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Abstract. An alternative method for deriving water wave dispersion relations and
evolution equations is to use a weak formulation. The free-surface displacement η is
written as an eigenfunction expansion,

η =
∞X

n=1

an(t)En

where the an(t) are time-dependent coefficients. For a tank with vertical sides the En

are eigenfunctions of the eigenvalue problem,

∇2E + λ2E = 0, ∇E · bn = 0 on the tank side walls.

Evolution equations for the an(t) can be obtained by taking inner products of the lin-
earised equation of motion,

ρ
∂v

∂t
= −1

ρ
∇P + F

with the normal irrotational wave modes. For unforced waves each evolution equation
is a simple harmonic oscillator, but the method is most useful when the body force F is
something more exotic than gravity. It can always be represented by a forcing term in
the SHM evolution equation, and it is not necessary to assume F irrotational. Several
applications are considered: the Faraday experiment, generation of surface waves by an
unsteady magnetic field, and the metal-pad instability in aluminium reduction cells.
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1. Introduction

Many classical water-wave problems involve irrotational body forces only.
The usual method of analysis is to argue that the flow will be irrotational
so the solution can be found conveniently in terms of a velocity potential.
In magnetohydrodynamics (MHD) however, the Lorentz body force J×B
— where B is magnetic field and J electric current density — is generally
rotational, so the resulting flow will have vorticity, and not admit such a
simple description.

The aim of this paper is to describe a method of analysing surface waves
where the underlying flow cannot be assumed irrotational. The technique
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is to calculate the flows vn, n = 1, 2 . . . corresponding to the normal irrota-
tional wave modes. Then the inner product of each vn with the linearised
equation of motion provides a set of evolution equations for each of the
free surface modes. When gravity is the only body force these equations
represent a simple harmonic oscillator; a rotational body force produces
an additional forcing term, and the equations can still be solved by simple
methods.

Section 2 is devoted to a detailed description of the method, and deriva-
tion of the basic equations. In section 3 we look at three applications —
the Faraday experiment, generation of surface waves by a time-dependent
magnetic field, and metal-pad instability in aluminum reduction cells. Our
conclusions are summarised in section 4.

2. Formulation of Equations

We consider a tank with vertical walls and an arbitrary (but uniform)
horizontal cross-section. It contains incompressible fluid of density ρ to a
depth h, and we use V to denote the fluid volume, SW the side walls of the
tank, and SB its base.

2.1. The Free Surface Expansion

To describe the free-surface displacement it is convenient to introduce the
functions En(x, y), n = 1, 2, . . ., which are the eigenvalues of the problem,

∇2E + λ2E = 0, ∇E · n̂ = 0 on SW . (1)

The free surface displacement η is expanded in the form

η =
∞∑

n=1

an(t)En, (2)

where the an are functions of time to be determined. The functions En

form an orthogonal sequence:
∫

EpEqdxdy = δpq‖Ep‖2;
∫
∇Ep · ∇Eqdxdy = δpqλ

2
p‖Ep‖2. (3)

For containers with simple cross-sections the eigenfunctions can be found
explicitly. For example, for a circular tank

eimθJm(λmkr), m = 0,±1,±2 . . . , k = 1, 2, . . . , (4)
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where m is an integer, Jm a Bessel function of order m, and λmk the k’th
zero of J ′m(a). More generally, for an elliptical tank the En are Mathieu
functions, and for the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b they take the form,

cos(mπx/a) cos(nπy/b), m, n, integers. (5)

We also define the related sequence of harmonic functions, by setting

φn(x, y, z) =
cosh λn(z + h)En(x, y)

λn sinhλnh
= En(x, y)fn(z) say. (6)

These functions satisfy

∇2φn = 0, ∇φn · n̂ = 0 on SW and SB ,

(
∂φ

∂z

)

z=0

= En. (7)

2.2. Evolution Equations

The linearised Euler equation of motion is

ρ
∂v
∂t

= −∇P + F. (8)

Here P = p + ρgz, where p is the fluid pressure and F the body force (ex-
cluding gravity). We neglect surface tension, although its inclusion would
entail only minor modifications in the absence of dissipation. (A complete
treatment of surface tension would have to consider damping due to the
movement of the meniscus on the side walls of the container. This is diffi-
cult to estimate, although methods have been suggested for example in [3].)
On the free surface therefore p = 0, and the linearised boundary conditions
are:

(P )z=0 = ρgη, η̇ = (vz)z=0. (9)

The inner product of two vector fields A, B is defined by setting

〈A , B〉 =
∫

V

A ·BdV,

and a convenient way of deriving evolution equations for the free-surface
mode coefficients an(t) is to take the inner product of (8) with each of the
test functions ∇φn. The first term,

〈ρv̇ , ∇φn〉 = I1 (say) = ρ

∫

V

∇ · (φnv̇)dV = ρ

∫

S

φnv̇zdxdy,
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where S is the free surface z = 0 (assumed plane for the purposes of this
leading-order calculation). We have used the Gauss Divergence Theorem
and the tank walls and base, on which v · n̂ = 0, give no contribution to the
resulting surface integral. The linearised kinematic free-surface condition

η̇ = (vz)z=0

and (6) now give

I1 = ρfn(0)
∫

S

Enη̈ dxdy =
ρ

λnTn
‖En‖2än, (10)

where
‖En‖2 =

∫

V

E2
ndV, Tn = tanh(λnh).

The last step uses the expansion (2) for η and the orthogonality of the En.
The inner product arising from the pressure term in (8) is

I2 = 〈∇P , ∇φn〉 =
∫

V

∇ · (P∇φn)dV =
∫

S

P
∂φ

∂z
dxdy.

Now using (7), (9) and (2), we obtain

I2 = ρg‖En‖2an(t) (11)

The form of the body force term will depend on the particular applica-
tion, so for the moment we can do no better than to write it simply as
λnTn

ρ‖En‖2 〈F,∇φn〉.
Combining (10) and (11) we obtain the following evolution equation for

the an:

än + Ω2
nan =

λnTn

ρ‖En‖2 〈F,∇φn〉, Ω2
n = gλnTn, (12)

where the frequencies Ωn are just the natural gravity-wave frequencies for
the tank.

Finally we note that the flow, being irrotational, is determined uniquely
by the specification of vz(x, y) on the free surface. It then follows from (2)
and (9) that to leading order.

v =
∞∑

n=1

ȧn∇φn. (13)
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3. Applications

3.1. Faraday’s Experiment

When a container of liquid is made to oscillate vertically, standing waves
may be observed on the free surface. These were first studied experimen-
tally by Faraday [2], and Benjamin and Ursell [1] showed that the evolu-
tion equation for each normal mode is a Mathieu equation. This last result
follows almost immediately from our analysis. In a frame of reference os-
cillating vertically with the tank we must introduce a fictitious body force
gε cos ωt ẑ, where ε is the dimensionless amplitude, ω the frequency of os-
cillation, and the z-direction is vertical. In (12) we simply replace g by
g(1 + ε cosωt) and obtain the following Mathieu equations:

än + Ω2
n(1 + ε cos ωt)an = 0.

A plane free surface η = 0 is always a solution, but this may be unsta-
ble, depending on the values of the parameters ε and ω. The instability
regions for the Mathieu functions have been intensively studied (see e.g.
[5] ), and can be determined by simple approximate methods when ε ¿ 1.
Figure 1 shows the approximate boundaries in the (ω , ε)-plane for a two-
dimensional tank of depth 20cm and length 50cm. Wedges of instability
arise from the resonance points on the ε = 0 axis, where ω = 2Ωn.

The free surface is most easily destabilised if the applied frequency is
close to one of the natural frequencies. When the point (ω , ε) lies in an
unstable region the corresponding mode grows exponentially until nonlinear
or dissipative effects become important.

3.2. Waves Due to a Time-Dependent Magnetic Field

Alternating, rotating or travelling magnetic fields are often used in industry
to contain or stir volumes of liquid metal. The field B induces an electric
current J which interacts with B to generate a J×B body force, which is
generally rotational.

As a model problem we consider the generation of waves in a tank of liq-
uid metal by a time-dependent applied magnetic field. A two-dimensional
electrically insulating container of length ` is filled to a depth h with liquid
metal of electrical conductivity σ. The eigenfunctions and eigenvalues are
given by

En = cos
(nπx

`

)
, λn =

nπ

`
.
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Figure 1. Stability regions for Mathieu’s equation in the (ω , ε)-plane. The horizontal
axis gives the frequency in radians per second and the vertical axis the non-dimensional
amplitude ε. The unstable regions are shaded.

We suppose that at time t = 0 the fluid is at rest. In order to focus attention
on the inductive effect of a moving magnetic field we consider an irrotational
field which, if stationary, would generate no motion. Specifically we suppose
that the field

B(x, t) = ∇Q(x, y, t)

is applied. According to Faraday’s law,

∇×E = −∂B
∂t

= −∇Q̇,

where E is the electric field. If S is the harmonic function conjugate to Q
— i.e. if

∇Q = (∇S)× ẑ = ∇× (S ẑ),

we can write
∇×E = −∇× (Ṡ ẑ).

It follows that
E = −Ṡ ẑ +∇R,

where R is an arbitrary scalar function, and Ohm’s law shows that the
electric current density J can be written in the form

J = σE = −σṠ ẑ +∇R.
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The conditions that∇·J = 0 and that J·n̂ = 0 on the insulating boundaries
imply that ∇R = 0, so

J = −σṠ ẑ,

and the body force is
J×B = −σṠ∇S. (14)

We choose a simple potential function for Q, writing

Q =
B0

k
eky cos[kx− f(t)], S = −B0

k
eky sin[kx− f(t)], (15)

where B0 represents the magnetic field intensity, k is the wave number of
the field, and f(t) a function of time which can be specified in due course.
Field lines for one period of this field are shown in figure 2.

x−axis

y−
ax

is

Figure 2. Magnetic field lines

From (14) and (15) it follows that

F =
σB2

0 ḟ

2k
[
e2kyx̂ +

1
2k
∇(

e2ky sin 2kθ
)]

,

where θ = kx − f(t), which is clearly a rotational force field. The forcing
term on the RHS of the evolution equation (12) can be written in dimen-
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sionless form as

Lḟ2N nπτn

k′(4k′2 − n2π2)

[
1− 2k′

nπsn

(
cn − e−2kh

)
ζn

+cos(2f) + (−1)n+1 cos 2(f − k′)
]

where

sn = sinh(λnh), cn = cosh(λnh) ζn =
1
2

(1− (−1)n) , k′ = kL,

and N = σB2
0/(ρḟ) is the (dimensionless) magnetic interaction parame-

ter which measures the ratio of magnetic forces to inertia. Typically this
parameter will be small. For example, taking f(t) = ωt where ω is a con-
stant, represents a periodic field travelling with velocity ω/k. The evolution
equation for each mode is a forced simple harmonic oscillator of the form,

än + Ω2
nan = An cos(2ωt) + Bn sin(2ωt) + Cn

where An, Bn and Cn are constants. This equation can be solved by
elementary methods; resonance occurs when 2ω = Ωn, in which case the
solutions grow linearly with time. Figure 3 shows an example of the free-
surface displacement.

3.3. Aluminium Reduction Cells

Figure 3 shows a diagram of an aluminium reduction cell. Aluminium
is produced by reducing aluminium oxide electrolytically. To lower the
melting point Al2O3 is dissolved in a mixture of sodium and aluminium
fluorides to produce cryolite which forms the first fluid layer. An intense
electric current passes through this layer via the carbon anode, the electrol-
ysis producing molten aluminium which accumulates in the layer below.

The intense currents and associated magnetic fields give rise to a body
force which can destabilise the interface between the cryolite and alu-
minium layers. Since cryolite is by far the poorest electrical conductor,
a displacement of this interface will divert electric current to flow preferen-
tially through the narrower sections of the layer (figure 5), causing a change
in the Lorentz force field J ×B which may tend to enhance the displace-
ment. As usual the interface displacement η is expanded in the form (2).
In the absence of electromagnetic forces the evolution of the coefficients
an(t) would be simply described by decoupled harmonic oscillators,

än + Ω2
nan = 0, n = 1 , 2 , . . . ,
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Figure 3. Surface wave excited in a tank of mercury. The tank length is 1m and the
depth 20cm. Other parameters are: k = 10, ω = 10 N = 0.1.

where the Ωn are the frequencies of the normal irrotational wave modes. We
assume that in the presence of a uniform current (figure 5a) the interface

aluminium

cryolite

carbon anode

carbon lining (cathode)

z=h 1

z=-h

J

z=0

2

Figure 4. Diagram of an aluminium reduction cell
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Figure 5. Current flow through the cryolite. In (A) the cryolite/aluminium interface
is flat and the current uniform. In (B) the current flows preferentially through the
narrowest part of the cryolite layer.

remains plane, so no forcing term appears in the above evolution equations
(the electromagnetic forces being balanced by pressure). In a linear theory
the displacement η of the interface will produce a J×B body force which
is linearly related to η, so that we can write,

J×B =
∞∑

n=1

anfn

where fn is the body force due to a displacement η = En of the free surface.
Equation (12) now takes the form,

än + Ω2
nan =

∞∑
m=0

βnmam(t) = 0, βnm =
λnTn

ρ‖En‖2 〈fn · ∇φn〉. (16)

The calculation of the βnm coefficients is straightforward, and details for a
simple model cell are given in [6]. However the form of the equations (16)
is independent of the detailed structure of the electromagnetic fields and
other complicated features of a typical cell.

Even without detailed information on the βnm coefficients we can deduce
certain important features. First, the waves no longer evolve independently,
and a single given mode may excite waves of any other mode via the βmn

coupling. Also if the βmn are small (which is typically the case) it can be
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shown that the system is most easily destabilised if two natural frequencies
lie close together. The system can then be analysed approximately taking
account of those two modes only [6].

4. Conclusions

The essence of our method is to expand the liquid free surface in terms of
eigenmodes, and use an inner product method to derive evolution equa-
tions for each mode. One advantage of this method is that it easily deals
with rotational body forces without requiring detailed knowledge of the
rotational flow.

Here only a linearised analysis has been considered, but the method can
be extended to give nonlinear evolution equations for the second-order free
surface perturbation [4].

Viscosity is quite easily included, bringing an additional term

−ν

∫

V

(∇× ω) · ∇φdV =
∫

SW +SB

(∇φ× ω) · dS,

to the evolution equation. Here ω = ∇× v is the vorticity, which at high
Reynolds number is confined to boundary layers on the walls and can be
estimated by boundary-layer analysis.
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