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In this paper the behavior of the instantaneous energy of a harmonic oscil-
lator is investigated in the case when at a certain angle to the vector of the
phase velocity of the oscillator, random disturbances of the "white and
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1. Introduction

By harmonic oscillator without friction we mean an oscillating system for which
motion is described by the following linear differential equation of the second order

(t) + 2(t) o, (o) o, (o) o, (1)

where u0 is the initial position and /t0 is the initial velocity of the oscillator (u0 +
/t0 > 0); k > 0 is a parameter of the oscillator; u(t)is the position and/t(t) is the velo-
city of the oscillator at the moment of time t > 0, and (t) [kl2u2(t) / /t2(t)] is the
instantaneous energy of the oscillator.

Equation (1) is equivalent to the system of first order differential equations

(2)
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where Xl(t ]ctt(t),x2(t it(t). In addition, 2c(t)-]x(t)] 2, where x(t)-

In the present paper we investigate the behavior of instantaneous energy c(t) in
the case when, at a certain angle to b (kx2(t),- kxl(t)) where b is the vector of the
phase velocity of system (2), fluctuations of the "white noise" type (tb(t) is a

"derivative" of a Wiener process w(t)) and fluctuations of the "shot noise" type
(/([0, t),R) is a "derivative" of a Poisson measure u([0, t), R)) are acting. In this case

system (2) is considered as the following system of stochastic differential equations
without aftereffect (see [2]):

dx(t) a(t, x(t))dt -+- b(t, x(t))dw(t) + /
R

c(t. x(t). u).(dt, du).

where a(t.x) (ql(t.x)xl q- q2(t.x)x2. -q2(t.x)xl / ql(t.x)x2).

X (Xl, X2) E / X R, x1(0) k/to, x2(O -/to,

b(t.x) (gl(t.x)xl + g2(t.x)x2. g2(t.x)xI -k- gl(t.x)x2).

C(t,X, U) (71(t, x, U)x q- /2(t,x, u)x2) 72(t,X, u)xI q- ")’l(t,x, U)X2)

u E R is a non-random vector function, w(t) is a one-dimensional Wiener process,
u([0, t),A)) is a Poisson measure with parameter tII(A), such that II(R)< oc. The
process w(t) and the measure u([0, t),A), are defined on the probability space
(f,F,P). They are jointly independent and Ft-measurable for any t _> 0 and A,
where F C F is a nondecreasing family of (r-algebras.

Qualitative analysis of the behavior of the harmonic oscillator without friction
under the random perturbation along the vector of the phase velocity by stochastic
process of the "white noise" type is made in paper [5] and qualitative analysis of the
behavior of the harmonic oscillator with friction is made in paper [6]. Book [8] gives
a formula for the fundamental matrix for linear equations of type (3) with varying co-
efficients. For equations with constant coefficients, conditions are given under which
[x(t)[0 with probability 1 as tc as well as conditions under which
EIx(t) 12--,O as t--<x. The behavior of the instantaneous energy of the harmonic os-
cillator under the random perturbation only of the second component of the vector of
the phase velocity was investigated by many authors (see, for example [3, 4, 7, 9]).

In the present paper, we investigate the sufficient conditions under which the in-
stantaneous energy does not change: e(t)- e(0) (Corollary 1 of Theorem 1), the suffi-
cient conditions under which the instantaneous energy e(t) changes only step-wise
(Theorem 2), as well as the sufficient conditions of stability e(t) (Theorems 3-5) are
established for equation (3) in terms of functions qi(t,x), gi(t,x), 7i(t,x,u). It is
shown that it is possible to control the behavior of e(t) by the choice of function
ql(t, x) (determined disturbance).
We will assume that functions qi(t,x), gi(t,x), 7i(t,x,u) are such that coefficients

of equation (3) satisfy the conditions:

C > O: a(t,x) 2 + b(t,x) -4- f c c(t,x,u) 12II(du) < C[1+ Ix 12];
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VN > OCN: a(t,x)-a(t,y) 2 -4- b(t,x)-b(t,y) 2 + f c(t,x,u)-

c(t, y, u) 12II(du) < CNlX- y[2 with Ix < N, Yl < N;
n{: Ix + c(t, z, )1 o} o fo n t _> o, I. # o.

It is known (see [2]) that conditions 1, 2 guarantee existence of the unique
continuation from the right strong solution x(t)- (xl(t),x2(t)) of equation (3).

In addition, we will use the following designations"

v (t, 4) ,(t, 4) tn(4);

2I(t, x) 2ql(t, x) + g2(t, x);

(t, ) I(t,.) + l(t, );

2 t(t,x, u) (1 + 71(t,x, u))2 + 72( ,x,

2. Stabihzation of e(t)

According to the generalized Ito’s formula (see [2])"

d Ix(t)] 2 [2(x(t),a(t,x(t)))+ b(t,x(t))]2]dt + 2(x(t),b(t,x(t)))dw(t)

+ J [I (t) + c(t, (t), ) x(t) ],(t, ,1,
R

where (.,.) is the inner product.
Thus,

d lx(t)] 2 Ix(t) 12{Ii(t,x(t))dt + 2gl(t,x(t))dw(t)

+ J [(t,x(t), ) ].(dt, d)}.
R

(4)

Condition 3 implies that (t,x,u)> 0 in measure II(du) for all t> 0, x. Therefore
(see [8])"

x(t) 12 x(0) 12ex I2(s,x(s))ds + 2 gl(s,x(s))dw(s)
o o ()

}
Relations (4) and (5)imply the following statements.

Theorem 1: If for all > 0 and x
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(1) gl(t,x)-0;
(2) II{u" (t, x, u) # 1 ) 0,

then with probability 1 for all t >_ 0 the following inequality holds true"

(o)i f,() < (t) < (o)i fM(),
where

rn(t) inzfI(t,x), M(t) -supI(t,x).
x

Proof: Therefore, in this case relation (5) takes the form

{( }Ix(t) 2- Ix(O) 12exp I(s,z(s))ds

which implies the statement of Theorem 1.
Remark 1: Condition (1) means that system (2)is perturbed by "white noise"

only along the vector of the phase velocity. It follows from condition (2) that

2(x, c(t,x, )) c(t,x, u) 2 < 0

in measure n(d=) for all t > 0, Ix :/: 0. Thus, condition (2) means that system (2)
is perturbed by "shot noise" at an obtuse angle to the radius-vector.

Corollary 1: Under conditions (1) and (2) of Theorem 1 it is possible to control
the behavior of e(t) of a perturbed system by the choice of function ql(t,x) (determin-
ed disturbance). For example"

(1) if 2ql(t,x) -g22( t, x), then e(t) (0) with probability 1 for all t _> O;

(2) if f toM(s)ds < C, then e(t) < e(O)ec with probability 1 for all t > O;

2(t x)+ then (t)- (o)eCt; etc.(3) if2ql(t,x)- -g2 Co,
2Theorem 2: If 7i(t,x, u) 7i(t, u), 1,2 and gl(t,x) O, 2ql(t,x + g2(t,x) 0

for all t >_ 0 and x, then

(t) / () ’ if t < 7"1,

x(0) 2 I-I (7"k, Uk), if 7"k <-- t < 7"k + 1’
’k<t

(6)

where 0 < 7"1 < 7"2 < are shock-points of a Poisson process u([O,t),R) and v({7"k}
{uk} 1, k- 1,2

Proof: Therefore, under the conditions of Theorem 2, relation (5) takes the follow-
ing form:

x(t) = x(0) 12exp ln(s,u)v(ds, du)
0 R

which implies equality (6) (see [2]).
Corollary 2: Under the conditions of Theorem 2, e(t) changes only step-wise:

moreover, shocks take place only in the moments of impulse disturbance, that is, in
the moments of jumps of a Poisson process v([0, t),R). In particular, if
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)2 2(1 + ")/1 + 3’2 is a constant magnitude, then

) 2 (o, t], ).x(t) 2 x(0) 2[( 1 + ")’1 -- ’2]u(

2Remark 2: If II{u: (1 + 71(t, u))2 + 72(t, u) 7 0} 0 for all t _> 0, then

i(t) le_{ Ix(0) 12’ ift<71,
0, if 7-1

_
t.

(7)

(8)

This means that under the first impulse disturbance, the considered system moves
into the equilibrium state and does not leave it with probability 1. Thus in this case
with small disturbances of coefficients 7i(t,u), it is possible to achieve equality (7)
and then obtain (8) by passing to the limit.

Theorem 3: If for all t >_ 0

then

P{ t_>oSUp (t) u

for any 1 > O, 2 > 0 as soon as Ix(O)[ < 6; 5 > O.
Proof: Formula (4) implies the following equality:

where

(t) 2 / gl(s,x(s))dw(s) + / [(s,x(s), u)- 1] (ds, du).
o o

Therefore, with probability 1 for all t _> 0

x(t) (0) + (t). (9)

Since q(t) is a square integrable martingale, then from the inequality (9) we have (see
[1])"

P{ t_>oSUpr](t)gl}_
I(O)1 =

(10)

The statement of Theorem 3 follows from (9) and (10).
Theorem 4: If
(1)

o
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for some > 1/2; and

lhen

P {limt__,o Ix(t)[2-0}- 1.

Proof: Hence, we can rewrite equality (5) as

where

ix(t) 12_ ix(o) 12exp t 1
t- I(s, x(s)) +

0

0 0 R

(11)

According to Condition (1) of Theorem 4, we will find 5 > 0 and 0 > 0 such that
with probability 1

t--a I(s,
0 R

as t > T. Furthermore, since (t) is a square integrable martingale with characteris-
tics which satisfy the following inequality"

Reasoning similarly to [4, Lemma 7.1], it can be proved that

P {tlimt-C(t)- 0}-1.
Therefore, taking into account (11), we obtain the statement of Theorem 4.

Theorem 5: If for all >_ 0 and x"

and

then

I(t,x)+ /[(t,x,u)- 1]II(du)- Q(t)
R

lim / Q(s)ds
t--(x)

0
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lime a(t) - O.

Proofi Hence, from relation (4) we have

(t) z(0) + J() () d"
0

Therefore,

E x(t) 12 (0)12 f

This equality implies the statement of Theorem 5.
Remark 3: If the system is perturbed by "centralized shot noise" ( ([0, t),A)is a

"derivative" of a Poisson nature) instead of "shot noise" and other perturbations are

fixed then only the orientation of a(t,x) changes in equation (3), that is,

a(t,x)- (’l(t,x)xl +2(t,x)x2,-2(t,x)xI +’l(t,x)x2)

where
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