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Abstract. An inverse problem associated with the mass transport of a material concen-
tration down a pipe where the flowing non-Newtonian medium has a two-dimensional
velocity profile is examined. The problem of determining the two-dimensional fluid
velocity profile from temporally varying cross-sectional average concentration measure-
ments at upstream and downstream locations is considered. The special case of a known
input upstream concentration with a time zero step, and a strictly decreasing velocity
profile is shown to be a well-posed problem. This inverse problem is in general ill-posed
and mollification is used to obtain a well conditioned problem.

1. Introduction

We consider an inverse problem associated with the mass transport of a
material concentration down a pipe, where the flowing medium has a two-
dimensional velocity profile. We have previously investigated an inverse
problem associated with shear dispersive flow in Newtonian media [1], and
in this paper we consider more general inverse problems for certain non-
Newtonian fluids. For viscous flow problems, the variation in fluid velocity
over the cross section of the pipe leads to shear dispersion of the solute
concentration. Molecular diffusion of the solute may also significantly con-
tribute to the dispersive transport of the solute, however in this paper we
will assume that shear dispersion is the dominant dispersive effect.

The approach examined in this paper is to use the shear dispersive prop-
erties of the concentration of a material tracer down a pipe to deduce the
underlying velocity profile of the medium. An early problem of this nature
involved estimating the average flow velocity in water mains by injecting
salt into the main and measuring the electrical conductivity of the water
at some fixed location downstream of the injection point [2].

The problem considered is that of determining the fluid velocity profile
over the cross section of the pipe from temporally varying cross-sectional
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average concentration measurements at upstream and downstream loca-
tions. The determination of the two-dimensional fluid velocity profile is in
general a difficult nonlinear ill-posed inverse problem. However, the spe-
cial case of a strictly decreasing velocity profile and a specified continuous
upstream concentration with a time zero step is a well-posed problem. It
is assumed that no material tracer is input before the time zero step which
is required in the input concentration or one of its derivatives.

The problems considered in this paper are applicable to the perifusion
apparatus, an in vitro experimental apparatus used in endocrinology in-
vestigations [3], [4], and pituitary effluent sampling experiments associated
with blood flow in pipes [5]. In these experimental systems the observed
temporal architecture of the cellular responses to various stimuli is signifi-
cantly altered by the measurement process. The inverse problem considered
in this paper allows the underlying cellular responses to be unmasked.

In section 2 the type of non-Newtonian fluid is specified. In section 3
the equations modelling the flow of a material tracer concentration down
a pipe are given, and the mathematical operator mapping the temporally
varying cross-sectional average concentration measurements at upstream
and downstream locations is specified. In section 4 it is shown that the
inverse of this operator is unbounded on the Hilbert space of square inte-
grable functions, L2, and that the inverse problem is ill-posed. The special
case of known input concentration with a time zero step and a decreasing
velocity profile is also examined and is shown to be a well-posed problem.
A related problem of finding the relationship between the rate of shear
and the shear stress is shown to be ill-posed. In section 5 the mollification
method is used to regularize the ill-posed inverse problem and the stability
of the regularization is analysed. In section 6 a simple numerical algo-
rithm is constructed, and it is verified by numerical experiment that stable
approximations to the velocity profile can be obtained in the presence of
moderate amounts of data noise. In section 7 this numerical algorithm is
tested on data including small amounts of molecular diffusion.

2. Consideration of Non-Newtonian Flow

In our previous investigation [1], the fluid was assumed to be Newto-
nian, and therefore the fluid velocity profile in the pipe was governed by
Poiseuille’s equation [6], (p 57 et. seq.). It is natural to consider associated
problems for non-Newtonian fluid flow. Our motivation for this generalisa-
tion arose from investigating blood flow in endocrinology experiments [5],
which is known to behave in a non-Newtonian manner [7].
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Suppose that the velocity profile of a viscous, incompressible fluid flow-
ing through a rigid pipe of circular cross section, with a no-slip boundary
condition is given by v(r), where r is the circular polar radial coordinate as-
sociated with the cylindrical coordinate system so that the x-axis is aligned
with the axis of the pipe. The radius of the pipe is R, and the maximum
flow velocity is vm. The fluid is assumed to have a suitably low Reynolds
number 1, so that the flow is laminar. The dispersion of matter with high
Reynolds number can be analysed by considering a virtual coefficient of
diffusion [8]. We will assume that the pipe cross-sectional geometry is cir-
cular. The theory is applicable to more general pipe geometries [9], however
we do not pursue this aspect here.

Many fluids display a marked shear-dependent viscosity. Solutions such
as blood have a reduced viscosity when the shear rate is large and are
termed pseudoplastic. Conversely some fluids such as concentrated solu-
tions of sugar in water exhibit an increase in viscosity with the rate of shear
and are termed dilatant. Materials requiring a finite yield stress before flow
can commence are called plastic and are not considered here. For steady
fully developed flow in a circular pipe we assume that the rate of shear is
a function of the shear stress (τ) only, that is

dv

dr
= f(τ) (1)

where r is the distance from the centre of the pipe. Equation (1) is
termed the velocity gradient or the rate of shear. This assumption ex-
cludes rheopectic, thixotropic and viscoelastic materials. For developed
flow, the relation between the shear stress in the fluid (τ) and the radial
position (r) is

τ = τ0
r

R
(2)

where τ0 is the mean stress on the fluid at the pipe boundary [10], (p 150
et. seq.). The functional form of f(τ) and v(r) for the different types of
non-Newtonian fluids are indicated schematically in figure 1. It follows
that there is less shear dispersion for pseudoplastic fluids than for dilatant
fluids. This model of fluid flow is well known, and is discussed further in
[12], (chapter 1).
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Figure 1. The functional form of the rate of shear, f(τ), and the fluid velocity profile,
v(r), for the different types of non-Newtonian fluids.

3. The Mass Transport Equations

The mass transport of the concentration of a material tracer, c(x, r, t),
down the pipe is described by the simple transport equation

∂c

∂t
+ v(r)

∂c

∂x
= 0 x ∈ [0,∞) r ∈ [0, R] t > 0, (3)

where v(r) is the fluid velocity profile. Because the injection of the tracer
into the pipe at x = 0 is assumed to be independent of r, the boundary
condition takes the simple form c(0, r, t) = c0(t). If the injection of the
tracer is radially dependent then unless some extra system information is
available, solutions of the inverse problem are not unique and therefore the
problem is highly ill-posed. Assuming the initial concentration in the pipe
is zero, i.e., c(x, r, 0) = 0, then the solution of (3) is

c(x, r, t) = c0

(
t− x

v(r)

)
H

(
t− x

v(r)

)
x ∈ [0,∞) r ∈ [0, R] t > 0

where H denotes the Heaviside function. If radial dependence in the down-
stream concentration is available, then reconstruction of the velocity profile
is a simple well-posed problem [11]. However in applications radial concen-
tration measurements are unavailable, and the concentration measurement
at the station x = ` is assayed over the whole pipe. Simple analysis then
shows that the cross-sectional average concentration at a fixed station x = `
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is

Q(t) =
2

R2

∫ R

0

c0

(
t− `

v(r)

)
H

(
t− `

v(r)

)
r dr. (4)

The nature of the smoothing operator defined in (4) is dependent on the
functional form of v(r). A reasonable physical assumption is to assume that
the velocity profile is a strictly decreasing function of the radial distance
from the centre of the pipe, i.e., v′(r) < 0. With this assumption the
maximum fluid velocity is at the centre of the pipe and is denoted by
vm. The nature of the smoothing operator can then be seen after the
transformation s = t− `

v(r) to the integral in equation (4), so yielding

Q(t + a) =
∫ t

0

k(t− s)c0(s) ds t > 0 (5)

where the kernel has the functional form

k(t) =
−2`

R2
· v−1

(
`

t+a

)(
v−1

(
`

t+a

))′

(t + a)2
with a =

`

vm
> 0. (6)

The parameter a represents the time for fluid travelling at speed vm to
reach the station at x = `, and use has been made of the identity r =
v−1

(
`/(t + a)

)
. It is important to note that the strict monotonicity of the

flow is used in rewriting (4) in the form (5)
The lower limit of integration in equation (5) would be −∞ if we relax

the assumption that the tracer is injected into the pipe at t = 0. This
change makes equation (5) a singular integral equation, altering the char-
acter of the problem. If the upstream and downstream concentrations are
measured over finite intervals, then since the concentration in the pipe
may be nonzero, the downstream measurement may be contaminated with
an unknown concentration. Thus the determination of the velocity profile
becomes more difficult.

4. Velocity Profile Determination

The problem of determining fluid velocity profiles has generated a large
number of different experimental procedures [12], (chapter 8). Methods
used to measure the flow properties can be characterised as invasive or
non-invasive, depending on whether the flow properties are disturbed by
the measurement process. The techniques employed utilize the electrical,
optical, chemical, thermal and kinetic properties of the medium. The ap-
proach considered in this paper is to use the shear dispersive properties of
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the concentration of a material tracer down a pipe to deduce the underlying
velocity profile of the medium.

Consider the problem of determining the fluid velocity profile over the
cross section of the pipe from temporally varying cross-sectional average
concentration measurements at upstream and downstream locations. In
terms of equation (4) if we measure c0 and Q, can we determine v. This
inverse problem is a nonlinear Fredholm integral equation of the first kind,
and is in general highly ill-posed. The ill-posedness of the problem is
strongly dependent on the functional form of c0. However, if we make
the assumption that the velocity profile is a strictly decreasing function of
the radial distance from the centre of the pipe, then we can use equation (5)
to determine v(r). Observe that equation (5) is a linear Volterra integral
equation of the first kind, which are well known ill-posed problems [13].
However, we are really more interested in finding the velocity profile, v(r),
than the function k(t). Therefore on integrating equation (5) by parts we
obtain the Volterra integral equation of the second kind

Q(t + a) = K(t)c0(0) +
∫ t

0

c′0(t− s)K(s)ds (7)

where K(t) =
∫

k(t)dt satisfies

K(t) =
1

R2
·
(

v−1

(
`

t + a

))2

(8)

with K(0) = 0. Because the variable of interest is K(t), the derivative of
the downstream cross-sectional average concentration does not appear in
equation (7). It follows from equation (8) and the assumption v′(r) < 0,
that K(t) is a strictly increasing function such that limt→∞K(t) = 1.

Volterra equations of the second kind are known to be well-posed prob-
lems [13], (p 45 et. seq.). To avoid the degenerate case of equation (7)
reducing to a Volterra equation of the first kind we shall assume that
c0(0) 6= 0. With c0(0) vanishing the conditioning of the Volterra equa-
tion of the first kind will be directly related to the smoothness properties
of the input function c0. However the experimentalist can adjust the input
concentration to improve the conditioning of the velocity profile reconstruc-
tion. It is obvious from equation (7) that the best conditioning is achieved
with a c0 having discontinuities, generating wavefronts of concentration
travelling down the pipe. This enables a “layer stripping” type solution to
the velocity reconstruction problem.

A unique continuous solution K(t) to equation (7) exists if Q and c′0 lie
in the space of continuous functions, C[0,∞] [13], (p 30 et. seq.). The
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velocity profile can then be determined from

v−1

(
`

t + a

)
= R

√
K(t) (9)

by a simple inverse functional relationship (see [14] for another inverse prob-
lem in nonlinear optics leading to a similar relation). Thus the following
theorem follows.

Theorem 1 The inverse problem of determination of the strictly decreas-
ing velocity profile has a well-posed solution provided that c0(0) 6= 0 and
c′0, Q ∈ C[0,∞].

Thus for example if c0(t) = c0
2 is constant, then equation (7) reduces to

v−1

(
`

t + a

)
=

R

c0

√
Q(t + a) t > 0. (10)

Another useful special case is when the upstream input concentration is
the pulse function, c0(t) = c0(H(t)−H(t−L)), L > 0. Equation (7) then
reduces to the simple recursive relationship

Q(t + a) = c0K(t)− c0K(t− L)H(t− L) t > 0

and v can be determined from equation (9).
However in a practical application, the computation of the derivative

of the upstream concentration profile, c′0, renders equation (7) ill-posed.
This is because realistic measurement data can generally only be placed in
the function spaces L2, or C, and in these function spaces differentiation
operators are unbounded. It follows that the operator mapping the mea-
sured data to the velocity profile is unbounded. The regularization of this
operator mapping is examined in section 5.

A related inverse problem is determining the functional relationship be-
tween the rate of shear and the shear stress specified in equation (1), which
provides a fuller understanding of the constitutive laws underlying the flow
mechanism. It follows from equations (1) and (2) that the functional form
of f can be determined by differentiating the constructed velocity profile.
Thus the determination of f is an ill-posed problem. The ill-posed nature
of the problem is immediately apparent upon differentiating equation (5).
The operator mapping the measured data to the velocity profile is now as-
sociated with the derivative of both data inputs, and again is unbounded.

The determination of the velocity profile assumes that v(r) is a strictly
decreasing function. A similar theory applies to plastic materials which
display a finite yield stress. However because plastic materials can be
suitably approximated by pseudoplastic materials the theory offers little
extra insight.
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5. Problem Regularization

As we have seen in section 4, the ill-posed nature of reconstructing the
strictly decreasing velocity profile from noisy input concentration measure-
ments is equivalent to differentiation. Because the measured data lie in
function spaces where differentiation operators are unbounded it is there-
fore necessary to restore continuity with respect to the data to solve the
problem. The regularization procedure for solution of equation (7) is sim-
ply to compute c′0 in a stable manner. It is well known that numerical
differentiation can be made a well-posed problem, and there are a number
of regularization methods available. Any of these regularization methods
can be used to yield stable solutions to equation (7). In this paper we
use the method of mollification [15] based on the treatment of Murio [16],
in a similar manner to our use in [1]. Suppose that due to measurement
difficulties an ideal data function g has been corrupted by noise n and is
measured as gm. That is

gm(t) = g(t) + n(t) t ∈ I

where the functions are defined on some interval I = [0, T ], for some T > 0.
Let the extension of the data function gm to the interval Iδ = [−3δ, T +3δ]
be defined by

gm(t) =
{

gm(0) exp
[
t2/[t2 − (3δ)2]

] −3δ ≤ t < 0
gm(T ) exp

[
(t− T )2/[(t− T )2 − (3δ)2]

]
T < t ≤ T + 3δ

(11)
and define the Gaussian convolution, or mollification of g by

Jδg(t) =
(
ρδ ∗ g

)
(t) =

∫ ∞

−∞
ρδ(t− s)g(s) ds

u
∫ t+3δ

t−3δ

ρδ(t− s)g(s) ds

(12)

where δ is the radius of mollification. Then if we define the function norm
‖g(t)‖∞ = supt∈I |g(t)|, the following results can be obtained [16], (p 6 et.
seq.).

Theorem 2 If ‖g′′‖∞ ≤ M2 then

‖(Jδg
)′ − g′‖∞ ≤ 3δM2

This consistency result shows that
(
Jδg

)′ → g′ as δ → 0.



FLUID VELOCITY PROFILE RECONSTRUCTION 95

Theorem 3 With the extended noisy measurement function gm ∈ C(Iδ)

‖(Jδg
)′ − (

Jδgm

)′‖∞ ≤ 2
δ
√

π
‖gm − g‖∞.

The mollification method provides the differentiation operator with a Lip-
schitz continuity result provided that the data gm ∈ C, and δ > 0 is fixed.
Furthermore as ‖gm− g‖ → 0, δ can be reduced, and the consistency error
then decreases provided that g ∈ C2.

The regularized solution to the inverse problem consists of first molli-
fying the measured upstream concentration data, which we denote c0, by
forming Jδc0(t), and then solving the well-posed inverse problem (7) with
this regularized data. The measured downstream cross-sectional average
concentration is denoted by Qm.

Theorem 4 The strictly decreasing velocity profile reconstruction problem,
as stated in section 4, with mollified measurement data Jδc0, has a well-
posed solution provided that c0(0) 6= 0 and c0, Qm ∈ C[0, T ].

Proof: Before we use the stability result for the differentiation operator
we must first bound the Volterra operator in equation (7). Consider the
equation

(λI−K)h = g (13)

where I is the identity operator, K is a compact linear Volterra integral
operator in a space of continuous functions defined on an appropriate in-
terval, and λ > 0 is constant. The associated perturbed mapping equation
is

((λ + ∆λ)I− (K+ ∆K))(h + ∆h) = g + ∆g

where g and ∆g are continuous functions, the operators K and K + ∆K
have continuous kernels k̃ and k̃ + ∆k̃, and (λ + ∆λ) > 0 is constant. The
continuity of g and k̃ will guarantee the existence of a unique continuous
solution h to equation (13) [13], (p 30 et. seq.). It also follows from the
theory of Volterra operators [13], (p 45 et. seq.) that if |k̃| ≤ K, |∆k̃| ≤
∆K, |g| ≤ G, |∆g| ≤ ∆G, and λ̃ = (λ + ∆λ) then

|∆h(t)| ≤ 1

λ̃

[
∆G +

∆Kt

λ̃
(G + ∆G) exp

(
(K + ∆K)

t

λ̃

)
+

|∆λ|G
λ

exp
(

Kt

λ

)]
exp

(
Kt

λ̃

)
.

The |∆λ| term in equation (13) is obtained by considering a perturbed
mapping equation with ∆K = ∆g = 0 [13], (p 41 et. seq.). Hence the
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solution h has continuous dependence on the data inputs k̃, g and λ, and
it follows that equation (13) is well-posed. The bound in equation (13)
indicates that the modulus of continuity of the solution on the measurement
depends strongly on the magnitude of λ̃, which is c0(0) in our problem.
This implies that unless c0(0) is much larger than any measurement noise
then well-posedness will be lost. It follows that if we define the family
of operators T−1 by T−1(k̃, g) = (λI − K)−1g, then the mollification of
the upstream data function, Jδc0, and Murio’s stability lemma imply the
continuity result

‖T−1((Jδc0)′, Q)− T−1((Jδc0)′, Qm)‖ ≤ O(‖Qm −Q‖) +O(‖c0 − c0‖).
It then follows that the solution of equation (7), and the computation of
the velocity profile v(r) through equation (10) can be performed in a stable
manner.

Consistency of the mollified problem solution to the exact K can be shown
from Murio’s consistency lemma provided that c0 ∈ C2[0, T ].

6. Numerical Method and Results

In practice the upstream and downstream cross-sectional average concen-
tration measurements, c0(t) and Q(t + a), can only be measured over
some finite interval 0 ≤ t ≤ T . This means we cannot reconstruct v(r)
completely, the minimum resolvable velocity is `/T . The parameters in
this section are taken from the perifusion apparatus [17], [18], they are
vm = 6 × 10−3 m/s, ` = 2 m, R = 5 × 10−4 m, T = 3000 s, so that
a = 1/3× 103 s.

We now describe a simple numerical algorithm to solve the inverse prob-
lem of velocity reconstruction. Consider a uniform time mesh {ti}N

i=0 with
t0 = 0, ti = ti−1 + h, 1 ≤ i ≤ N , where h = T/N . Then the kernel K(t)
can be approximated by a B-spline of degree n

K(t) =
M∑

i=0

αibi(t)

where M + 1 is the cardinality of the B-spline basis {bi}M
i=0. If n = 1 so

that the B-spline basis functions are roof functions, and the spline knot
points are chosen to coincide with the time mesh points, then collocation
of equation (7) provides the finite dimensional equation

Q(tj + a) = αjc0(0) +
M∑

i=0

αi

∫ tj

0

c′0(tj − s)bi(s)ds j ∈ [0, N ].
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The properties of B-splines and their support imply that this matrix system
is lower triangular. If the integral is approximated by the trapezoidal rule
then the solution for the coefficients {αi}N

i=0 is

c0(0)α0 = Q(t0 + a)

αj

(
c0(0) +

h

2
c′0(t0)

)
= Q(tj + a)− h

j∑′

i=1

αj−ic
′
0(ti) j ∈ [1, N ]

(14)

where the prime on the summation signifies that the last value in the sum-
mation is to be halved. To ensure the algorithm is well-posed the coeffi-
cients {c′0(ti)}N

i=0 must be replaced by their mollified derivatives. This is
achieved by constructing {Jδc0(ti)}N

i=0 and then using central differencing
to estimate the numerical derivatives. The extension and mollification of
the data functions utilizes equations (11) and (12).

One can reason that due to noise, Jδc0(0), and JδQ(t + a) are better
approximations to the true data functions c0(0) and Q(t + a) respectively.
Due to the nature of the smoothing operator in equation (5), Q(t + a) is
expected to contain less high frequency information than c0. Therefore the
mollified functions Jδc(0), and JδQ(t + a) are used in equation (14) for
improved accuracy. The numerical approximation to K(t) then allows the
reconstruction of the velocity profile v(r) through use of equation (9).

The measurement data is simulated through computation with equa-
tion (5), the results of which are corrupted with noise n having a normal
distribution with zero mean and a standard deviation of 0.05. Because
concentrations must be positive, simulated negative concentrations are set
to zero. For the numerical results presented in this paper N = 100, so that
the sampling time interval is h = 30 s.

The amount of mollification to be used in the numerical reconstruction
is dependent on the perceived amount of noise. There are methods for
determining the optimum mollification radius [16], however in this paper
we employ moderate smoothing with δ = 75. In general the noise levels
in the measured data functions c0 and Q will be different, and hence their
appropriate optimal mollification radii will also differ.

The simulated non-Newtonian fluid is pseudoplastic and the velocity pro-
file obeys the power law relation [19]

v(r) = vm

(
1−

(
r

R

) 5
2 )

(15)
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The upstream concentration input is chosen to be the pulse-like Gaussian
function

c0(t) = exp
(
−

(
t

300
− 5

6

)2)
t ∈ [0, T ]. (16)

The downstream cross-sectional average concentration profile, Q(t + a),
is calculated by equation (5). These true data functions, the noise cor-
rupted measurements c0 and Qm, and the mollified signals are shown in
figure 2. The directly estimated, the mollified, and the true derivatives of
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0

0.4
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1.2

0

0.2

0.4

0.6

Time(s) Time(s)
(a) (b)

c0 Q

Figure 2. The true data functions, the noise corrupted measurements, and the mollified
signals. (a) The true upstream input concentration profile c0 (– – –), the noise corrupted
measurement c0 (+), and the mollified signal Jδc0 (—). (b) The true downstream cross-
sectional average concentration profile Q (– – –), the noise corrupted measurement Qm

(+), and the mollified signal JδQm.

the upstream input concentration c′0 are shown in figure 3. Note the noise
amplification of the directly estimated derivative.

The true velocity profile (– – –) and the reconstructed velocity profile
(—) are shown in figure 4. Given the data noise levels, the reconstruction
is reasonably accurate. At lower velocities the noise is more significant and
the reconstruction is more difficult. The reconstructed velocity is observed
to be not uniformly spaced and the resolution of the higher velocity com-
ponents is much lower. This velocity spacing is given by equation (8) and
is `/(t + a). If the input data functions are measured according to this
spacing, then the reconstructed velocity spacing is uniform (not shown).

Also shown in figure 4 is the reconstructed velocity profile (—) for a di-
latant power law fluid (· · ·). This power law fluid is simulated through
equation (15) with the flow index 5/2 replaced by 5/4. The upstream



FLUID VELOCITY PROFILE RECONSTRUCTION 99

0 1000 2000 3000

−4

−2

0

2

4
 (x 10  )

−3

Time(s)

c0

Figure 3. The directly estimated (+), the mollified (—), and the true (– – –) derivatives
of the upstream input concentration c′0.

concentration input, simulated noise, and mollification radius remain un-
changed. Thus, even with moderate data noise levels, the reconstructed ve-
locity profiles allow the different non-Newtonian fluids to be distinguished.

The relationship between the rate of shear and the shear stress as specified
by equations (1) and (2), can now be found by differentiating the recon-
structed velocity profile. This can be found in a stable manner by comput-
ing the mollified derivative of the reconstructed velocity profile. Provided
the mollification radius is suitably large, this method yields satisfactory
results, but reconstruction algorithms that require a strictly decreasing ve-
locity profile yield better results. However this added constraint will result
in a more difficult nonlinear inverse problem.

7. Consideration of Molecular Diffusion

In this section we test the numerical method presented in section 6 on
simulated data including small amounts of molecular diffusion. The molec-
ular diffusion of the solute may significantly contribute to the dispersive
transport of the solute. A simple finite difference scheme that incorporated
shear dispersion and molecular diffusion was used in the data simulation.
This simulated data is not corrupted with noise, and the sampling time
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Figure 4. The true velocity profile (– – –) and the reconstructed velocity profile with
a linear spline fit through the reconstructed points (—). The minimum resolvable ve-
locity is 1/1500 m/s. This reconstructed velocity profile is distinguishable from the
reconstructed velocity profile (—) for a dilatant power law fluid (· · ·).

interval is h = 30 s. The upstream input concentration is the pulse-like
Gaussian function in equation (16), and the pseudoplastic fluid is specified
by the power law relationship in figure 15.

The simulated downstream cross-sectional average concentration is shown
in figure 5 for different molecular diffusion coefficients (D). As diffusion in-
creases the concentration peak increases and shifts to the right. There
is also a more rapid concentration decrease after the concentration peak.
These effects are predominantly due to the diffusive transport of the ma-
terial tracer transverse to the fluid flow.

The reconstructed velocity profiles are shown in figure 6 with a linear
spline fit through the reconstructed points. The jump in the velocity pro-
files at vm reflect the fact that molecular diffusion allows some of the mate-
rial tracer to travel at velocities higher than in pure shear dispersive flow.
The velocity reconstruction for the diffusion adjusted data underestimates
the high velocities down the centre of the pipe. This is due to the high
initial concentration gradient across the pipe and the resulting diffusive
transport of the tracer towards the pipe boundary. Similarly, after the
bulk of the tracer has travelled down the centre of the pipe the tracer is
transported towards the centre of the pipe. This results in the overestima-
tion of the small velocities near the pipe boundary. Hence as the amount of
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Figure 5. The true data functions and the diffusion adjusted measurements. (a) The true
upstream input concentration profile (—). (b) The downstream cross-sectional average
concentration profile with no diffusion (—), and the diffusion adjusted measurements
with D = 5× 10−11 m2 · s−1 (– – –), and D = 10−10 m2 · s−1 (· · ·).

diffusion increases, the downstream cross-sectional average concentration
measurement contains less information about the fluid velocity profile, and
the velocity profile determination becomes more ill-posed.

8. Discussion

We have considered the problem of determining the two-dimensional fluid
velocity profile from temporally varying cross-sectional average concentra-
tion measurements at upstream and downstream locations. Assuming a
strictly decreasing velocity profile and a specified continuous upstream con-
centration with a time zero step, then the problem becomes well-posed. It
is assumed that no material tracer is input before the time zero step which
is required in the input concentration or one of its derivatives. Failure to
use this time zero step protocol produces an ill-posed problem.

In contrast if the upstream concentration also has to be measured, then
the problem of determining the velocity profile is an ill-posed deconvolution
problem with ill-conditioning equivalent to the problem of numerical differ-
entiation. A simple regularization of the ill-posed deconvolution problem
based on the mollification method is developed, and it is verified by nu-
merical experiment that stable approximations to the velocity profile can
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Figure 6. The true velocity profile (—) and the reconstructed velocity profile for diffusion
adjusted measurements with D = 5 × 10−11 m2 · s−1 (– – –), and D = 10−10 m2 · s−1

(· · ·). The minimum resolvable velocity is 1/1500 m/s.

be obtained in the presence of moderate amounts of data noise and small
amounts of molecular diffusion.

The contribution of molecular diffusion is an important factor in peri-
fusion experiments. We will include this aspect into more general inverse
problems in a subsequent paper. Interestingly for problems in which diffu-
sion transverse to fluid flow is significant the determination of the upstream
concentration profile becomes better posed and the determination of the
velocity profile becomes more ill-posed.

The velocity profile in the pipe was determined for a tracer in solution
system. A related problem is to deduce the velocity profile for the solution
with no material tracer injected. One might also wish to consider problems
in which the velocity profile to be determined had some time dependency.
Problems of this nature are highly ill-posed.

Some interesting inverse problems arise if one considers developing fluid
flow. In this case a component of the fluid velocity is into the centre
of the pipe, and there is also an acceleration of the fluid down the pipe.
Problems include the reconstruction of an upstream tracer concentration
and the determination of the flow development characteristics. These are
interesting problems for future work.
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Notes
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