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We consider the class of Markov kernels for which the weak or strong
Feller property fails to hold at some discontinuity set. We provide a sim-
ple necessary and sufficient condition for existence of an invariant probabi-
lity measure as well as a Foster-Lyapunov sufficient condition. We also
characterize a subclass, the quasi (weak or strong) Feller kernels, for which
the sequences of expected occupation measures share the same asymptotic
properties as for (weak or strong) Feller kernels. In particular, it is shown
that the sequences of expected occupation measures of strong and quasi
strong-Feller kernels with an invariant probability measure converge set-
wise to an invariant measure.
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1. Introduction

We consider a Markov chain on a locally compact separable metric space. A
common assumption when studying a Markov chain is that the stochastic kernel of
transition probabilities is (weak) Feller, i.e., it maps the space of bounded continuous
functions into itself (whereas the strong-Feller kernels map the bounded measurable
functions into bounded continuous functions). Indeed, under such an (easy to check)
assumption, various properties can be derived for the long-run behavior of the
Markov chain. In particular, for the existence of invariant probability measures,
simple necessary and sufficient conditions are available (for instance of. [9, 7]). In
addition, a nice property of (weak) Feller kernels is that every weak* limit point of
the expected occupation measures is a (possibly trivial) invariant measure.

However, it may happen that the transition kernel fails to have the (weak or

strong) Feller property at some points in an exceptional set. In some cases, this
pathology is serious in that it prevents the kernel from having the above mentioned
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properties of (weak) Feller kernels. The example in Section 2 illustrates the dramatic
consequences if the (weak) Feller property fails at a single point only, even on a com-

pact metric space. In some other cases, the kernel behaves practically as a (weak)
Feller kernel, i.e., the above pathology is not serious. Therefore, having a means to
distinguish between those two types of kernels is highly desirable.
A practical example of interest, which motivated this work, is the important class

of Generalized Semi-Markov Processes (GSMP), which permits modeling of the essen-
tial dynamical structure of a discrete-event system (cf. [6]). Indeed, a time-homogen-
eous GSMP can be studied via Markov chain techniques, particularly its long-run be-
havior via ergodic theorems (cf. [6]). However, the (discrete-time) associated Markov
kernel is not (weak) Feller as discontinuities occur when (at least) two "clocks" run
out of time simultaneously. See also the threshold models in Tong [10]. It is thus ne-

cessary to provide conditions of existence of an invariant probability measure for such
pathological kernels.

In the present paper, we propose such conditions which are in fact a simple exten-
sion of the ones in [7] for (weak) Feller kernels. In addition, we characterize a class of
kernels, the quasi-Feller kernels, i.e., those kernels with a discontinuity set but with
the same properties as (weak) Feller kernels.
We also prove that strong-Feller kernels enjoy an additional nice property; name-

ly, if the transition kernel has an invariant probability measure #, then #-a.e., the se-

quence of expected occupation measures converges setwise to an invariant probability
measure, in contrast to the (only)weak convergence for (weak) Feller kernels. The
corresponding class of quasi strong-Feller kernels also has this property. Finally, the
necessary and sufficient condition for existence of a unique invariant probability mea-
sure proposed in [8] also applies to a quasi-Feller kernel.

2. Notation and Definitions

Let (X,%) be a measurable space with X a locally compact separable metric space
and % its usual Borel r-field. Denote by

M(X), the Banach space of signed Borel measures on (X, %) endowed with
the total variation form.
Cb(X), the Banach space of bounded continuous functions on X, endowed
with the sup-norm.
Co(X C Cb(X), the Banach space of continuous functions on X that
vanish at infinity, endowed with the sup-norm. By "vanish at infinity", we
mean
that f E Co(X if SUPx 6 K f(x) -O whenever Kn compact and KnTX.
B(X), the Banach space of bounded measurable functions on X, endowed
with the sup-norm.

Let P be the transition probability kernel of a Markov chain with values in X, i.e.,
P(x,.) is a probability measure on (X,%) for every x e X, and P(.,B)is a mea-
surable function on X for every B %.
P is a (weak) Feller kernel if PIe Cb(X whenever I e Cb(X). Note that, as X

is a locally compact separable metric space, this condition is in fact equivalent to the
apparently weaker condition PI or_ Cb(X whenever f C: Co(X). P is (strong) Feller if
Pf e Cb(X whenever f e B(X).
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A measure # E M(X) is invariant if and only if

#(B)- /P(x,B)#(dx) BE%. (1)

3. Quasi-Feller Markov Kernels

Let P be a transition kernel for which the (weak) Feller property fails at some points
x G D C X. It is important to note that even if this property fails at only a single
point, it can have dramatic consequences, as shown in the following elementary exam-

ple on a compact metric space"

X: [0, 1], P(x, {x/2}) lVx :/= 0, P(0, {1}) 1.

It is trivial to check that the above kernel has no invariant probability measure,
despite X being compact, and the kernel is "almost Feller." In addition to not being
Feller, the necessary and sufficient condition of existence stated in [7], namely,

n-1

nlimn 1ExE fo(Xt > 0 (2)
t--0

for some z X and some arbitrary 0 < fo Co(X), is not valid (and similarly,
equivalent conditions that use compact sets in Beneg [1] and Foguel [5]). Indeed, for
a fixed arbitrary 0 < fo Co(X), we have

n-1

nlirnn 1ExE fo(X, -nlkrnf0(2 nx) f0(0) > 0,
t--O

so that (2) holds, but there is no i.p.m.
This example contradicts the conjecture in [3] that if the property fails at a finite

number of points, then the kernel is still well-behaved. Another example is the oscil-
lating random walk (cf. [3])

(

Xn +
, if X,, > 0

+ 1
Cn if Xn < 0

where {n} and {n} are two unrelated sequences of independent equally distributed
random variables.

The corresponding transition kernel is (weakly) continuous except at x- 0. How-
ever, if for instance Prob({1 V/)-pl 1-Prob( -1)and Prob(1=
-)- P2 1- Prob( 1), the n-step probability distribution converges weakly
to an invariant uniform probability distribution. In this case, the discontinuity at
zero does not prevent the existence of an i.p.m.

Let D be the set of discontinuity of the transition kernel, i.e.,

x DC=Pf(xn)-Pf(x whenever f Cb(X and xn--x
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and let Y: X- D be the subspace of X with the usual induced topology and %’ its
usual Borel e-field. In many cases of interest, D E % and P(x,D) 0Vx E X- D
and P(x, X- D) > 0Vx D. This can be checked easily on the above two examples
and also in the GSMP models in [6].

3.1 Existence of an Invariant Probability Measure

We now state a necessary and sufficient condition for existence of an invariant proba-
bility measure for Markov kernels with a discontinuity set D.

Theorem 3.1: Assume that D G % is closed, P(x,D) O Vx G X- D and
Pn(x,D) < I Vx G D for some n >_ l. Let O <_ fo E Co(X) be fixed arbitrary and
such that fo vanishes on D and is strictly positive elsewhere. Then, P has an invar-
iant probability measure (i.p.m) if and only if

n-1

linm__.suopExn -1 E fo(Xt > 0 (3)
t=0

for some x X-D.
Proof: Let Y: =X-D. As asubset of X, X-Dis open and thus Y, with the

topology induced by X, is a locally compact separable metric space and its usual
Borel r-field coincides with %’: {% fl ctJl% %}. The Banach space Co(Y of
continuous functions that vanish at "infinity" is the subset of functions in Co(X
that vanish on D. In addition, M(Y), the Banach space of finite Borel sign measures
on (Y, N’), is the topological dual of Co(Y).

Now, let P’ be the restriction of P on Y, i.e.,

P’(x,B)" P(x,B) whenever x e Y, B e %’.

It is trivial to check that P’ is weak Feller. Moreover, from every initial state x E Y,
the Markov chain stays in Y with probability 1. Therefore, the Markov chain
induced by P’ coincides with the original chain for every initial state x Y. For
every x Y, one may use indifferently P’(x,. or P(x,. ).

Let # be an invariant probability measure for P. From P(x,D)-O Vx Y,
pn(x, Y) > 0 Vx D for some n >_ 1, and the invariance of #, we also have #(D) 0,
i.e., # E M(Y) and
is an invariant probability measure for P’, it is also invariant for P.

Therefore, one may apply directly to P’ the necessary and sufficient condition for
existence on an i.p.m, given in [7] which is (3) with "lim" instead of "limsup" and
the operator Ex instead of Ex. However, since with initial state x Y the Markov
chain induced by P’ coincides with the one induced by P, one may replace E by Ex.
Also a simple examination of the proof of Theorem 2.1 in [7] shows that one may use
indifferently "lim", "liminf" or "limsup".

The important thing to notice is that in (3), f0 is in Co(Y), i.e., f0 vanishes on D.
In the first example, one may check that with fo Co(Y),

n--1 n--1

Exn 1E fo(Xt n 1E f0(2 -tx)--*fo(O) 0 for every x e (0, 1],
t=O t=O
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since fo vanishes on D: {0}. This confirms that P has no invariant probability
measure. As already mentioned, (3) with 0 < fo E Co(X (i.e. as in [7]) would yield
f0(0) > 0.
We now give other properties, using limits of the expected occupation measures.

Let
n-1

Xn(B)_ ExTl-1 Z 1B(xt) x E X, B % (4)
t=0

x x Y), e Y.x

For every x X, fixed arbitrary, {#} is a sequence of probability measures on

(X,%) and for every x Y, fixed arbitrary, {Ur} is a sequence of probability
measures on (Y, ’).

It is important to note that the weak* convergence in M(Y) is not the same as the
weak* convergence in M(X).
Lemma 3.2: Let n be closed with P(x,D)-0 Vx X-D and Pn(x,n)<1

Vx D for some n

_
l. Then,

(a) For every x G Y, fixed arbitrary, every weak* accumulation point of the
sequence {Uxn} in M(Y) is a (possibly trivial) invarianl measure ux e M(Y).

(b) If P has an invariant probability measure #, then # i(Y) and ux is an

i.p m for P, #-a e in Y. In addition, x xUn=U #-i.e.
(c) Let #xE M(X) be a weak* accumulation point in M(X) of the sequence

x{#n}, x Y. Then ux, the restriction of #x to (Y,%’), is a weak* accumu-

lation point in M(Y) of {u}, and therefore, an invariant measure for P.
Hence, #x is an invariant measure if and only if #Z(D)- O.
(a) As Y is a locally compact separable metric space, the unit ball in

Hence, consider an arbitrary (weak*)
From uP u,x + n ((P’)’ 6) (with

Proof:
M(Y) is weak* sequentially compact.
convergent subsequence uxnk---u

x M(Y).
6x the Dirac at x), we conclude that

i x,lim fd(UnkP )- fdux for every f e Co(Y). (6)

On the other hand, as P’ is weak Feller, P’f Cb(Y and for every 0

_
f Co(Y

I "’ I J Slim fd(unkP lim (P’f)duk > (P’f)dux fd(uXP’).
kc k

(7)

Combining (6)-(7)yields

S fd.X i fd(.xP’) for every 0 <_ f e Co(Y (8)

i.e., ux _> uxP’. As ux is a finite measure, this implies uxP’- ux, i.e., ux is an invar-
Want (possibly trivial) measure. As the weak* accumulation point was arbitrary, the
result follows.

(b) Assume that # is an invariant probability measure for P, hence for P’, i.e.,
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# E M(Y). From the Birkhoff Individual and Mean Ergodic Theorem (cf. [11]), we

have, for every f LI (Y %’, #),
n-1 n-1

nlirnExn-1 E f(Xt) =nli-,rnEzn -1 E (P’)tf(xt) f*(x),
t=0 t=0

#-a.e. In addition, f f’d# f fd#. On the other hand,

f*(x) =nlirn ] fdu
so that for every f C0(Y), and an arbitrary weak* accumulation point ux of {u},
we have #-a.e.

f*(x) f fdux. (9)
J

Therefore,

f*d#

This in urn implies

Vf e Co(Y).

It(B) / uX(B)It(dx), bE%’.

As It is a probability measure, this implies that It-a.e. uz(Y) 1, i.e., uz is a probabi-
lity measure It-a.e. By the Portmanteau Theorem (cf. [2]), we also conclude that It-
a.e. every weak* accumulation point of {ur} is also a weak accumulation point.

As Co(Y is separable, it contains a countable dense subset F: {fl,’",} C
Co(Y). For each f F there is a set Nl with It(Nl) 0 such that, from (9),

fduX f*(x) Vx

_
NI.

Hence, as It( U ] FNI) 0 and r is dense in Co(Y),

fdux f*(z) Vf e Co(Y Vx

_
U I e FNI" (10)

As (10) holds for every weak* (hence weak) accumulation point and every f E
Co(Y), all the weak limit points ux are identical It-a.e., i.e. It-a.e., It,ux.

(c) Let Itz M(X) be a weak* accumulation point in M(X)of {ItS}, i.e., there is
some subsequence {It,k} such that

lim / x / f Vf Co(X)" (11)
k--,

fdItnk

Now, for every x Y and f e Co(Y f fdItk is just f fduZn. Therefore, since

Co(Y) C Co(X), to every weak* accumulation point Itx E M(X) of {It,} corresponds
to a weak* accumulation point M(Y) of {}. From ffdIt- f fdu for
every f Co(Y), we conclude that the restriction of It to (Y,%’) is just x, and,
from (b), is an invariant measure. In addition, as P(x,D)=O Yx Y and
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Pn(x,D)<I VxED for some n>l, #z is invariant only if

f DPn(y,D)#X(dy)< pX(D), i.e. only if #X(D)- O. On the other hand, if #X(D)- 0
then as the restriction of # to X D is an invariant measure, and P(x, D) 0 Vx
X- D, then so is #z.

The last statement suggests the following, definition of a quasi-Feller Markov
kernel with discontinuity set D.

Definition: If P has a closed (weak) discontinuity set D % with P(x,D)- 0
Vx X-D and P’(x,D)< 1 Yx D for some n > 1, then P is said to be quasi-
Feller if every weak* accumulation point # M(X) of the sequence of expected
occupation measures {#}, x E X- D, satisfies #(D) 0.

For such kernels, every weak* accumulation point #x of {#} (x
(possibly trivial) invariant measure (with #X(D)- 0) as for (weak) Feller kernels,
which justifies the label "quasi-Feller."

In the first example, one may easily check that P is not quasi-Feller since for every
x X, #x_ 50 and thus, #x({0})- 1. On the other hand, in the second example,
#x({0})- 0 so that P is quasi-Feller. A sufficient condition for P to be quasi-Feller
is as follows"

Corollary 3.3: Let D% be closed, with P(x,D)-O VxX-D and
pn(x,X- D) > 0 x D for some n > 1. Let De % be open and DD as s--O.
Then, P is quasi-Feller if for some scalar K and for every sufficiently small s > O,

liminf#(D) < Ks (12)

for every x X-D.
Proof: Assume that (12) holds and consider a subsequence {#k} that converges

weakly* to some #z M(X). As De is open, for sufficiently small s, we have (e.g. cf.
[4]).

Ks > liminf#(De)> #Z(De)> #X(D).

Letting s0 yields the desired result.
Note that similar condition was given in [3] (cf. condition III(a), p. 546).

3.2 A Lyapunov Condition of Existence

A sufficient condition of existence, although stronger than necessary and sufficient
condition, is also useful and sometimes easier to manipulate. The condition below is
a Lyapunov-type condition for non-Feller kernels with a discontinuity set D.

Corollary 3.4: Assume that D % is closed, with P(x,D)- 0 ktx X-D and
pn(x,X- D) > 0 Vx D for some n > 1. Let 0 < fo Co(Y) be fixed arbitrary.

(a) If there exists a nonnegative measurable finite function f and a scalar 0 < )

such that

Pf(x) < f(x)- l + $fo(x,) x e Y, (13)

then there exists an i.p.m. # M(Y).
If there exist a nonnegative measurable finite function f, a compact set
K C Y and a scalar 0 < such that
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Pf(x) <_ f(x)- 1 + A1K(X), Y, (14)

then there exists an i.p.m. # G M(Y).
Proof: (a) Iterating (13) n times and dividing by n yields

n- l(pnf(x) f(x)) + 1 <_ AExn- 1 E fo(Xt)" (15)
t=0

Therefore, as 0 _< pnf and n-lf(x)-0
n--1

0 < A- 1 <_ linm2uPExn -1 E fo(Xt)" (16)
t=0

In view of Theorem 3, this implies the existence of an i.p.m.
(b) As P’ is (weak) Feller on (Y, %’), this follows from e.g. [9, p. 297]. [:]

The Lyapunov condition (14)is standard for (weak) Feller kernels [cf. [9, p. 296]).
On the other hand, when using (13) one does not need to find an appropriate com-
pact set K C Y. However, one must be careful and take a function f0 that vanishes
on the discontinuity set D.

3.3. Quasi Strong-Feller Kernels

We recall that a strong-Feller Markov kernel maps B(X), the bounded measurable
functions, into Cb(X). Equivalently, P(x,B) is a continuous function of x, for every
B E %. As we did for the (weak) Feller kernels, we also consider the class of kernels
for which the strong-Feller property fails to hold at some (closed) discontinuity set
D C %. We first need the following result.
Lemma 3.5: Assume that P is strong-Feller with an i.p.m. # M(X). Then #-

aoeo

## setwise (17)

and #x is an i.p.m, with

#(B) / #(B)#(dx) (18)

Proof: From Lemma 3 2(b) x x #x#n:=# In addition, is an i.p.m. #-a.e. and

#(B)- f #x(B)#(dx) B %.

It thus suffices to prove that the convergence is setwise instead of weak.
We know that

X X
#nP #n + n l(pn(x, )-Sx(. )).

Let B be fixed arbitrary, and f’-1B As P is strong-Feller, Pf Cb(X so
that from a weak convergence of # of #x, we get

lim #n(B) lim / fd(#P)
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=nlim J (Pf)d#

(pf)d#x / fd(#xP)

/ fd#X #X(B),

the desired result. [:]

Hence, the strong-Feller property translates into the strong (setwise) convergence
of the expected occupation measures.

Finally, consider a kernel P for which the (strong) Feller property fails at some

(closed) discontinuity set D. In a manner similar to what we did for quasi-Feller
kernels, we say that"

Definition: If P has a closed (strong) discontinuity set D C % with P(x,D)- 0
VxEX-D and pn(x,D)<l VxED for some n>l, then P is said to be quasi
(strong) Feller if every weak* accumulation point #* M(X) of the sequence of
expected occupation measures {#}, x e X- D, satisfies #X(D) 0.

Indeed, if # is an i.p.m, for P, then # M(Y) and #-a.e., using Lemma 3.5, the
sequence of expected occupation measures converge setwise to an i.p.m. (the proof is
similar to the weak Feller case).

The sufficient condition in Corollary 3.3 is also sufficient for P to be quasi strong-
Feller if D is a (strong) discontinuity set.

Finally, note that the necessary and sufficient condition for uniqueness of an i.p.m.
proposed in [8] (in fact, for strong-Feller Markov chains) is also valid for quasi
strong-Feller kernels.
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