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Abstract. Distance predicting functions may be used in a variety of applications for
estimating travel distances between points. To evaluate the accuracy of a distance pre-
dicting function and to determine its parameters, a goodness-of-fit criteria is employed.
AD (Absolute Deviations), SD (Squared Deviations) and NAD (Normalized Absolute
Deviations) are the three criteria that are mostly employed in practice. In the literature
some assumptions have been made about the properties of each criterion. In this paper,
we present statistical analyses performed to compare the three criteria from different
perspectives. For this purpose, we employ the `kpθ-norm as the distance predicting
function, and statistically compare the three criteria by using normalized absolute pre-
diction error distributions in seventeen geographical regions. We find that there exist no
significant differences between the criteria. However, since the criterion SD has desirable
properties in terms of distance modelling procedures, we suggest its use in practice.

Keywords: Transportation, Accuracy in Distance Modelling, Goodness-of-Fit Criteria.

1. Introduction

When objects in space, such as different cities in a geographic region, activ-
ity centers in a plant, or computer terminals of a LAN, can be represented
by points, a distance predicting function may be used to transform point
coordinate differences of two points into an estimate of the distance be-
tween the points. Thus, distance predicting functions have a number of
uses. Some of these uses are discussed below.

For validating the accuracy of actual road network distance data, distance
predicting functions can be used as suggested by Ginsburgh and Hansen [8].

To determine the optimal mix of trunking and tramping of a truck trans-
portation network for the movement of finished goods and raw materials
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among national distribution centers, regional depots, and producers, a dis-
tance predicting function was utilized by Westwood [25] to obtain estimates
of the travel distances between possible links in the network. In some dis-
tribution problems for which only the demands and the general location of
customers are known [7], a distance predicting function may be employed
to calculate a predicted travel distance between the depot and the general
area.

Distance predicting functions can also be used in models that determine
the response time of emergency vehicles to calls such as the model proposed
by Kolesar [10] for calculating the response time of fire engines to fires.

Klein [9] suggests that distance predicting functions which reflect the na-
ture of a geographic region’s road network should be used for constructing
Voronoi diagrams of the region. A Voronoi diagram subdivides a region
into a number of subregions with each subregion being formed around a
point belonging to a set of points. For example, the set of points may be
the region’s police stations, fire halls, or hospitals. Once the location of a
query point is determined, the appropriate point of the set is notified to
respond to the call by looking at the Voronoi diagram.

Distance predicting functions appear within the context of larger models
such as facilities

location problems [6], [13]. Distance predicting functions in these models
obviate the need for determining actual distances between the new facilities
and the existing facilities. In addition, by using distance predicting func-
tions which have empirical parameters that reflect the nature of a region’s
road network, more accurate cost structures should be obtained than if an
assumed distance function is used by an analyst.

Presently, a distance predicting function is being utilized in software pack-
ages TruckStops2 [20] and Roadnet [21]. When an analyst provides data
regarding the customer demands, customer locations, and truck types for a
transportation network, TruckStops2 assigns customers to different trucks
and determines the routes for the trucks.

Distance predicting functions may be used for calculating distances in a
Geographic Information System (GIS). As Star and Estes [22] state, dis-
tance measurements are of value in many geographic circumstances. Some
of these circumstances are planning an irrigation channel between a pond
and a field, locating a site for a fire tower in a forest, and calculating the
distances among different geographic regions. To calculate distance mea-
surements, a distance predicting function may be incorporated into a GIS.

In order to evaluate the accuracy of a distance predicting function, a
criterion is required. The criterion not only provides a numerical value
so that different distance predicting functions can be compared but also
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provides the means for determining any empirical parameters of a distance
predicting function. Researchers are presently using three goodness-of-fit
criteria [1], [2], [3], [5], [11], [12], [18], [23], [24]:

1. Sum of Absolute Deviations (AD),

2. Sum of Squared Deviations (SD),

3. Sum of Normalized Absolute Deviations (NAD),

In addition, AD and SD have been used by Love and Morris [11], [12] to
develop tests for statistically comparing the accuracy of different distance
predicting functions.

There are several motivations for conducting the study presented in this
paper. Love, Walker and Tiku [18] describe a procedure to find the confi-
dence intervals for a fitted distance. The procedure utilizes the statistical
properties of the errors produced when a distance predicting function is fit-
ted to a particular geographic region. Since different criteria could lead to
different statistical properties of the fitting errors, we do statistical analyses
of these errors for the three fitting criteria.

Secondly, in the literature the three criteria were assumed to have differ-
ent properties in terms of predicting distances. For example, it has been
assumed that if the AD criterion is used, the weighted `p-norm will predict
long distances more accurately than short distances. The SD criterion has
been characterized as having prediction errors with better statistical prop-
erties but still being similar to the AD criterion in terms of its accuracy in
predicting long distances [11], [12]. The NAD criterion, on the other hand,
has been assumed to predict short distances as accurately as long distances
[3], [5], [15], [18].

In this paper, we present statistical properties of the fitting errors and
a comparison of the above mentioned criteria. Statistical analyses are ap-
plied to seventeen different geographic regions using the `kpθ-norm as the
distance predicting function. In Section 2, the three criteria and the dis-
tance predicting function are described. In Section 3, the statistical test
procedures and comparison results are presented. Finally, in Section 4,
conclusions based on our analyses of these results are discussed.

2. The Distance Function and the Criteria

The weighted `p-norm (`kpθ) was employed as the distance predicting func-
tion. With the `kpθ-norm the travel distance between points x = (x1, x2)
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and y = (y1, y2) is given by

`kpθ(x′,y′) = k (|x′1 − y′1|p + |x′2 − y′2|p)1/p
, k > 0, p ≥ 1 (1)

where
x′ = (x′1, x

′
2), y′ = (y′1, y

′
2), θ ∈ [0, 90◦] and

(
x′1 x′2
y′1 y′2

)
=

(
x1 x2

y1 y2

) (
cos θ − sin θ
sin θ cos θ

)
.

This norm was selected because insights into the peculiarities of road net-
works are provided by the empirical parameters k, p, and θ of the norm
when the empirical parameters are determined for a sample of road dis-
tances from a geographic region. The parameter p measures the rectangu-
lar bias of the road network. The angle θ is a rotation parameter which
ensures that the coordinate axes are rotated counterclockwise from the an-
alyst’s defined coordinate axes until the road network is in phase with the
rotated coordinate axes [5]. The parameter k is an inflation factor which
accounts for the hills, valleys and other types of noise in the road networks.

A criterion is used to measure the accuracy of a distance predicting func-
tion and also to determine its optimal parameters. We next describe the
general methodology for fitting the distance predicting function to a given
geographic region. A random sample of points within the geographic region
is chosen. Based on an arbitrary coordinate system, cartesian coordinates
for each point are assigned and the actual distances between each pair of
points are measured or read from distance charts. Then the parameters (k,
p and θ) of the distance predicting function are computed to minimize the
value of the selected criterion.

Let `kpθ(ai,aj) be the predicted distance between points ai and aj and
A(ai,aj) be the actual distance between ai and aj , and n be the number
of points in the data set. Then the mathematical expressions for three
goodness-of-fit criteria that will be analysed in this paper are the mini-
mizations of the following sums:

AD =
n−1∑

i=1

n∑

j=i+1

|`kpθ(ai,aj)−A(ai,aj)| (2)

SD =
n−1∑

i=1

n∑

j=i+1

(`kpθ(ai,aj)−A(ai,aj))
2

A(ai,aj)
(3)

NAD =
n−1∑

i=1

n∑

j=i+1

|`kpθ(ai,aj)−A(ai,aj)|
A(ai,aj)

(4)
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The first criterion AD is the minimization of the sum of absolute deviations.
Since the terms in AD are not the weighted ones but only the absolute er-
rors for each pair, it has been described as a criterion which should estimate
long distances more accurately than short distances. The second criterion
SD is the minimization of the sum of squared deviations where each squared
error term is weighted by 1/A(ai,aj). Squared deviations and the division
by actual distance provide the criterion with certain desirable statistical
properties [11], [12]. However, the assumption has still been made that
the difference in the accuracy of predictions involving long and short dis-
tances in a region will favour the long distances [1], [2], [11], [12], [23], [24].
The last criterion NAD is relatively new in the literature [3], [5], [15], [18].
With the NAD criterion, a sum of normalized absolute deviations is mini-
mized and the basic premise is that equal accuracy in predicting long and
short distances in a region will result. Normalization is realized by dividing
the absolute deviation by the actual distance between each pair. In this
way both long and short distances are treated on the same relative basis.

Besides their above-mentioned structures, the three criteria also differ
from each other by the computational procedures performed to determine
the optimal parameter values of the distance predicting function. The com-
putational procedures for fitting the AD and the SD criteria are given by
Brimberg and Love [4]. For the NAD criterion it is shown that the compu-
tational procedure is identical to that of AD [15]. In general, the best θ and
p values are determined by using a two-stage incremental search procedure
and a four-stage incremental search procedure, respectively. To find the
best k value some properties of the criteria are used. It is known that AD
is a convex function of k, and SD is a strictly convex function of k [4]. NAD
was shown to be a convex function of k by Love and Walker [15]. When
using the AD and NAD criteria it is necessary to employ an algorithm to
find the optimal k for a given (θ, p) pair. The optimal k for the SD criterion
is calculated with a simple closed-form formula derived by Brimberg and
Love [4]. The property of having a closed-form formula to find the best
value of k makes the application of the SD computationally more efficient
than using either the AD or the NAD criterion.

To model the parameters of the `kpθ-norm Love and Walker [16] collected
sample data from seventeen geographic regions. The sample data for each
geographic region included 15 points (locations) based on random selection
of point coordinates on the map. These 15 points provided 105 actual
distances to be modelled by the distance predicting function `kpθ using
each criterion.

The empirical parameter values for the `kpθ-norm and the corresponding
minimum criterion values for seventeen geographic regions are computed
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by Love and Walker [17] for the AD and SD criteria, and by Love and
Walker [15] for the NAD criterion. In Table 1 we present the best parameter
values of the `kpθ function used in this study.

3. Statistical Comparison of the Criteria

The purpose of this section is to conduct statistical comparisons of the three
criteria by adopting the normalized absolute prediction error as the random
variable. For our work on road distances, the errors are the differences
between actual distance and fitted distance pairs. Using the previously
defined notation the model that we used to determine the relationship
between the fitted distance and the actual distance is given by

A(xi,xj) = `kpθ(xi,xj) + e(xi,xj), (5)

where e(xi,xj) is the error term for the xi, xj pair. From the random
sample of points for a geographic region, the point estimates of the empir-
ical distance predicting function parameters are calculated. Substituting
these point estimates into the empirical distance predicting function, an
estimate of the actual distance, `kpθ(xi,xj), is obtained. The error term
for any pair of points embodies errors that may arise in determining the fit-
ted distance for that pair of points. For empirical distance functions which
utilize point coordinate differences, these errors may arise from point coor-
dinate measurements, inaccurate instrument calibrations, and road network
peculiarities that are not captured by the distance model.

In order to compare the three criteria, we use a transformed random
variable given as |e(xi,xj)|/A(xi,xj). There are three reasons for using this
transformation. First, the new random variable frees the error terms from
their directions so that the absolute errors are to be compared. Second,
since each criterion produces errors in different units the division of each
error term by its actual distance provides the comparison to be performed
on the same basis for the criteria. Finally, the accuracy in predicting long
and short distances in a given region can be compared on the same basis
by this new random variable.

3.1. Comparison of the |e(xi, xj)|/A(xi, xj) distributions

In order to compare the normalized absolute errors, |e(xi,xj)|/A(xi,xj),
their distribution for each criterion was first checked for normality. For
that purpose and also to present the descriptive statistics for each distri-
bution, Table 2, which includes the means (x̄), variances (s2), skewness
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Table 1. Best Parameter Values of `kpθ, 1 ≤ p ≤ 2

No. Region AD θ k p
1 Australia 13106.91 3 1.1176 1.6848
2 BC Province 6369.31 71 1.2737 1.6322
3 Canada 8029.42 86 1.1772 1.4705
4 France 1592.26 68 1.0468 1.7734
5 Great Britain 2311.36 38 1.1185 1.8124
6 NY State 1637.44 86 1.1035 1.6946
7 Pennsylvania 1207.34 3 1.0671 1.6274
8 United States 6516.24 0 1.0817 1.7290
9 Brussels 46.46 46 1.0488 1.7660
10 London Central 61.45 18 1.0697 1.7524
11 London North 28.49 15 1.0638 1.6505
12 Los Angeles 111.89 89 1.0626 1.5699
13 NY City 124.29 5 1.0674 1.5822
14 Paris 48.71 75 1.0704 1.7859
15 Sydney 13.11 7 1.1048 1.4061
16 Tokyo 28.91 59 1.0961 1.8591
17 Toronto 65.98 87 1.0118 1.1333

No. Region SD θ k p
1 Australia 1163.597 0 1.1460 1.8585
2 BC Province 1038.727 68 1.2495 1.5609
3 Canada 565.617 83 1.1715 1.4849
4 France 92.327 70 1.0609 1.8430
5 Great Britain 219.429 40 1.1095 1.7895
6 NY State 159.805 86 1.0794 1.5823
7 Pennsylvania 107.061 4 1.0611 1.6244
8 United States 342.684 0 1.0792 1.6641
9 Brussels 3.55 47 1.0549 1.8180
10 London Central 16.53 72 1.1182 1.9241
11 London North 1.78 11 1.0599 1.6456
12 Los Angeles 15.50 2 1.0721 1.5734
13 NY City 13.58 6 1.1069 1.7340
14 Paris 6.52 86 1.0613 1.8189
15 Sydney 1.35 8 1.1266 1.4719
16 Tokyo 2.30 58 1.0963 1.8252
17 Toronto 5.10 88 1.0279 1.1863

No. Region NAD θ k p
1 Australia 6.261 1 1.0959 1.7545
2 BC Province 11.068 69 1.2701 1.7080
3 Canada 5.234 85 1.1732 1.4584
4 France 3.611 71 1.0396 1.7417
5 Great Britain 5.981 0 1.1032 1.8826
6 NY State 6.004 87 1.0308 1.4950
7 Pennsylvania 6.486 7 1.0673 1.6958
8 United States 3.295 0 1.0825 1.7427
9 Brussels 4.68 45 1.0495 1.7802
10 London Central 8.75 8 1.0495 1.7802
11 London North 4.70 14 1.0591 1.6171
12 Los Angeles 7.90 87 1.0672 1.5684
13 NY City 6.90 4 1.0737 1.6975
14 Paris 8.41 11 1.0635 1.6649
15 Sydney 6.50 6 1.0991 1.3940
16 Tokyo 4.30 64 1.0963 1.8901
17 Toronto 4.45 87 1.0121 1.1261

(µ̂3) and kurtosis (in (µ̂4−3) form), is constructed. In Table 2, we observe
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that skewness and kurtosis values for the distributions are different enough
from zero that we cannot conclude the distributions of |e(xi,xj)|/A(xi,xj)
are from normal distributions for each criterion in the regions. The normal
probability plots and histograms for the United States and Toronto can be
found in Love and Üster [14]. These plots also support the non-normality
of the |e(xi,xj)|/A(xi,xj) distributions. Therefore, a nonparametric test
was applied to determine if the |e(xi,xj)|/A(xi,xj) distributions for each
criterion were significantly different from each other in a given region. The
Friedman Test [19], which is used for multiple matched samples, was em-
ployed as the main effect test to compare the three |e(xi,xj)|/A(xi,xj)
distributions at the 5% significance level. The p-values for seventeen ge-
ographic regions are listed in Table 3. Since the p-values are well above
0.05, no pair of criteria is significantly different at the 5% significance level.
In Table 4 the mean absolute percent errors are reported for each criterion
and region. Based on the figures in Table 4, it can be said that the average
percent absolute errors for a given region are very close to each other for
the criteria, and in general, they are small enough to conclude that the
predicted distances are close approximations of actual distances. For ex-
ample, in Brussels the percent absolute errors in predicting distances are
4.46%, 4.47% and 4.46% for the AD, SD, and NAD criteria, respectively.

We next test the long and short distance distributions of the random
variable |e(xi,xj)|/A(xi,xj) for normality. Non-normality of this variable’s
distribution formed by 105 pairs in a given region does not guarantee that
a subset of these 105 pairs which is non-randomly formed by 35 pairs, also
comes from a non-normal distribution. There are six different distributions
(two for each criterion) used in the comparisons to identify the differences
between the three criteria for predicting long actual distances and short
actual distances. If we find that in these six distributions there is at least
one non-normal distribution for each criterion (either long or short distance
distribution, but not all three are the same), then we need to use nonpara-
metric tests for the following parts of this section. Therefore, the skewness
and kurtosis values of the |e(xi,xj)|/A(xi,xj) distributions for long dis-
tances using the AD and NAD criteria, and for short distances using the
SD criterion are reported for each region in Table 5. The skewness and
kurtosis values in Table 5 are sufficiently different from zero (the distri-
butions are always skewed right, and are generally more peaked than the
normal distribution) to provide evidence that the distributions come from
non-normal populations. This is also supported by the normal probability
plots and histograms which can be found in Love and Üster [14]. There-
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Table 2. Sample Statistics of the |e(xi,xj)|/A(xi,xj)
(Row 1:AD; Row 2:SD; Row 3:NAD)

No. Region x̄ s2 µ̂3 µ̂4 − 3

0.0634 0.0027 1.5524 2.9709
1 Australia 0.0636 0.0025 1.5999 3.3357

0.0593 0.0027 1.2950 1.892
0.1069 0.0071 0.7062 -0.1670

2 BC Province 0.1063 0.0069 0.7309 -0.0870
0.1052 0.0067 0.7595 0.0682
0.0499 0.0028 1.747 3.2356

3 Canada 0.0504 0.0025 1.5718 2.1566
0.0497 0.0028 1.8150 3.3933
0.0335 0.0009 1.7694 4.1584

4 France 0.0341 0.0008 1.7285 4.1728
0.0334 0.0010 1.9857 5.1221
0.0591 0.0025 1.1108 1.3866

5 Great Britain 0.0587 0.0024 1.2424 1.9158
0.0570 0.0027 1.6056 3.2751
0.0623 0.0023 0.8010 0.1435

6 NY State 0.0612 0.0021 1.0104 0.5856
0.0626 0.0026 1.2077 1.0528
0.0617 0.0033 1.6327 3.7136

7 Pennsylvania 0.0623 0.0033 1.7010 3.7626
0.0608 0.0031 1.5613 3.5665
0.0314 0.0009 1.8475 4.8344

8 United States 0.0326 0.0008 1.8210 4.1774
0.0314 0.0009 1.8510 4.9158
0.0446 0.0017 1.6735 3.7924

9 Brussels 0.0447 0.0017 1.6599 3.8810
0.0446 0.0017 1.6728 3.7951
0.0833 0.0212 4.0173 19.1818

10 London Central 0.0872 0.0195 4.2164 20.9644
0.0832 0.021 4.1062 19.9933
0.0446 0.0013 1.2163 1.5499

11 London North 0.0442 0.0012 1.2857 1.8672
0.0440 0.0012 1.2825 1.8599
0.0751 0.0138 6.7183 57.5431

12 Los Angeles 0.0757 0.0131 7.0910 62.3922
0.0748 0.0139 6.9068 59.9512
0.0660 0.0039 1.7232 2.6192

13 NY City 0.0682 0.0031 1.5462 2.3413
0.0653 0.0039 1.6307 2.4097
0.0815 0.0068 3.0579 13.457

14 Paris 0.0827 0.0063 2.9045 12.1986
0.0801 0.0069 2.4590 9.0103
0.0621 0.0033 1.4150 2.0364

15 Sydney 0.0620 0.0031 1.3346 1.8110
0.0617 0.0033 1.4393 2.1473
0.0410 0.0021 3.9404 23.7253

16 Tokyo 0.0414 0.0021 3.8788 23.1547
0.0409 0.0022 3.9262 23.5744
0.0425 0.0020 2.2888 6.7672

17 Toronto 0.0440 0.0017 1.9516 5.0684
0.0424 0.0021 2.2782 6.6037

fore, nonparametric tests should be used for unbiased comparisons of the
criteria involving the six distributions.
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Table 3. The p-values for the Friedman Test of |e(xi,xj)|/A(xi,xj)
distributions

No. Region p-value No. Region p-value

1 Australia 0.3732 9 Brussels 0.9765
2 BC Province 0.3750 10 London Central 0.6386
3 Canada 0.2315 11 London North 0.6839
4 France 0.4806 12 Los Angeles 0.3724
5 Great Britain 0.9355 13 NY City 0.7062
6 NY State 0.4047 14 Paris 0.1038
7 Pennsylvania 0.7280 15 Sydney 0.7606
8 United States 0.8889 16 Tokyo 0.8816

17 Toronto 0.2450

Table 4. Mean absolute percent errors for criteria

No. Region AD SD NAD

1 Australia 6.34 6.36 5.93
2 BC Province 10.69 10.63 10.52
3 Canada 4.99 5.04 4.97
4 France 3.35 3.41 3.34
5 Great Britain 5.91 5.87 5.70
6 NY State 6.23 6.12 6.26
7 Pennsylvania 6.17 6.23 6.08
8 United States 3.14 3.26 3.14
9 Brussels 4.46 4.47 4.46
10 London Central 8.33 8.72 8.33
11 London North 4.46 4.42 4.40
12 Los Angeles 7.51 7.57 7.48
13 NY City 6.60 6.82 6.53
14 Paris 7.82 8.27 8.01
15 Sydney 6.21 6.20 6.17
16 Tokyo 4.10 4.14 4.09
17 Toronto 4.25 4.40 4.24

3.2. Accuracy of the criteria in predicting long and short dis-
tances

It has already been shown that we must employ a nonparametric test to
compare the accuracy of the three criteria in predicting long and short
distances. For that purpose, two Friedman tests (long and short distance
distributions) for the matched triples are performed for each region. A
p-value less than 0.05 is supposed to indicate the existence of a signifi-
cantly different pair among the criteria for the given region. The p-values
of these main effect tests are provided in Table 6. The significance levels
listed in Table 6 can be interpreted as follows: In general, the accuracy in
predicting long or short distances is not significantly different for the crite-
ria. However, for long actual distances, in five of the eight large geographic
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Table 5. Skewness and Kurtosis Values for the Normality of Three Distributions.

Long Distance AD Short Distance SD Long Distance NAD
No. Region Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

1 Australia 0.4881 -0.6541 1.2536 1.3505 0.4131 -0.9182
2 British Columbia 0.1244 1.0772 0.3501 -0.1516 1.3306 1.6137
3 Canada 1.3520 1.6556 0.6961 -0.5406 1.3277 1.8534
4 France 2.6315 9.8096 2.0758 5.8926 2.7389 10.1983
5 Great Britain 1.4349 1.3900 0.5296 -0.2207 1.1993 0.9675
6 NY State 0.8914 -0.2543 0.9814 1.0950 0.7519 -0.7202
7 Pennsylvania 0.5275 -1.0158 1.2628 1.0579 0.4775 -1.0018
8 United States 1.6883 4.4469 1.4650 2.5399 1.6432 4.1495
9 Brussels 1.5948 2.4744 1.8813 5.0096 1.6090 2.6409
10 London Central 3.3989 12.8349 3.8639 15.9083 3.4378 13.7044
11 London North 0.6037 -0.7204 0.9873 0.3199 0.8531 0.2911
12 Los Angeles 1.4745 2.5833 4.8098 26.0766 1.4541 2.7294
13 NY City 2.2495 6.4738 0.9857 -0.2267 2.1354 5.8431
14 Paris 0.8056 -0.0447 2.0891 4.8714 0.7644 -0.5594
15 Sydney 1.9071 4.9922 0.5940 -0.3163 2.0189 5.6586
16 Tokyo 1.7651 5.3646 3.3773 15.1482 1.9370 6.3196
17 Toronto 1.4835 2.2125 1.1633 1.5794 1.2894 1.4425

regions; Australia, British Columbia, Great Britain, New York State, and
the United States, and for the short actual distances, in four regions; Aus-
tralia, New York State, Los Angeles and Paris, there is at least one pair of
criteria with significantly different distance prediction accuracy.

Table 6. The p-values of Friedman test comparing
long and short distance distributions

No. Region Short D. Long D.

1 Australia 0.0000 0.0002
2 BC Province 0.1242 0.0080
3 Canada 0.4624 0.9107
4 France 0.6897 0.7553
5 Great Britain 0.2466 0.0073
6 NY State 0.0187 0.0116
7 Pennsylvania 0.0527 0.1242
8 United States 0.1066 0.0300
9 Brussels 0.9749 0.9491
10 London Central 0.3213 0.1870
11 London North 0.1342 0.2684
12 Los Angeles 0.0083 0.4389
13 NY City 0.1048 0.2355
14 Paris 0.0316 0.6175
15 Sydney 0.8534 0.2388
16 Tokyo 0.9767 0.4296
17 Toronto 0.1691 0.6897

In order to identify which criterion is more accurate in predicting long or
short distances in the above exceptional regions, multiple comparisons are
performed by using nonparametric Wilcoxon matched pairs tests. However,



246 R. F. LOVE AND H. ÜSTER

instead of reporting the results of this test, average percent absolute errors
(100∗E[|e(xi,xj)|/A(xi,xj)]) for predicting long and short distances for the
criteria are presented in Table 7. Inspecting the average percent absolute

Table 7. Average percent absolute errors in predicting long and short
distances

Short Distance Long Distance
No. Region AD SD NAD AD SD NAD

1 Australia 8.45 8.37 6.23 5.03 5.02 6.42
2 BC Province 13.85 13.53 12.67 7.79 7.90 8.40
3 Canada 8.92 8.80 8.76 1.89 1.97 1.96
4 France 3.93 4.03 3.81 2.56 2.51 2.67
5 Great Britain 6.73 6.61 5.99 3.60 3.76 5.08
6 NY State 7.29 6.91 6.03 5.14 5.44 6.82
7 Pennsylvania 8.32 8.59 8.00 4.13 4.10 4.44
8 United States 4.01 4.22 3.97 2.06 2.02 2.09
9 Brussels 5.30 5.31 5.29 3.25 3.26 3.24
10 London Central 11.18 11.00 11.03 4.60 5.34 4.70
11 London North 6.22 5.98 5.87 2.77 2.87 2.92
12 Los Angeles 11.60 11.39 11.33 4.15 4.70 4.34
13 NY City 7.71 7.82 7.17 5.75 5.41 5.84
14 Paris 11.61 11.73 10.68 6.18 6.27 6.91
15 Sydney 7.97 7.86 7.85 5.61 5.60 5.66
16 Tokyo 5.63 5.64 5.64 2.65 2.62 2.77
17 Toronto 5.59 5.70 5.52 2.51 2.39 2.57

errors of the first five exceptional regions listed above, it is observed that the
AD and SD criteria generate less average percent absolute error than the
NAD criterion in predicting long distances. For example, in Australia the
average percent absolute errors for the AD and SD criteria are 5.02% and
5.03%, respectively, whereas for the NAD criterion, it is 6.42%. Inspecting
Table 7 for short actual distances, we see that the NAD criterion provides
better prediction accuracy than either of the AD and SD criteria for the
four exceptional regions. For example, in Australia the NAD criterion
generates a 6.23% absolute error in predicting short distances. However,
the AD and SD criteria provide 8.45% and 8.37% absolute errors for the
same region, respectively.

3.3. Accuracy of each criterion in predicting the long versus
short distances

The purpose of this section is to compare the accuracy of predicting long
distances versus short distances in a region. First, in order to determine
whether the variance of the |e(xi,xj)|/A(xi,xj) distribution is constant
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for a given criterion in a region, Levene tests are conducted for each cri-
terion in seventeen regions. Hence if the p-value of the Levene test for
a criterion is significant, then we can conclude that the variance of the
|e(xi,xj)|/A(xi,xj) distribution for that criterion in that region is con-
stant and vice versa. The 2-tail p-values for the Levene tests are presented
in Table 8. Based on this table, the variances of the |e(xi,xj)|/A(xi,xj)
distributions are not homoscedastic in 10 regions for AD, again in 10 regions
for SD, and in 11 regions for NAD. However, note that the significance
levels for the urban centers are not as strong as the significance levels for
the large geographical regions.

Table 8. p-values of the Levene test for
|e(xi,xj)|/A(xi,xj)

No. Region AD SD NAD

1 Australia 0.084 0.031 0.383
2 BC Province 0.725 0.617 0.758
3 Canada 0.000 0.000 0.000
4 France 0.285 0.351 0.252
5 Great Britain 0.159 0.234 0.466
6 NY State 0.741 0.925 0.014
7 Pennsylvania 0.002 0.000 0.005
8 United States 0.013 0.001 0.018
9 Brussels 0.084 0.093 0.090
10 London City 0.066 0.039 0.066
11 London North 0.001 0.003 0.007
12 Los Angeles 0.017 0.024 0.018
13 NY City 0.016 0.054 0.011
14 Paris 0.006 0.004 0.022
15 Sydney 0.043 0.082 0.048
16 Tokyo 0.025 0.019 0.030
17 Toronto 0.000 0.001 0.000

In order to see the general pattern of differences in variances for the three
criteria we inspect Table 9 where the variances of the |e(xi,xj)|/A(xi,xj)
distributions resulting from long and short distance predictions are re-
ported. In general, it can be said that the variance of the distribution
of |e(xi,xj)|/A(xi,xj) for long distances is less than the variance for short
distances for each criterion in each region. But this conclusion does not
always hold at the 5% significance level as the Levene tests suggest in Ta-
ble 8. To see the converging funnels formed by the difference in variances
the scatter plots of |e(xi,xj)|/A(xi,xj) are inspected. The plots for United
States and Toronto are shown in Love and Üster [14]. 5

The accuracy of each criterion in predicting the long versus short dis-
tances in a given region is examined by using the nonparametric 2-tailed
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Table 9. Variances of |e(xi,xj)|/A(xi,xj) in predicting long and short distances

Short Distance Long Distance
No. Region AD SD NAD AD SD NAD

1 Australia 0.0036 0.0035 0.0030 0.0015 0.0015 0.0019
2 BC Province 0.0072 0.0073 0.0070 0.0058 0.0057 0.0064
3 Canada 0.0043 0.0039 0.0047 0.0003 0.0002 0.0003
4 France 0.0011 0.0010 0.0012 0.0007 0.0006 0.0007
5 Great Britain 0.0022 0.0021 0.0025 0.0014 0.0014 0.0021
6 NY State 0.0025 0.0024 0.0021 0.0025 0.0023 0.0034
7 Pennsylvania 0.0058 0.0060 0.0056 0.0012 0.0010 0.0014
8 United States 0.0012 0.0013 0.0013 0.0004 0.0003 0.0004
9 Brussels 0.0023 0.0023 0.0023 0.0009 0.0009 0.0009
10 London City 0.0364 0.0354 0.0367 0.0060 0.0045 0.0058
11 London North 0.0020 0.0019 0.0020 0.0005 0.0005 0.0006
12 Los Angeles 0.0343 0.0335 0.0352 0.0013 0.0012 0.0012
13 NY City 0.0053 0.0038 0.0053 0.0027 0.0023 0.0026
14 Paris 0.0145 0.0134 0.0136 0.0019 0.0018 0.0033
15 Sydney 0.0042 0.0039 0.0042 0.0026 0.0025 0.0027
16 Tokyo 0.0041 0.0040 0.0042 0.0006 0.0005 0.0006
17 Toronto 0.0025 0.0019 0.0026 0.0004 0.0004 0.0004

Mann-Whitney Test with a 5% significance level. The 2-tailed p-values of
the tests for three criteria are presented in Table 10. In this table, a p-value
less than 0.05 indicates that there is a significant difference between the
long distance and short distance |e(xi,xj)|/A(xi,xj) distributions of the
geographical region. For the AD criterion only in New York City and
Sydney and for the SD criterion only in New York State, New York City
and Sydney, do the long distance and short distance |e(xi,xj)|/A(xi,xj)
distributions apparently come from the populations having the same dis-
tributions. For the NAD criterion the same conclusion holds in the regions
of Australia, France, Great Britain, New York State, Pennsylvania, New
York City, Paris and Sydney. As also seen in Table 7, the average per-
cent absolute errors in a given region are considerably different for long
and short distances and indeed the accuracy in predicting long distances is
higher than the accuracy in predicting short distances in a given region.

4. Summary of Results and Conclusions

The three goodness-of-fit criteria, AD, SD and NAD, were compared with
different perspectives for seventeen geographical regions including nine large
geographical regions and eight urban centers. Several generalized conclu-
sions, based on these seventeen regions, can be drawn from the above sta-
tistical tests.
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Table 10. p-values of the Mann-Whitney Test for long
and short distance |e(xi,xj)|/A(xi,xj)

No. Region AD SD NAD

1 Australia 0.0118 0.0197 0.5145
2 BC Province 0.0024 0.0044 0.0285
3 Canada 0.0000 0.0000 0.0000
4 France 0.0203 0.0070 0.0821
5 Great Britain 0.0042 0.0057 0.4920
6 NY State 0.0446 0.1622 0.9205
7 Pennsylvania 0.0124 0.0118 0.0548
8 United States 0.0061 0.0038 0.0093
9 Brussels 0.0340 0.0360 0.0307
10 London Central 0.0012 0.0316 0.0026
11 London North 0.0004 0.0008 0.0021
12 Los Angeles 0.0039 0.0093 0.0103
13 NY City 0.5413 0.0942 0.9859
14 Paris 0.0350 0.0177 0.2401
15 Sydney 0.1638 0.1501 0.1943
16 Tokyo 0.0061 0.0060 0.0132
17 Toronto 0.0061 0.0002 0.0123

• The |e(xi,xj)|/A(xi,xj) populations are non-normal for each criterion.
The histograms are highly peaked with more occurrences close to zero
and skewed right.

• There are generally no pairs of the criteria for which the |e(xi,xj)|/A(xi,xj)
distributions are significantly different.

• In terms of the |e(xi,xj)|/A(xi,xj), the three criteria are not signifi-
cantly different in predicting either long distances or short distances.
However, each criterion has a higher accuracy in predicting relatively
long distances than in predicting relatively short distances.

• The variance of the |e(xi,xj)|/A(xi,xj) distribution for long distances
is significantly different than the variance of the |e(xi,xj)|/A(xi,xj)
distribution for short distances. The former is smaller than the latter,
and hence the scatter plots of the |e(xi,xj)|/A(xi,xj) distributions
form a converging funnel as the actual distance between the sample
points increases.

Finally, we can say that because of the computational efficiency provided
by the closed form formula to determine the best value of parameter k when
fitting the k`p-norm, and since the e(xi,xj) have an expected value of zero
without any exceptions in all the regions, it would seem to be advantageous
to use the SD criterion in practice.
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