve-quote dates, are reported in Table 9. The worst performing model was the VG Lévy
with 11.9% (resp., 12.7%, 14.6%) mean in-sample (resp., one-day-ahead, one-week-ahead)
APE. The best performing model was the self-similar NIG (NIGSSD) with respective mean
APEs of 4.06%, 5.13%, and 8.32%. Furthermore, this model was the only one with a mean
in-sample pricing error below that of the market.

Table 10 contains values of the mean ratio of APE, taken over all twelve-quote dates,
for a model of one class to that of another with a common associated distribution (VG or
NIG). As shown in the sixth row of Table 10, the NIGSSD model outperformed its model
benchmark, with APE values which were, on average, 84% and 86% of those obtained by
the NIG-OU-Γ model for in-sample and one-day-ahead out-of-sample cases, respectively. In
contrast, the VGSSD model, on average, had pricing errors which were 115% and 107% of
those obtained by the VG-OU-Γ model for in-sample and one-day-ahead out-of-sample cases,
respectively. Below is a summary of the NIGSSD pricing performance statistics taken from
Figures 1–3.

(i) The proportions of quote dates in which the NIGSSD model had a lower APE
than that of the market for the in-sample, one-day-ahead, and one-week-ahead out-of-sample
cases were 9/12, 6/12, and 2/12, respectively.

(ii) The proportions of quote dates in which the NIGSSD model had a lower APE than
those of both stochastic volatility models for the in-sample, one-day-ahead, and one-week-
ahead out-of-sample cases were 11/12, 12/12, and 8/12, respectively.

6.3. Performance comparison of additive classes

Rows one and two of Table 10 indicate the benefits of time inhomogeneity, in that the in-
sample pricing error of the subordinated additive class was approximately 60% of that
corresponding to the Lévy class. The benefit of self-similarity in the log-return process over
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Figure 1: Average percentage error (in-sample, out-of-the-money options).

self-similarity of the directing process is observed via rows three and four of Table 10. For
the in-sample case, the NIGSSD model (mean ratio of 0.70) performed considerably better
against its subordinated additive counterpart than did the VGSSD model (mean ratio of
0.83). Such differences in mean error ratio decreased with time lag, such that, regardless
of time-one distribution, the one-week-ahead values were approximately 73% and 85% for
the [subordinated additive]:[Lévy] and [self-similar]:[subordinated additive] comparisons,
respectively.

6.4. Performance comparison of NIG and VG models

In each row of Table 11 a model class is fixed, and the mean ratio (taken over all twelve-
quote dates) of APE of the NIG model to that of the corresponding VG model is given.
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Figure 2: Average percentage error (1-day-ahead out-of-sample, out-of-the-money options).

The mean ratio of in-sample APE of the NIG (resp., NHIG, NIGSSD) model to that of the
VG (resp., VHG, VGSSD) model was approximately 86% (resp., 80%, 67%). Furthermore,
the variation in mean APE ratio across additive model class decreased with time lag. As
shown in rows one through three of the third column of Table 11, the one-week-ahead
out-of-sample mean ratios were approximately 87%, regardless of the additive model class
under consideration. Finally, the consistency with which the NIG distributions outperformed
those of the VG family may be observed in the following summary statistics taken from
Figures 1–3. The proportions of quote dates in which each of the four models of the NIG
family had a lower APE than that of the corresponding member of the VG family for in-
sample, one-day-ahead, and one-week-ahead out-of-sample cases were 12/12, 11/12, and
8/12, respectively.
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Figure 3: Average percentage error (1-week-ahead out-of-sample, out-of-the-money options).

6.5. Model price behavior across strikes and maturities

In Figures 4–7 the market and model prices are plotted versus moneyness (strike/underlying)
for the set of options available on April 12, 2005. Results for this month are displayed in
order to provide a typical observation of option pricing errors for the self-similar NIG model.
Figures 4 and 5 consist of the plots for the VG family of models, while Figures 6 and 7
consist of the plots for the NIG family. We define the relative model price difference for two
models corresponding to a given option as the absolute value of the difference between model
prices divided by the market option price. The relative model price differences between the
Lévy and subordinated additive models were the greatest for deep out-of-the-money puts
belonging to the two nearest term maturities (see Figures 4 and 6). The relative model price
differences between the subordinated additive and self-similar additive models were the
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Table 9: Mean of average percentage error: twelve quote date time average (January–December 2005).
Standard deviation is given in parentheses.

Process name Mean APE (%)
In-sample 1-day-ahead 1-week-ahead

VG 11.9 (2.08) 12.7 (1.95) 14.6 (3.63)
NIG 10.2 (1.93) 11.3 (1.85) 12.9 (4.18)
VHG 7.24 (1.37) 7.87 (1.75) 10.5 (3.76)
NHIG 5.76 (1.10) 6.61 (1.64) 9.38 (4.16)
VGSSD 6.04 (1.42) 6.63 (1.55) 9.23 (4.26)
NIGSSD 4.06 (1.01) 5.13 (1.51) 8.32 (4.49)
VG-OU-Γ 5.25 (1.12) 6.24 (1.61) 8.78 (4.19)
NIG-OU-Γ 4.81 (0.966) 5.97 (1.57) 8.59 (4.33)
Market 4.63 (0.502) 4.97 (1.28) 4.52 (0.569)

Table 10: Model class comparison: twelve quote date time-averaged ratio of average percentage errors
(January–December 2005). Standard deviation is given in parentheses.

Model 1: model 2

〈

APE1

APE2

〉

In-sample 1-day-ahead 1-week-ahead
VHG: VG 0.622 (0.139) 0.625 (0.126) 0.728 (0.219)
NHIG: NIG 0.576 (0.128) 0.585 (0.105) 0.745 (0.255)
VGSSD: VHG 0.829 (0.0894) 0.841 (0.0525) 0.847 (0.125)
NIGSSD: NHIG 0.704 (0.124) 0.776 (0.0900) 0.847 (0.134)
VGSSD: VG-OU-Γ 1.15 (0.102) 1.07 (0.0902) 1.05 (0.129)
NIGSSD: NIG-OU-Γ 0.838 (0.109) 0.858 (0.0635) 0.947 (0.133)

Table 11: Variance gamma and normal inverse Gaussian distribution comparison: twelve quote date time-
averaged ratio of average percentage errors (January–December 2005). Standard deviation is given in
parentheses.

Model 1: model 2

〈

APE1

APE2

〉

In-sample 1-day-ahead 1-week-ahead
NIG: VG 0.857 (0.0179) 0.890 (0.0528) 0.867 (0.0782)
NHIG: VHG 0.796 (0.0575) 0.837 (0.0473) 0.873 (0.0926)
NIGSSD: VGSSD 0.670 (0.0590) 0.773 (0.0984) 0.873 (0.109)
NIG-OU-Γ: VG-OU-Γ 0.921 (0.0585) 0.957 (0.0449) 0.969 (0.0532)

greatest among the out-of-the-money calls of the nearest two and longest two maturities,
as shown in Figures 4, 5 and 6, 7. This same observation is true for relative price differences
between the self-similar and stochastic volatility models, as shown in Figures 5 and 7.

6.6. Term structure of moments

The first four moments of the risk-neutral distributions determined from the options on the
April 12, 2005 quote date are plotted versus maturity in Figure 8. For the set of parameters
chosen by the market in the subordinated additive models, the skewness (resp., kurtosis)



24 Journal of Applied Mathematics and Decision Sciences

VG: 12-Apr-2005 N = 119 APE= 10.44%

+
:m

od
el

,o
:m

ar
ke

to
pt

io
n

pr
ic

e
($
)

0

10

20

30

40

50

60

Moneyness (K/S)

0.6 0.7 0.8 0.9 1 1.1 1.2

28 days
47 days
110 days

174 days
235 days

(a)

VHG: 12-Apr-2005 N = 119 APE= 8.89%

+
:m

od
el

,o
:m

ar
ke

to
pt

io
n

pr
ic

e
($
)

0

10

20

30

40

50

60

Moneyness (K/S)

0.6 0.7 0.8 0.9 1 1.1 1.2

28 days
47 days
110 days

174 days
235 days

(b)

Figure 4: Market and model option prices versus moneyness (strike/underlying) for VG and VHG models:
April 2005 quote date.
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Figure 5: Market and model option prices versus moneyness (strike/underlying) for VGSSD and VG-OU-
gamma models: April 2005 quote date.

is decreasing (resp., increasing) with maturity. This is contrary to the case of the Lévy
models in which the skewness (resp., kurtosis) is increasing (resp., decreasing) with maturity.
Self-similar processes have one-dimensional marginal distributions with a rather striking
constant skewness and kurtosis. Invariance with respect to maturity is due to the fact that
the characteristic function at time t is obtained by composition of the characteristic function
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+
:m

od
el

,o
:m

ar
ke

to
pt

io
n

pr
ic

e
($
)

0

10

20

30

40

50

60

Moneyness (K/S)

0.6 0.7 0.8 0.9 1 1.1 1.2

28 days
47 days
110 days

174 days
235 days

(b)

Figure 6: Market and model option prices versus moneyness (strike/underlying) for NIG and NHIG
models: April 2005 quote date.
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NIG-OU-Γ: 12-Apr-2005 N = 119 APE = 5.71%
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Figure 7: Market and model option prices versus moneyness (strike/underlying) for NIGSSD and NIG-
OU-gamma models: April 2005 quote date.

at time one with the map ξ 
→ tHξ. When the chain rule is applied to the composition, a
factor of tH is produced. Consequently, the moment number is matched by the same number
of factors of tH , thereby allowing cancelation of maturity in the calculation of skewness and
excess kurtosis.
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Figure 8: Risk-neutral mean, variance, skewness, and kurtosis term structures for April 12, 2005 quote date
(VG models—top row) (NIG models—bottom row).

6.7. Hurst exponent of additive models

Tables 12 and 13 contain the time-averaged parameter estimates, taken over the twelve-quote
dates, for each additive model. The sample means of H were approximately 0.6 and 0.9
for the self-similar and subordinated additive classes, respectively. Furthermore, the relative
difference between sample means of H in the two self-similar models was a mere 0.091%,
compared with 8.9% in the subordinated additive case. In the next section, we will see that
the modest variation of Hurst exponent in self-similar models during the year 2005 is not
maintained over the course of the first half of the following year.
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Table 12: Variance gamma family: twelve quote date time-averaged parameter estimates (January–
December 2005). Standard deviation is given in parentheses.

Model
Parameter VG VHG VGSSD
μ −0.1143 (0.03232) −0.1320 (0.02859) −0.09432 (0.01381)
σ 0.1227 (0.005445) 0.1105 (0.009046) 0.1330 (0.006274)
ν 0.3818 (0.1008) 0.9515 (0.1997) 0.9713 (0.1405)
H 0.9566 (0.08177) 0.6251 (0.02720)

Table 13: Normal inverse Gaussian family: twelve quote date time-averaged parameter estimates
(January–December 2005). Standard deviation is given in parentheses.

Model
Parameter NIG NHIG NIGSSD
β −6.788 (2.134) −30.47 (23.33) −6.919 (1.681)
δ 0.1732 (0.03245) 0.1134 (0.01260) 0.1413 (0.01566)
γ 11.28 (1.764) 15.81 (7.157) 8.701 (1.005)
H 0.8754 (0.1236) 0.6245 (0.02648)

6.8. Comparison with other studies

Recall in Table 9 the mean in-sample APEs for the self-similar VG and NIG models were
6.04% and 4.06%, respectively. These values are in contrast to the respective mean values
of 3.19% and 3.02% obtained by CGMY [8] and 3.31% and 3.38%, obtained by Madan and
Eberlein [28]. In both of these studies, self-similar models were calibrated using out-of-the-
money SPX options. In the CGMY study, options were used with quotes occurring during
the years 2000 and 2001, and with maturities ranging from approximately one month to 15
months. The data in the study by Madan and Eberlein consisted of options quoted on May
17, 2006, with maturities ranging from one month to two years.

In order to investigate the influence of the choice of weighting scheme and maturity
range on pricing error, we calibrate the VGSSD and NIGSSD models using out-of-the-money
SPX options quoted on May 17, 2006. The same data filters are used as in Section 5, but with
varying maturity ranges and weighting methods. The maturity ranges are one month to one
year in the first case, and one month to two years in the second. The weighting methods
consist of the reciprocal vega2 method, described in Section 5, and a uniform weighting across
both strike and maturity. In each calibration the sum of weighted squared differences between
model and market prices is minimized in order to obtain the parameter estimates. In Tables
14–17, an asterisk is used to identify a value which is determined using the same weighting
scheme and maturity range as described in Section 5.

The pricing errors for the VGSSD and NIGSSD models are reported in Tables 14
and 15, respectively. Interestingly, the differences in weighting method and maturity range
may account for as much as a 1.2% deviation in APE (NIGSSD case) from the pricing
error obtained with the conventions of Section 5. Furthermore, an increase in maturity range
resulted in a decrease in APE under the uniform weighting method and an increase in APE
under the reciprocal vega2 weighting method. The behavior of pricing error with maturity
range, for a fixed reciprocal vega2 weighting scheme, is consistent with the fact that this
method places greater weight on nearer-term options.
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Table 14: Self-similar variance gamma model: percentage error comparison with respect to maturity range
and weighting method for May 17, 2006 quote date.

VGSSD: APE [%] Weighting Method
Range of maturity τ [yrs] 1/vega2 uniform

τ ∈
(

1
12
, 1
)

4.47∗ 3.74

τ ∈
(

1
12
, 2
)

5.18 3.58

Table 15: Self-similar normal inverse Gaussian model: percentage error comparison with respect to
maturity range and weighting method for May 17, 2006 quote date.

NIGSSD: APE [%] Weighting Method
range of maturity τ [yrs] 1/vega2 uniform

τ ∈
(

1
12
, 1
)

4.78∗ 3.91

τ ∈
(

1
12
, 2
)

5.16 3.57

Table 16: Self-similar variance gamma model: Hurst exponent estimate comparison with respect to
maturity range and weighting method for May 17, 2006 quote date.

VGSSD: Hurst exponent H: Weighting Method
range of maturity τ [yrs] 1/vega2 uniform

τ ∈
(

1
12
, 1
)

0.4916∗ 0.5201

τ ∈
(

1
12
, 2
)

0.5085 0.5440

Table 17: Self-similar normal inverse Gaussian model: Hurst exponent estimate comparison with respect
to maturity range and weighting method for May 17, 2006 quote date.

NIGSSD: Hurst exponent H: Weighting Method
range of maturity τ [yrs] 1/vega2 uniform

τ ∈
(

1
12
, 1
)

0.4921∗ 0.5214

τ ∈
(

1
12
, 2
)

0.5093 0.5451

The estimate of the Hurst exponent in the VGSSD model, obtained with options
available on May 17, 2006, is reported in Madan and Eberlein [28] as 0.5326. In Tables 16
and 17 are the estimates of the Hurst exponent, H, for the VGSSD and NIGSSD models,
respectively. The estimate for H, denoted by (∗) in Table 16, was 0.492. This is in contrast
to the value of 0.660 obtained for the VGSSD model on the last quote date of this study
(December 2005), as well as the time-averaged value of 0.625 in Table 12. The use of uniform
weights and a two-year maturity range resulted in an estimate of 0.544 for H, as opposed to
the estimate of 0.492, obtained using the conventions of Section 5. Since parameter estimates
for the NIGSSD model were not presented in [28], only the VGSSD values are compared.
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7. Conclusion

In this paper, we considered additive processes defined via subordination, Sato’s construction
of H-self-similar additive processes from self-decomposable distributions, and a combination
of the two methods. For each of these three methods, or model classes, two processes were
defined: one with a time-one marginal variance gamma (VG) distribution, and the other, a
time-one marginal normal inverse Gaussian (NIG) distribution. The corresponding models
for the price process were calibrated, along with those constructed from two benchmark
Lévy stochastic volatility processes, using out-of-the-money Standard and Poor’s 500 index
options from the year 2005. The four-parameter subordinated additive models had in-sample
pricing errors which were approximately 60% (pooled across time and time-one distribution)
of those obtained by the corresponding three-parameter Lévy models. The four-parameter
self-similar additive models had in-sample pricing errors which were approximately 77%
(pooled across time and time-one distribution) of those obtained by the corresponding
subordinated additive models. The results for the comparisons between self-similar and
stochastic volatility models were mixed. The in-sample pricing errors of the self-similar VG
and NIG models were 115% and 84% of those obtained by the VG and NIG Lévy stochastic
volatility models, respectively. For a given model class, the normal inverse Gaussian model
consistently outperformed its variance gamma counterpart for in-sample and one-day-ahead
out-of-sample cases. The Hurst exponent estimates associated with the self-similar and
subordinated classes were approximately 0.6 and 0.9, respectively. Although the estimates
of Hurst exponent of self-similar models had a modest range during the year 2005, Hurst
exponent estimates can vary greatly over the course of a year, as demonstrated in Section 6.8.
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