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CONFIDENCE CIRCLES FOR
CORRESPONDENCE ANALYSIS USING
ORTHOGONAL POLYNOMIALS

ERIC J. BEH†
School of Mathematics and Applied Statistics, University of Wollongong,
Wollongong, NSW, 2522, Australia

Abstract. An alternative approach to classical correspondence analysis was developed
in [3] and involves decomposing the matrix of Pearson contingencies of a contingency
table using orthogonal polynomials rather than via singular value decomposition. It is
especially useful in analysing contingency tables which are of an ordinal nature. This
short paper demonstrates that the confidence circles of Lebart, Morineau and Warwick
(1984) for the classical approach can be applied to ordinal correspondence analysis.
The advantage of the circles in analysing a contingency table is that the researcher
can graphically identify the row and column categories that contribute or not to the
hypothesis of independence.

1. Introduction

The correspondence analysis technique of [3] was shown to be mathemat-
ically similar to the classical correspondence analysis approach discussed
by several authors, including Lebart, Morineau and Warwick (1984), [8]
and [9]. However there is a major difference between the approaches, and
this is concerned with the method of decomposing the Pearson chi-squared
statistic. The classical approach decomposes the statistic into singular
values by partitioning the matrix of Pearson contingencies using singular
value decomposition. The approach of [3] decomposes the Pearson chi-
squared statistic into bivariate moments, such as linear–by–linear, linear–
by–quadratic, etc, by partitioning the matrix of Pearson contingencies using
the orthogonal polynomials defined in [4]. Therefore the interpretation of
the correspondence plots is very different. The ordinal correspondence plots
of [3] graphically show how categories within a variable are similar or not by
their proximity from each other along the first (linear), second (dispersion)
and higher axes. The interpretation of the correspondence plots from the
classical correspondence analysis technique is unclear. Points significantly
† Requests for reprints should be sent to E. J. Beh, School of Mathematics and Applied
Statistics, University of Wollongong, Wollongong, NSW, 2522, Australia.
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far from the origin indicate that they contribute to the dependency between
the row and column variables, while points close to the origin indicate they
do not make such a contribution. While the interpretation of the ordinal
plots allows us to reach the same conclusions, the classical correspondence
plot will not explain how two points far from each other are different; the
classical approach will only make the conclusion that they are different.

With ordinal correspondence plots, we can determine which row and col-
umn categories, if any, contribute to the dependency between the two vari-
ables using confidence circles. Lebart et al. (1984) defined such circles for
classical correspondence analysis. This paper shows that similar confidence
circles can be calculated for each row and column profile co-ordinate by us-
ing ordinal correspondence analysis. The derivations presented here are for
the row categories, while those for the column categories can be made in a
similar manner.

Section 2 defines the notation to be used in this presentation as well as
defining the radii length of the confidence circle for the i′th row profile
co-ordinate in a plot using classical correspondence analysis. Section 3
shows that for the correspondence analysis approach of [3] the radius of
the confidence circles can be derived in exactly the same way as those
from classical correspondence analysis. Section 4 shows the relationship
between the marginal frequencies of a set of categories and the radii length
of the confidence circles. Section 5 consists of two examples which show
the application of the confidence circle using doubly ordered correspondence
analysis.

2. Confidence Circles for Classical Correspondence Analysis

Consider an I × J two-way contingency table, N, where the (i, j)′th cell
entry is denoted as nij for i = 1, 2, . . . , I and j = 1, 2, . . . , J . Let the grand
total of N be n and the probability matrix be P so that the (i, j)′th cell

entry is pij = nij/n for which
I∑

i=1

J∑
j=1

pij = 1. Define the i′th row marginal

proportion as pi• =
J∑

j=1

pij and the j′th column marginal probability as

p•j =
I∑

i=1

pij so that
I∑

i=1

pi• =
J∑

j=1

p•j = 1.

The confidence circle of Lebart et al. (1984) is a method of observing
the importance of a profile’s position in a correspondence plot. Generally,
if the origin lies outside the confidence circle for a particular category,
then that category contributes to the dependency between the row and
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column categories of the contingency table. If the origin lies within the
circle for a particular category, then that category does not contribute to
the dependency between the variables.

Lebart et al. (1984) showed that for classical correspondence analysis the
radii length of the confidence circle fot the i′th row profile co-ordinate can
be calculated by

ri =

√
χ2

(J−1)

npi•
(1)

where χ2
(J−1) is the theoretical chi-squared value with J − 1 degrees of

freedom at the α level of significance. Generally a correspondence plot
consists of only two dimensions, but can include three or more. However,
visually representing multiple dimensions is conceptually difficult; [2], [7]
and [11]([11], [12]) presented some novel approaches to visualising multiple
dimensions. If a correspondence plot consists of two dimensions, then with
2 degrees of freedom and at the 5% level of significance, χ2

(2) = 5.99. There-
fore, the radius of the confidence circle for the i′th row profile co-ordinate
can be approximated by

ri =
√

5.99
npi•

(2)

3. Confidence Circles for Ordinal Correspondence Analysis

The radii length of the confidence circle for the i′th row profile using the
correspondence analysis of [3] is mathematically identical to the radii length
using classical correspondence analysis. [6] calculated confidence circles for
their analysis using the same orthogonal polynomial definitions as we do
here but the plotting system they considered is different.

Suppose that a doubly ordered correspondence analysis is applied to a
two-way contingency table. Then denote the row profile co-ordinate of the
i′th row category along the k′th axis as f∗

ik for k = 1, 2, . . . , J − 1 which is
defined by

f∗
ik =

J∑
j=1

pij

pi•
bk (j)

This row profile co-ordinate is the weighted sum of the column orthogonal
polynomials or order k, {bk(j)}, where the weights used are from the profile
of the i′th row category, {pij/pi•}; see [3] for a derivation of f∗

ik.
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By using equations (3.1.10) and (3.1.11) of [3], the relationship between
the chi-squared statistic and the row profile co-ordinates is

X2 = n
J−1∑
k=1

I∑
i=1

pi• (f∗
ik)2 (3)

For the i′th row profile co-ordinate, the contribution to X2 is X2
i where

X2
i = n

J−1∑
k=1

pi• (f∗
ik)2 (4)

for all i = 1, 2, . . . , I and where X2
i has a Pearson chi-squared distribution

with J − 1 degrees of freedom; χ2
(J−1).

From (4)

J−1∑
k=1

(f∗
ik)2 =

X2
i

npi•
(5)

By comparison with (2) the radii length for the confidence circle of the i′th
row profile co-ordinate can be taken to be the square root of the right hand
side of (5) with X2

i replaced by the 100 (1 − α) % point of its approximate
distribution; χ2

J−1. When the ordinal correspondence plot consists of two
dimensions, the square root of (5) with this replacement is identical to (2).

Confidence circles can also be calculated with the centre at the origin.
Those points not contained within the circle all contribute to the depen-
dency of the row and column variables that form the table. Those points
lying within the circle, do not make such a contribution. [6] considered
confidence circles with the centre at the origin, as well as circles with the
origin at the position of the profile co-ordinate. However, Lebart et al.
(1984, p183) state that

In practice, instead of drawing concentric circles around the origin,
it is clearer and easier to draw them around each point concerned,
and look at the position of the origin.

The disadvantage of drawing a circle with the centre at the origin is that
it assumes that points close to the origin will never significantly contribute
to the dependency of the row and column variables, while those far from
the origin will always make such a contribution. While this may occur in
many situations, it will not always occur.
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4. Relationship Between a Marginal Frequency and its Radii
Length

Observing (2), the radii length will depend on the proportion of observa-
tions classified into a category of the contingency table.

A large proportion of observations classified will have a relatively small
radii length, while a small proportion of classified observations will have a
relatively large radii length. These observations can be seen in the appli-
cation of confidence circles in Lebart et al. (1984, p51, Table 5).

The radii length defined by (2) shows that a variable with equi-probable
responses will have equal length radii for each of the response. Therefore,
when conducting an ordinal correspondence analysis on ranked data, as
has been done by [5], the radius of the confidence circle for each of the row
and column profile co-ordinates will be identical. For such an application,
the length of the radii for all of the categories can be taken to be

r =

√
t

χ2
(t−1)

n
(6)

where n is the number of judges (or consumers) who rank, according to
their preference for, t products/treatments. The value of χ2

(t−1) is the the-
oretical Pearson chi-squared value with t-1 degrees of freedom at the α
level of significance. However, [1] noted that, as the rankings of a prod-
uct/treatment are not independent, the Pearson chi-squared statistic does
not have a chi-squared distribution, although (t − 1)X2/t does. So in or-
der to use (6), we use not the X2 profile but the (t − 1)X2/t profile which

is {pij/pi•} multiplied by {
√

t−1
t bv (j)}.

5. Examples

5.1. Example 1 – Drug Data

Consider the contingency table given by Table 1 which was analysed in [4].
The study was aimed at testing four analgesic drugs (named A, B, C and

D) and their effect on 121 hospital patients. The patients were given an
ordered five point scale consisting of the categories Poor, Fair, Good, Very
Good and Excellent on which to make their judgement.

It can be seen that Table 1 consists of ordered column categories and non-
ordered categories. The natural scores 1, 2, 3, 4 and 5 are applied to the
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Table 1. Cross-classification of 121 Hospital Patients According to 
Analgesic Drug and its Effect 

Poor Fair Good Very Good Excellent 
DrugA 5 1 10 8 6 
DGB 5 3 3 8 12 
DmgC 10 6 12 3 0 
Drug D 7 12 8 1 1 - 

-0.6 0.0 0.5 

First Principal Axis 

Figure 1. 95% Confidence Circles for the Drugs in Table 1 

ordered column (judgement) categories, and the mean rank scores of 3.30, 
3.23, 2.26 and 2.21 are applied to the non-ordered row (drug) categories. 

The Pearson chi-squared statistic of the contingency table is 47.072, which 
at 12 degrees of freedom is highly significant. Therefore there is an asso- 
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ciation bet- the drug used and its eflect on the patients. The ordinal 
correspondence plot for the row (drugs) profile coordinates is given by 
Figure 1. Similarly, the ordinal mrrespondence plot for the mlumn (jn- 
ment) profile ecwrrdinatea is given by F i  2. 

Pigun 2. 95% Coddeuce Cirdes for the Judgemate in Table 1 

The row profile co-ordinates graphically depicted by F i e  1 are accom- 
panied by the 95% confidence circle for eaeh drug tested. Figure 2 also 
includes the 95% con6dem circles for the judgement the patients gave for 
each drug. Both these figures wmist of axes which reflect the variation in 
terms of the location (firat principal axis) and dispersion (second princi- 
pal axis) components. These two axis explain 75% of the vsriation in the 
druga; location=54.07%, dispersion=M.93%. They also explain 80.21% of 
the variation in the judgements; location = 72.45%, dispersion = 7.76%. 
There are higher order moments which explain more of the variation in the 
categories than the dispersion, but we wish to highlight the variation only 
in terms of the location and dispersion components. 



42 E. J. BEH

Figure 1 shows that drug A is the only drug to contribute to the in-
dependence hypothesis as the origin passes through its confidence circle.
Therefore, drugs B, C and D have an effect on the results. We can see from
Table 1 that drug B is rated as Excellent, drug C is rated Poor to Good,
while drug D is considered to have a Fair effect on the patient.

Therefore, it would be advised that the drug associated with Drug B be
used to treat patients suffering from analgesic illnesses.

Figure 2 shows that only Poor and Good contribute to the independence
hypothesis. Therefore, Excellent, Very Good and Fair all can be used to
characterise the drugs that were tested. In further studies we could possibly
only consider a three-point scale rather than a five-point scale as was carried
out in this experiment. By observing Figure 2, Good may be considered by
some researchers as a descriptive response of the drugs as the origin barely
falls within the confidence circle for this category.

5.2. Example 2 – Bean Data

Consider the bean data of [1] and analysed in [5]. A consumer study was
conducted to determine which variety of snap bean was the most preferred.
A lot of each of the three bean varieties were displayed in retail stores and
123 consumers were asked to rank the beans according to first, second and
third choice. Table 2 lists the preferences of each variety of bean.

Table 2. Consumer Rankings of Three Varieties of Bean

Rank 1 Rank 2 Rank 3 Total
Variety 1 42 64 17 123
Variety 2 31 16 76 123
Variety 3 50 43 30 123

Total 123 123 123 369

The Pearson chi-squared statistic for the Table 2 data is 79.561. Using
the more appropriate Anderson chi-squared statistic, this value becomes
53.041, which at 4 degrees of freedom is highly significant. We use the
Anderson chi-squared statistic rather than the Pearson value as Table 2
is a ranked data set where the rank assigned to a bean variety is not
independent of the rank assigned to another bean. Therefore, there is a
difference in ranking the three varieties of bean. However, by just observing
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Figure 3. 95% Confidence Cfrcles for the Bean Varieties in n b l e  2 

Table 2 it is not evident which bean variety or rank contributes to this 
relationship. Confidence circles will determine which categories do so. 

As there are three treatments, and therefore three rankings, the two- 
dimensional correspondence plot will describe all of the variation that exists 
for each category. 

The row profile co-ordinates of Table 2 are presented as Figure 3 which 
also includes the 95% confidence circles for each bean variety. The column 
profile co-ordinates from the correspondence plot of Table 2 is included as 
Figure 4 and is constructed in the same manner as described in [5]. It also 
contains the 95% confidence circles for each rank. 

As the row and column marginal frequencies are identical, the radius of 
each confidence circle will be equal; the radius length is 0.18018, using (2). 
This is verified by observing the radii length of each row and column profile 
co-ordinate in Figures 3 and 4 respectively. 
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Fipm 4. 95% Canfidenca Circles for the Bean R.n)ring. in Table 2 

F i  3 and 4 show that all the bean varieties and the rank contribute 
to the dependency in Table 2. These figure3 support the conclusion that 
there is a v e q  strong association between the row and column categories. 
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