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Abstract. This paper compares and investigates the generalised Neyman smooth test,
its components, and the classical chi-squared test with a variety of equiprobable classes.
Each test is evaluated in terms of its power to reject a wavelike alternative to the uniform
distribution, chosen to quantify the complexity of the alternative. Results indicate that
if broadly focused tests (rather than strongly directional or weakly omnibus) are sought,
then smooth tests of order about four, or the chi-squared test with between five and ten
classes, will perform well.
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1. Introduction

Neyman (1937) constructed his smooth tests specifically to test for the con-
tinuous uniform distribution. Uniformity testing is important in a range
of applications, including the assessment of random number generators.
Moreover any goodness of fit test for a completely specified alternative
reduces, via the probability integral transformation, to testing for unifor-
mity. Neyman’s construction has been generalised and, of interest here,
evaluated several times. See, for example, Quesenberry and Miller (1977)
and Miller and Quesenberry (1979), and Best and Rayner (1985). The
articles involving Quesenberry and Miller do not consider the tests based
on the components of Neyman’s smooth tests. Moreover we are now in a
position to take advantage of modern fast computers to make assessments
that were not previously so easily carried out.

Neyman’s smooth tests have been generalised to testing for arbitrary dis-
tributions. See for example, Rayner and Best (1989). Recent advice on
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such testing recommends using the sum of the squares of the first two,
three or four components of the appropriate Neyman smooth test, aug-
mented by using the components themselves in a data analytic fashion.
See Rayner and Best (2000). The manner in which the components give
information about the alternatives to uniformity can perhaps be best in-
terpreted in terms of the parameter space spanned by the alternatives. Use
of orthonormal functions means this space is decomposed into orthogonal
one dimensional spaces. The r-th component assess differences between
the data and the hypothesised distribution in, by definition, the r-th order,
and this may be thought of as in the r-th moment. Although this corre-
spondence isn’t exact, it leads to a useful and insightful interpretation of
the data. See, for example, Rayner, Best and Mathews (1995).

Carolan and Rayner (2000) looked at the smooth tests for normality,
and showed that even when differences from the hypothesised distribution
are generated from an order r alternative (see Carolan and Rayner, 2000
for the precise meaning), earlier components may be significant. What
seems to be happening is similar to a polynomial of degree six say, being
reasonably well approximated, over a specified domain, by a combination
of polynomials of degree say, one, two and five. Rayner, Best and Dodds
(1985) looked at what Pearson’s chi-squared test of equiprobability and its
components best detect, and it seems timely to look at the Neyman smooth
tests for the uniform distribution and its components.

The study by Kallenberg et al. (1985) into how to construct the classes
for the Pearson chi-squared test characterised the alternatives in part by
tail weight (heavy or light). We do not look for an answer in terms of tail
weight, but in terms of how complicated the alternative may be.

2. Notation

The Neyman smooth tests were constructed to be asymptotically locally
uniformly most powerful symmetric, unbiased and of specified size against
specified smooth alternatives (Neyman, 1937). To define these alternatives,
note that the Legendre polynomials {πr(y)} are the polynomials that are
orthonormal on the uniform U(0, 1) distribution. Explicitly the first few
polynomials are given by

π0(y) = 1
π1(y) =

√
3(2y − 1)

π2(y) =
√

5(6y2 − 6y + 1)
π3(y) =

√
7(20y3 − 30y2 + 12y − 1) and

π4(y) = 3(70y4 − 140y3 + 90y2 − 20y + 1).

(1)
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The order k smooth alternative to U(0, 1), the uniform continuous distri-
bution on (0, 1), is

C(θ) exp

{
k∑

r=1

θrπr(y)

}
, for 0 < y < 1, zero otherwise, (2)

in which C(θ) is a normalising constant that ensures the probability density
function integrates to one. The smooth test of order k for uniformity is
based on the statistic

Sk = V 2
1 + . . . + V 2

k (3)

which has components

Vr =
n∑

j=1

πr(Yj)/
√

n, for r = 1, . . . , k. (4)

To calculate Pearson’s chi-squared test statistic X2
P , we assume the n data

points are categorised into m classes, with class probabilities p1, . . . , pm

and class counts N1, . . . , Nm. Then

X2
P =

m∑

j=1

(Nj − npj)
2
/ (npj) . (5)

The Pearson chi-squared test statistic X2
P based on m equiprobable classes

(pj = 1/m for all j) will be denoted by X2
Pm.

The alternatives to uniformity that we will consider are not the ones for
which the test was constructed to be optimal. We take

fY (y; ω) =
2πω [1 + sin(2πωy)]
1 + 2πω − cos(2πω)

, for 0 < y < 1, zero otherwise (6)

where the ‘complexity’ parameter ω > 0. Note that this distribution is
U(0, 1) in the limit as ω approaches zero. See Figure 1 for a plot of some
of these alternatives. It seems to us that probability density functions of
this form cannot be characterised in terms of tail weight as envisaged by
Kallenberg et al. (1985). We expect that small values of ω will reflect low
order alternatives to uniformity, and will be better detected by the earlier
components, while larger values of ω reflect higher order alternatives, and
will be better detected by the later components. For a discussion of order
and effective order, see Rayner, Best and Dodds (1985) or Rayner and Best
(1989, section 4.3).
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Figure 1. The probability density function fY (y; ω) for ω = 0.2, 0.5, 1.5 and 3.0.
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3. Size and Power Study

Here we present powers, estimated using 100,000 simulations, of the tests
based on V 2

1 , V 2
2 , V 2

3 , V 2
4 , S4, X2

P2, X2
P5, X2

P10, X2
P20 and the Anderson-

Darling test (D’Agostino and Stephens, 1986, p101, 104-105), based on the
statistic AD. The alternatives used assume the distribution with probability
density function fY (y; ω) with 0 < ω < 3. Observations are taken from a
random sample of n = 25, and a significance level of 5% is used. We also
looked at a significance level of 1% and random samples of n = 50. The
results presented here are typical. The critical values used, except for the
Anderson-Darling test, were from the asymptotic χ2 distribution as these
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are what will be used in practice and (judging by the ω = 0 results) don’t
seem to unduly advantage any statistic. For the Anderson-Darling statistic,
critical values of 2.492 (5%) and 3.857 (1%) were used (see D’Agostino and
Stephens, 1986, Table 4.2, p105). Especially for n = 50 it was expected
that the difference between actual and nominal sizes would be minimal.
This was largely the case. When there was a discrepancy, this reflects
what would happen in practice.

To allow efficient simulation, rather than transforming U(0, 1) variates
using the inverse of the alternative cumulative distribution function (which
requires computationally expensive numerical root finding), random vari-
ates from the probability density function fY (y;ω) are generated using
the acceptance-rejection method. We follow the treatment given in Lange
(1999; pp.272-276) with c = 2 and g(y) the probability density function of
the uniform U(0, 1) distribution, since fY (y; ω) ≤ 2g(y). Here, a U(0, 1)
random variate X is taken to come from the probability density function
fY (y;ω) if another independent associated U(0, 1) random variate Z is such
that fY (X;ω) ≥ 2Z; otherwise X and Z are discarded.

For 0 < ω < 0.25, fY (y;ω) is strictly increasing, and may be thought of as
crudely linear. For 0.25 < ω < 0.75, fY (y; ω) increases and then decreases,
and may be thought of as crudely quadratic. For 0.75 < ω < 1.25, fY (y; ω)
increases, then decreases, and then increases again, and may be thought of
as crudely cubic. And so on. If more complicated alternatives arise than
may be crudely modeled by ω < 3, we would hope that this could have been
anticipated from the context, and smooth tests based on trigonometric or
some other functions used. Except for the tests based on X2

P10 and X2
P20,

the powers of the other tests considered here decrease for ω > 3. Some
powers are given in Table 1. Figures 2 and 3 give a plots of the power
functions based on a finer grid of ω values.

The simulations permit several conclusions.

• The tests based on V 2
1 and V 2

3 have higher powers when fY (y; ω) may
be thought of as crudely a polynomial of odd degree. Their powers are
greatest when fY (y;ω) may be thought of as crudely cubic.

• The tests based on V 2
2 and V 2

4 have higher powers when fY (y; ω) may
be thought of as crudely a polynomial of even degree. Their powers are
greatest when fY (y;ω) may be thought of as crudely quartic.

• The test based on S4 often has power greater than the best of its com-
ponent tests.
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Table 1. Powers of various smooth and X2 tests and the Anderson-Darling test for
various periodic alternatives.

ω V 2
1 V 2

2 V 2
3 V 2

4 S4 AD X2
P2 X2

P5 X2
P10 X2

P20

0.0 0.049 0.051 0.049 0.050 0.050 0.050 0.043 0.047 0.053 0.057
0.2 0.143 0.048 0.049 0.049 0.085 0.137 0.111 0.083 0.080 0.076
0.4 0.070 0.077 0.042 0.044 0.055 0.067 0.068 0.071 0.072 0.072
0.6 0.086 0.239 0.035 0.035 0.117 0.104 0.100 0.151 0.130 0.114
0.8 0.807 0.315 0.141 0.039 0.767 0.907 0.751 0.736 0.564 0.399
1.0 0.828 0.049 0.612 0.049 0.900 0.886 0.930 0.811 0.702 0.518
1.2 0.232 0.421 0.574 0.155 0.772 0.458 0.413 0.634 0.541 0.393
1.4 0.094 0.528 0.141 0.460 0.689 0.268 0.059 0.498 0.438 0.323
1.6 0.079 0.173 0.123 0.654 0.578 0.145 0.047 0.356 0.394 0.302
1.8 0.186 0.023 0.430 0.386 0.536 0.240 0.045 0.564 0.594 0.451
2.0 0.276 0.049 0.250 0.050 0.258 0.333 0.044 0.546 0.632 0.499
2.2 0.124 0.164 0.051 0.230 0.244 0.199 0.045 0.352 0.538 0.434
2.4 0.078 0.277 0.042 0.177 0.252 0.173 0.046 0.588 0.474 0.385
2.6 0.071 0.165 0.037 0.065 0.126 0.117 0.048 0.500 0.415 0.359
2.8 0.105 0.047 0.187 0.084 0.158 0.135 0.113 0.220 0.526 0.456
3.0 0.149 0.049 0.208 0.050 0.164 0.176 0.171 0.236 0.525 0.480

• The test based on X2
P2 divides the domain into two equal parts. It

achieves its greatest power when ω = 1, when the discrepancy between
the two parts is greatest.

• For the X2
Pm tests too few classes means the test cannot detect more

complicated alternatives, while too many classes ’dilutes’ the test, in
that its ability to detect more complicated alternatives diminishes its
ability to detect less complicated alternatives. Of these X2

Pm tests,
those based on 5 and 10 classes both give good results.

• The Anderson-Darling test performs reasonably well for most values of
ω but usually does not give the most powerful test.

Quesenberry and Miller (1977) and Miller and Quesenberry (1979) both
consider testing for uniformity, but neither considered the tests based on
the components Vr, r = 1, . . . , 4. Of several tests (including X2

Pm with
m = 10 and m = 20) they ultimately recommend the test based on S4,
in part because it “would have better power performance against further,
perhaps more complicated, alternative classes”; see Miller and Quesenberry
(1979, p.288). Several of our conclusions, such as the first two dot points
immediately above, weren’t addressed or could not be addressed in the
Quesenberry and Miller studies. In addition, the conclusion that the low
order tests considered cannot detect the more complicated alternatives, the
key conclusion of the Quesenberry and Miller studies, isn’t well addressed
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Figure 2. Power curves for the tests based on V 2
1 (1=dashed), V 2

2 (2=dotted), V 2
3

(3=dotdash), V 2
4 (4=longdash), and S4 (5=solid).
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in their papers. If “more complicated” is taken to mean “ω > 2”, then the
current study does address their key conclusion. Unlike the alternatives
used here, the alternatives used in power studies by Quesenberry and Miller
(1977), Miller and Quesenberry (1979) and most other authors, are indexed
discretely rather than continuously. Also the range of alternatives accessed
is not as broad as we are able to consider using our family.
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Figure 3. Power curves for the Anderson-Darling test (1=solid) and tests based on X2
P2

(2=dashed), X2
P5 (3=dotted), X2

P10 (4=dotdash), and X2
P20 (5=longdash).
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4. Discussion

An informed practicing statistician almost always has a contextual expec-
tation of some of the basic characteristics of the data before it is seen. That
is how good experiments are designed and tests of sensible hypotheses de-
cided upon. More powerful Neyman smooth tests result from using fewer
components: the ability to successfully use fewer components depending on
the orthonormal system chosen. When you choose a particular orthonormal
system (based on your contextual expectations about the data), you are
choosing the alternatives you will best be able to detect, even though the
data should not yet have been sighted. The results of our study demon-



NEYMAN SMOOTH TESTS FOR THE UNIFORM DISTRIBUTION 189

strate the unsurprising fact that when using a polynomial orthonormal
system, more complicated alternatives (here, higher frequency or larger ω)
require many components in order to have reasonable power.

Ultimately, fewer components result in more powerful tests (by appropri-
ately selecting a particular orthonormal system) and the statisticians con-
textual expectation’s about the data are the basis on which this is achieved.

The statistic Vr optimally detects a particular order r polynomial alterna-
tive to uniformity. It is thus the basis of a very directional test, and could
not be expected to detect more complex alternatives well. The statistic
S4 optimally detects polynomial alternatives to uniformity of degree up to
four. It is thus the basis of a broadly focused test, being able to detect
interesting and relatively complex alternatives. Attempting to detect even
more complex alternatives results in less power for detecting alternatives up
to degree four. This cost is often achieved with little gain, as a four dimen-
sional parameter space is usually rich enough to detect most alternatives
that arise in practice.

Generally, we recommend using a polynomial orthonormal system un-
less there is a reason not to (for example, if the context suggests peri-
odic alternatives may be more suitable). The advantage of the polynomial
orthonormal systems is the components may be interpreted as (roughly)
detecting moment departures of the data from the null distribution. The
interpretation for other systems is more problematic.

There may well be a loss if we have chosen the wrong orthonormal system.
So here, if we had a contextual expectation of periodic alternatives it would
be appropriate to use alternatives based on something like the orthonormal
series

{√
2 sin(iπy)

}
. Using such periodic orthonormal functions would

probably give good protection against such alternatives, (though no doubt
these would produce poorer power against the alternatives the polynomial
orthonormal system components have good power detecting). Our study
assumes there are no such contextual expectations of periodic alternatives,
so the alternatives of interest here are only weakly periodic (0 < ω < 3).

In the size and power study here, it seems that the tests based on V 2
r

with r = 1 outperforms the tests based on larger r for smaller values of ω,
although this is not uniformly true. Tests based on V 2

r with larger r are
more powerful for larger values of ω, but again, this is not uniformly true.
The test based on S4 is sometimes more powerful than all the V 2

r tests,
and is always a good compromise.

The Pearson tests are tests for discrete alternatives. The test based on
X2

Pm may be thought of as optimally detecting ‘order’ m− 1 alternatives;
see Rayner and Best (1989, Chapter 5). Order in this sense reflects the com-
plexity of the alternative. From the simulations it is clear that the Pearson
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test with m = 2 classes is unable to detect the more complex alternatives,
while that with m = 20 protects against quite complex alternatives − that
we don’t have here − at the cost of a loss of power for the less complex
alternatives. The X2

Pm tests with m = 5 and m = 10 outperform S4 for
ω ≥ 2. Presumably the X2

Pm test with m = 5 is able to detect alternatives
of similar complexity to the S4 test, and so will sometimes do better and
sometimes worse. The X2

Pm test with m = 10 is able to protect against
more complex alternatives than the S4 test, but is clearly inferior when the
alternatives are less complex: for ω < 2.

We can predict the outcome of assessing the Best and Rayner (1985)
idea of looking at the residual from X2

P20. The residual will always include
higher order components. If the alternative is not complex (say 0 < ω <
1) the tests based on these components will have little power, as will a
test based on a residual involving these components. If the alternative is
complex we probably should be using a different orthonormal family. For
example, the more apparently periodic alternatives that occur for ω > 3
would imply the use of something like the periodic orthonormal series given
above.

If we are looking at residuals from X2
p5 and X2

P10, what may be of interest
is to combine later order components. The chi-squared components will be
similar to the smooth test components, and corresponding to residuals of
the the chi-squared tests are tests based on sums of V 2

r such as V 2
r+1 + . . .+

V 2
s . Again we can predict what will happen. If Sr is powerful we would

expect a residual like V 2
r+1 + . . . + V 2

s not to be, and conversely. A good
question here is what smooth test residual should we use: V 2

3 + V 2
4 + V 2

5

or perhaps V 2
5 + . . . + V 2

10? Consideration could also be given to sums of
squares of odd and sums of squares of even components.

To some extent the chi-squared components duplicate the smooth test
components, and since we are testing for a continuous null, the smooth test
is more appropriate. We are still advocating looking at the components.

The key point from this study are that if we seek broadly focused tests
rather than strongly directional or weakly omnibus tests, then the tests
based on Sr with r about 4, or on X2

Pm with m in the range 5 to 10
will perform well. With the Sr tests the orthonormal system should be
chosen so that relatively few components are required to detect important
alternatives. Given that the Pearson tests can perform well, it would be
useful to look again at the class formation options. Can the equiprobable
class construction used here be improved upon? We will consider this
question in a subsequent paper.
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