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This paper develops a recursion formula for the conditional moments of
the area under the absolute value of Brownian bridge given the local time
at 0. The method of power series leads to a Hermite equation for the gen-
erating function of the coefficients which is solved in terms of the parabolic
cylinder functions. By integrating out the local time variable, this leads to
an integral expression for the joint moments of the areas under the posi-
tive and negative parts of the Brownian bridge.
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1. Introduction
1.1 Review of the Methods and Results

There is considerable literature on the integral functionals of Brownian motion, going
back to M. Kac [5]. Recently, the results and methods have been unified by M.
Perman and J.A. Wellner [9] who also give a good survey of the literature. The pur-
pose of [9] was to obtain the law of the integral of the positive part of both Brownian
motion and Brownian bridge. In short, they obtained the double Laplace transform
of the laws of A1 (t): = [EB*(s)ds and Ag": = [{U T (t)dt, where B(s) and U(t)
are standard Brownian motion and Brownian bridge, respectively (Theorems 3.3 and
3.5 of [9]; actually they obtain the double Laplace transforms for an arbitrary linear
combination of positive and negative parts). They also found (Corollary 5.1) a recur-
sion formula for the moments. These results are obtained from excursion theory, by
conditioning on the local time of B at an independent exponential random instant,
and appealing to previous known results of Kac, Shepp, etc.

Despite the considerable scope of these results, it seems to us worthwhile also to
look at what can be done by conditioning on the local time £, of U at = 0. In prin-
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ciple, all of the known results for the integrals of U follow from the corresponding con-
ditional law, by integrating over the (known) joint distribution of local time at zero
and the positive sojourn. This is because (a) the conditional law of the positive so-
journ §*: = [lI 0,00 (U(t))dt of U, given the local time at 0, is known from P.
Lévy (see [7, Corollary 1] - that paper treats a problem analogous to the present but
with the maximum replacing the area integral) and (b) given the positive sojourn S+
and the local time {; at 0, the local time processes of U with parameters z > 0 and
z < 0 are independent and distributed as the local time processes of reflected Brown-
ian bridges with spans §* and 1—S 1, respectively (the corresponding assertions
without conditioning on ¢, are false: given only S *, the local time of U at >0 is
not equivalent in law to the local time of a reflected bridge of duration St even if
z =0). Accordingly, we are led to look for the law of ( [ |U(t)|dt|¢y=1z), 0 <z.
What we obtain below, however, is not an explicit expression for the law, but’a recur-
sion formula for the moments (as functions of z). The moments, in this case, deter-
mine the law and conversely, but experience in similar cases (for example, that of
Brownian excursion; see L. Takacs [14]) has shown that neither need follow easily
from the other. Thus, finding the explicit conditional law seems to be still an open
problem (as it is also for A", but to a lesser extent).
To describe our method, we consider the process defined by

T

W(z): = ({(z),1- / {(u)du),0 < z, (1.0)

0

conditional on £(0) = o > 0, where {(z) is the semimartingale (occupation) local time
of |U(t)]| at £ >0. Thus, the second component is the residual lifetime of |U(t) |
above z (we note the change of notation - £¢(0): = 2¢, from above). Set E: =
[0,00) ® (0,1]. It is not hard to realize that W (z) is a realization of a homogeneous
Markov process on E, absorbed at (0,0). This process, indeed, is the subject of a re-
cent paper of J. Pitman [10] who characterizes it as the unique strong solution of a
certain S.D.E., and it appears earlier in the paper of C. Leuridan [8], who obtained
the form of the extended infinitesimal generator by an h-path argument. We propose
to call this process the “Pitman process”. Our requirements for this process are
rather different from those of [10]. We wish to apply the method of Kac to the area

functional
o0

/oo y— /Uﬂ(u)du v = / vl(v)dv L /yIUy(u)Idu
0 0 0

0

given £(0) = o and [ €(u)du =y, where U, is a Brownian bridge of span y <1.
Thus, it is the integral of the second component of our process starting at («,y). Con-
sequently, we need to characterize this process W via its infinitesimal generator, as a
two dimensional diffusion whose semigroup has the Feller property. Much of this
may be obvious to a very knowledgeable reader, but it provides orientation and it
seems to us that the methods may be more widely of use. In any case, the reader
who can accept Corollary 1.3.5 (with A given by (1.2)) could go direction to Section
2.

We need the results of [10, Proposition 3, Theorem 4] only to the extent that there
exists a diffusion process W = (X,Y) (a strong Markov process with continuous
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paths) on E U (0,0) starting at (z,y) and absorbed at the state (0,0) at time T;: =
inf { t > 0 : [{X(u)du =y} < oo, of which the process (1.0) is a realization with z =
a, y =1, and the law of X(-) for this process is weakly continuous in its dependence
on (z,y). We also rely on the stochastic differential equation of [10] to determine the
form of the generator of W, (see [8] for an alternative method).

Finally, we also need the scaling property [10, Proposition 3 (iii)]. Let P*Y
denote the law of W starting at (z,y) € E. Then the equality of law

hold Pov(x(-)e = PV X C 1 e ) (1)

Our main assertion concerning W is as follows.

Proposition 1.1.1: For N >0, z < N, let Wy (t) denote W(t AT p), 0 < t,where
Tpy: =inf{t: X(t) = N}, and let Ey denote [0, N]®[0,1] with the segment {(z,0),
0 <z < N} identified to the single point (0,0) and the quotient topology. Then Wy
has law that of a diffusion on the compact metrizable space Ep absorbed at
{z = N}U{y =0}, whose semigroup has the Feller property on E and is strongly
continuous at t = 0, and with infinitesimal generator extending the operator

Af(z,y): —(2wg’2+(4—@§)§;—zay)f(m,y) for f€CHEY)  (12)

(interior compact support). The boundary segments {x =0, 0<y<1} and
{0 <z < N, y=1} are inaccessible ezcept at t = 0.

Remark 1.1: It seems non-trivial to ascertain the behavior of W starting at (z,1)
as r—oo (probably absorption at (0,0) occurs instantly). Hence the need for Wy.
One might hope to appeal to the fundamental uniqueness theorem of Stroock and
Varadhan (as stated, for example, in Rogers and Williams [13]), but there are insuper-
able obstacles. To wit, the operator A is not strictly elliptic, the coefficients are un-
bounded at y = 0 and at = oo, and A is undefined outside of E.

The proof of Proposition 1.1.1 occupies Section 1.2 below. It uses a coupling
argument, together with an extension of a strong comparison theorem of T. Yamada.
It seems of interest that this last, originally stated only for diffusions on R, extends
without any difficulty to the Pitman process on R? (Lemma 1.2.1). Knowing that we
have Feller processes to work with, while not indispensable, makes for a neater treat-
ment of Kac’s method in Subsection 1.3. The form which we develop is doubtlessly
familiar to many specialists, but we give a complete proof which should be adaptable
to other analogous situations. In principle, the method applies to give H (l’)
E%exp(—p f o V(X,)ds) whenever X is a Feller process absorbed on a boundary 0 at
time T < oo, and V(z) is sufficiently tractable. It then characterizes H (z) as the
unique bounded continuous solution of (A4 — uV)H =0 with H, =1 on 8 where A
denotes the generator of X. In other words, H , is harmomc for the process X killed
according to pV.

In Section 2, we specialize to the case when V(z,y) =y, and X is the Pitman
process absorbed on {x =N or y=0}. We write H, =1+ Y (= p)a,(2,y),
and try an expansion a, = Y % n, w(z, y):c Then a scaling argument leads to

m

bn'k_—_-ys"/z(xy—i)kcnyk, where Cn,k are constants, and the problem reduces to

determining G, (s): = > - Cn, ksk. Some power series arguments lead (tentatively)

2
to Gy(s) = %exp(f—G)D_l(%), where D _, (s) denotes the parabolic cylinder function
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for 0 < n. The key to the solution for n > 1 lies in Lemma 2.3, where it emerges that
K, (s): = sG,(s) solves the inhomogeneous Hermite equation (2.13) (this remains a
surprise to us). Since the forcing term (—%Gn__l(s)) turns out inductively to be a
finite linear combination of eigenfunctions (Gj = 1), this makes it possible to express
the unique bounded solutions G,, inductively in n, by a recursion formula for the
coefficients (Theorem 2.4). This is our main result, but to establish it rigorously, by
proving that the series for H , converges uniformly and absolutely on E and satisfies
the uniqueness conditions of Kac’s method, occupies the rest of Section 2. Since the
series is not summed explicitly, we do not find H 4 in an invertible form, but it yields

1
the conditional moments, namely n!y3"/ 2Gn(acy—i), 1 <n. The recursion formula
(2.17) for the coefficients is not particularly simple, but no doubt it can be program-
med on a computer if high-order moments are desired.

In Section 3, we derive closed form expressions for the moments of the areas of the
absolute value and the positive part of a Brownian bridge in terms of the coefficients
in Section 2. These are not as simple as previously known recursion (see [9]), but
they are simpler (perhaps) given the coefficients of Section 2. Anyway, they provide
more checks on Section 2, and the method leads in Theorem 3.6 to integrals for the
joint moments of the areas of the positive and negative parts of Brownian bridge.
These can be done explicitly in the simplest cases, but the general case (which hints
at orthogonality relations among the parabolic cylinder functions) is beyond our capa-
bility.

1.2 Proof of Proposition 1.1.1

Let us show first that T\, AT tends to 0 uniformly in probability as (x,y) tends to
the absorbing boundary {z = N}U{y = 0} of E ;. There are really two separate pro-
blems here: one as z increases to N and the other as y decreases to 0. For y > 6 >0
as z—N the coefficients of A near {x = N} are bounded, in such a way that one can
read off from the meaning of A the uniform convergence in probability of Ty to 0.
Unfortunately, to make this rigorous seems to require comparison methods as in
Lemma 1.2.1 below (adapted from the one-dimensional case). Once the comparison
is established, the convergence reduces to a triviality for one-dimensional diffusion
with constant drift and need not concern us further.

The problem as y—0 is more interesting, and here it suffices to show that T,
tends to 0 in probability as y—0 + uniformly in & (for W, not for Wy). For € > 0,

-1 1
let E: ={(z,y) € E:zy 2<¢}, and let R, =inf{t > 0: X, <€Y?} <oco. Thus R, is
the passage time to E, and it is a stopping time of W. We show first that Ty A R,

_1 ~1
tends to 0 wuniformly in z. Indeed, since (%)Yt 2= -X,Y, 2< —¢ for

1 1
t <TyA R, we have for the process starting at (z,y) € E — E_, 2<y2 YTy A RE)>

1
>e(TyAR,). Thus ToAR, < 2¢~ 1y2, uniformly in = as asserted. Consequently,
we see by the strong Markov property at time Ty A R, that it suffices to show that
Ty is uniformly small in probability for (z,y) € E,N{y < €} as e—0 +.
To this effect, we use the scaling (1.1) noting first that the process Y (-) may be
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included on the left if we include yY (- /\/yj) on the right. Indeed, Y, =y~ [{X ds,
which for Pac/\/—’1 is equivalent to y— f(t)\/gX(s/\/gj)ds, which equals y(1-—
fé/\/ngds) =yY(t/,/y) as asserted From this, it is seen that the P™¥-law of T,
equals the Px/\/;’ 1—law of y% T, and since :l:y_%< € and y%< € it is enough to
show that]\}i_r)nooPm’l{To > N} =0 uniformly for z < ¢ small. Here we can use the

fact discussed in [10], that the P**law of X, is that of the local time of a standard
Brownian excursion. As such, it does not return to the starting point 0 until ‘time’
Ty, i.e., Ty is the excursion maximum value. Consequently, for small € >0,

-1
POUX.Y, 2 reaches ¢ before Y, reaches %} > % Then denoting the event in brackets

1
by S,, and setting U(e) = {inft > 0: X, = Y?¢} < 00, we have by the strong Markov
property

PO, I{TO > N} 2 EO,]{PX(U(E)), Y(U(e)){TO > N}, Se}
1
= B9 PE YU ()T, > N} S,)
> PYYTy > NV2}P(S,) 2 1P {T > Nv/2).

Since this uniform in € (small), the assertion is now proved.

To derive the form (1.2) for the infinitesimal generator, it is enough to take n = oo
and consider the semigroup of W acting on the space By(E) of bounded, Borel
functions. Then from [10, p. 1], for (z,y) € E with y > 0, the P®Y-law of W is that
of the unique strong solution of

dX,=@4- X2V )du+2/X dB,; dY, = ~ X, du; (Xp,Yo) = (2,y), (1.3)

where the solution is unique up to the absorption time Ty at (0,0). Then by Ité’s

formula for u < Ty, we have P*Y-a.s. for f € Cz(E(])V),

FW W) = f@)+ [ 1.00,)2/aB,
0

(1.4)
b [ IV )X, 4 £ W )@= XY ,) = W)X o
0
Since f, vanishes near y = 0, we can take expectations to get
uT {ESYF(W,) ~ f(z,y))
u (1.5)
R e / (2 0a(W )X, + fo(W )4 = X2/Y ) = F (W)X, )dv.
0

Let ¢ = dist.(bdry E to supp f) >0, where distance and boundary are Euclidean
(without identifying the line y =0), and let C = {(z,y) € E:dist((z,y),suppf) < 5}
Starting at (z,y) € E —C, the process must first reach C before reaching supp f.
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Thus as u—0 + in (1.5) we get 0 uniformly for such (z,y) provided that
limu~'P*®{sup | W, - (a,b)| > £} = 0 uniformly for (a,b) € C. (1.6)
u—0 s<u 3

Similarly, for (x,y) € €, (1.5) tends uniformly to Af(z,y) provided that (1.6) holds
for every € >0. Thus the assertion (1.2) for the (strong) infinitesimal generator
follows if we show that (1.6) holds for all € > 0. Reducing € if necessary, the coeffi-
cients of A are uniformly bounded on an g-neighborhood C_,5 of C, and the “local
character” assertion (1.6) is familiar for diffusion, at least in one-dimensional. Unfor-
tunately, we lack a reference for dimension exceeding one, so for the sake of complete-
ness we sketch a proof by reduction of A to the one-dimensional case (fortunately A
is ‘almost’ one-dimensional). Indeed, the a.s. identity Y (¢)—b= — [{X(u)dy, t <
T, shows that it suffices to prove (1.6) with | X, —a| in place of | W, —(a,b)].
To this end, choose constants 0 < ¢ < d such that ¢ < 4 — z2 /y < d holds on C, /3 and
let X gl) (resp. X gz)) be the solution of (1.3) starting at a but with ¢ (resp. d) replac-
ing the coefficient 4 — 22 /y (using a single Brownian motion B throughout).

Lemma 1.2.1: For (a,b)€C, we have X <X, <XV, PO oy for all
t<T: =T(E~-C,_,3) (the passage time of W, to E —CE/B).

Proof: The diffusion coefficient o(z) =2,/ is the same for all three processes,
and satisfies (o(z)—o(y))2<4|z—y|, where [, I 4z = co.  Taking, for
example, the semimartingale X gz — X, suppose we have shown that its local time at
0 vanishes. Then we can repeat the proof of Yamada’s comparison theorem from [11,
IX (3.7)], using Tanaka’s formula for continuous semimartingales [11, VI (1.2)], to
get E(X, A7~ ng,z T)+ <0, which suffices for the proof. The case of X, — X; ) is
analogous, so it remains to see that the local times vanish at 0. The proof of [11, IX
(3.4)] goes through without change in both cases, completing the argument. »

Now to derive (1.6), note that because it is known that P%°{sup, <u|X§‘)—
al >} =o(u), i=1 or 2, uniformly on C, it follows from Lemma 1.2.1 that
P*b{sup, <unT|Xs—al >&} =o(u) uniformly on C as well. But since |Y,—
b| <t(a+sup, <,| X,—al|), we have if t <e(6a+¢€)~! and sup, . ,| X,—a| <§,
also sup, o ,|W,—(a,b)| < \/ié <35, hence t<T. Thus conversely, for u<
€(6a+e) ™7 {sup, c yar | W,—(a,0)| >5]C {sup; c yar|X,—a| >§}, and if M
is an upper bound of a on C, then for u<e(6M+€)~1, {sup,c pnp|W,—
(a,6)| > 5} has probability o(u) uniformly on C. Since P*°{sup, . |W, —
(a,0)|} >5} =1, this gives probability of o(u) for {sup,.,|W,—
(a,0)| >5u<T}U{u> T}, uniformly on €, and this is not increased if we replace
{u>T} by {sup,¢,|W,—(a,0)| >5u>T}. Thus Pa’b{sups <ulW,—
(a,0)| > 5} = o(u), uniformly on C as required. B

The last statement of Proposition 1.1.1 pertaining to {z =0} is known for P%¥
since then X, has the law of an excursion local time (see [10]). For P®'Y it then
follows from P%Y and the strong Markov property at the passage time to z. It
remains to discuss the Feller property of the semigroup. Since W, was shown to be
absorbed at (0,0) for P(x’y), uniformly fast as y—0 4, it is clear that we must
identify the segment {(z,0), 0 <z < N} with (0,0) in order to preserve continuity on
the boundary of Ep. It is well-known and easy to check that the absorbed process
W is again a diffusion (on E ). Let T{V denote its semigroup on By(E ). Then
by the above remarks, for fe€C(Ey) and t>0, hm(z’y)_'(xo,yo)Tt flz,y) =

f(zgyp) uniformly for (zg,y,) € absEy, where E is compact with absEp: =



Moments of the Area 105

{(N,y), 0 <y<1}U{(0,0)}. Actually, the segment {0,z < N, y = 1} has yet to be
discussed but it is obviously inaccessible except at ¢ = 0, and there is little difficulty
now in seeing that limt_,o_’_T{Vf(z,y) = f(z,y) uniformly on E for f € C(Ey)
since lim,_,q, f(z,y) = £(0,0) uniformly on 0 <& < N (here we can resort again to
the comparison argument as in Lemma 1.2.1 to show that lim, ,,  P"Y{| X, ~
x| > €} =0 uniformly on Ep —{y <¢}). In other words, we have strong continuity
of T{V at t =0, and it remains only to show that, for f € C(E ) and t > 0, vaf is
continuous on Ep —absE .

By the scaling property (1.1), we have

T ,1

T 2,9) = B0V () = BV STy, a0/ 00 /D) (L)
By strong continuity of T{v , we have for €>0 and any ¢ >0,
lim, _,, PTY{|W n(t;) —Wpn(ty)| > €} =0, uniformly in (z,y) and t,. Also, since
absozrptilon occurs uniformly fast near the absorbing boundary, it is seen that for
Ny <N, <M fixed, limy__ . 04 PP | Wy (t)=Wy (t)] >} =0, uniformly
intand z € Ep_fora mettic g}:nerating the topofogy of £ A,II

Now let (z,, yln)—e(:c, y) € Ep —absEy, and for each n define two independent pro-
cesses W73, and Wy on the same product probability space, where Wi/(0) = (z,,,v,,)
and W (0) = (z,y). Let

_1 -1
T,: =inf{t > 0: X%()(Y (1) 2= X ()Y N(1) 2},

where (X7, YR,) = WY, etc. Since 0 <Y 5 (0) =Y n(t) < Nt, it is seen (for example,

using Lemma 1.2.1) that lim,,_, T, =0 in law, and of course, each T, is a stopping

time for the usual product filtration ¥, (t). Then we have, if | f| <¢,

| E*mInf(W (1) = EYF(W (1)) | < 2¢P{T,, > 1}

n (1.8)
+ 1 EE NI 1 ) - BVNTDp T )y T, < 1))

As n—oo, the first term on the right tends to 0. Setting

-1 -1
ZMTp): = XN(TL)(YR(T,)) 2= XN(T)(YN(T,) 2

the difference in the second term becomes by (1.7)

£ T U TREDX ) = T VTR YR
(1.9)

: YN/\/?T‘]\;(T,,)(“ ~T,)//YN(T,)~f (analogous)]

where (analogous) has the scale factor Y (T,) in place of Y3 (T,). Now since
T,,—0 in probability, it is clear that Y3, (7', )—y and Y (T ,,)—y in probability, and
then by the remarks following (1.7), we see that the difference (1.9) tends to 0 in pro-

. . : - ZMT )1
bability, viz. each term converges in probability to E n f(\/_y-XN/\/;(t/\/g),
yYN/\/;(t/\/gj)) as n—oo, and since it is also bounded, (1.8) tends to 0 and the
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proof is complete.

Remark 1.2: It is possible, but tedious, to show that the law of a Feller diffusion
on Ep; absorbed at {z = N}U{y =0} and with strong generator satisfying (1.2) is
thereby uniquely determined. For an indication of a proof, we observe that for 0 < ¢
small, the coefficients of A satisfy a Lipschitz condition on E ; = [e, N —€]®[e,1),
in such a way that they may be extended from F N, e to R? and satisfy the conditions
of [13, V, 22]. Thus if (1.2) for the operator A determined by the extended
coefficients is assumed on R?, there is a unique diffusion on R? which gives the
unique solution to the “martingale problem.” By optional stopping, this process
absorbed on {z = ¢} U{z = N — €} U {y = ¢} solves the martingale problem on Ey |,
and it is the unique such solution because any such can be extended to a solution on
R? using the strong Markov property on the boundary. It remains only to let
€ = €¢,—0, and to form the projective limit of these diffusions to obtain the law of
W n uniquely.

1.3 A Form of M. Kac’s Method for Functionals of an Absorbed Process

We turn now to establishing a variant of Kac’s method for obtaining the law of func-
tionals of Wy. For this we need to introduce a “killing” of W, according to the de-
sired functional. But as an introduction to the problem we first make some observa-
tions about invariant functions of Wp. Let us call an f € C(E ) “W p-harmonic” if
f(W (1)) is a P™Y-martingale for (z,y) € Ey. We claim that f is W y-harmonic if
fe CQE%)”CZ(E?V) and Af =0 on EY (the interior of E ). Suppose first that
f € CZ(E’y) (compact support). Then f is in the domain of the strong generator and
by Dynkin’s Formula we have E®Yf(W y(1)) = f(z,y)+ E®Y [LEAf(W y(s))ds =
f(z,y). Thus the martingale property follows by the Markov property of W . Now
supposing only f € CZ(E(])V), set B . =[6,N—€]®[e,1—¢] and note that by stan-
dard smoothing argument there is an f € CE(E?\,) with f,=f on Ep .. It follows
by optional stopping that, for (z,y) € Eneo F(WN(EAT,)) is a P™Y-martingale
where

Te=inf{t>0:Wy(t)e{e=cor N—€e}U{y =€}}. (1.10)

Now f is uniformly bounded and, by continuity of paths we have lil’r(l)TE = Tope =
€—

inf{t > 0:W (t) €absE} for (z,y)€ E%. It follows that for (z,y)€ ES,
FWN(tAT,,)) is a P®Y-martingale. Since W n(t) = W (¢t AT,,,), and the result
is trivial for (z,y) € absE;, this finishes the argument except for P®'1. But, of
course, the Markov property for P®1 shows that F(W n(t+¢€)) is a martingale given
{W n(s),s < €} for every € > 0, and along with right-continuity of W at t =0 this
suffices trivially.

Remark 1.3.1: The converse assertion that if f is W -harmonic then Af =0 on
E?V is probably valid, but it is not needed for the purposes here. For applications it
is the solutions of Af =0 which give the “answers.” We note also the expression
f(z,y) = EZYf(W(T,,)), which follows for W y-harmonic f by letting t—oo under
p*Y,

Now fix a V(z,y) € C T (Ey), and let En A= ExnU{A}, where A is adjoined to
Ey as an isolated point. For each P®Y, (z,y) € Ep;, let e be an independent
exponential random variable adjoined to the probability space of W A and introduce:
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Definition 1.3.2: The process W killed according to V' is
Wn(t); t<T(A)

t) =
Wi v(t) A 1>T(8)
where T(A) =in f{t ft/\ TabSV(WN(s))ds > e}, with the inclusion of an extra path
Wy, v(t) =4, Vt> 0) = wy, and PA{w,} = 1.

Notmg carefully that there is no “killing” (passage to A) on absEp, so that
T(A) = oo for P"Y if (z,y) € absE y;, we have:

Theorem 1.3.3:  With the initial probabilities P™Y from Wy, (z,y) € Ey;,
Wy, v(t) becomes a Feller process on E A strongly continuous at t = 0, with con-
tinuous paths ezcept for (possibly) a szngle jump from Ep to A. The (strong) in-
finitesimal generator is given by Ay f: = A(f)—-Vf for f€ CZ(EN A) (z,y) € Ep,
and Ay f(A) =0. The process is absorbed on absE U A.

Proof: (Sketch) The killing formula used here goes back to G.A. Hunt, and is
well-known to yield a strong Markov process from the Feller process W ;. In proving
the strong continuity and the Feller property, the main thing to use is that the
killing occurs uniformly slowly on E p, i.e. li_r’r(l)Pz’y{T(A) < €} = 0 uniformly on E .

This not only suffices to derive the strong continuity at ¢ = 0 from that of W, but
it also preserves the main point of the coupling argument used to prove the Feller
property, namely, that the coupling time T, ( < o0) tends to 0 in law when in its
definition Wy is replaced by Wy . But a difficulty arises with the analog of (1.9)
since, for general V, Wy 1, does not obey the scaling property (1.7). Instead, we

have to introduce the killing operation on the paths /YN(T, jXN / \/Vh(T

(t=T,)/VYN(T,)), etc.) in (1.9) starting at (X{(T,,),YN(T,)), and analogously
without superscript n. But there will be no change in the result if we use the same
process W starting at (Z"(T,),1) in both terms of the difference. In other words, we
base the two futures after T',, on a single process W(t) (using the probability kernel

n
Z"(Tn)—>PZ (Tnh? {5 define the conditional law of the future at T, given ¥ (T,),
in the usual way for Markov processes). This implies that in introducing the killing

operations into the two terms we use the path with scale factor (Y3, (Tn))2 for the

first, and (Y (T, ))2 for the second, but the same path W(t), W(0) = (Z2™(T,,),1),
for each Then convergence in probablhty of the scale factors to y implies that the

-T )AT
DT (SIX ) 51V,
yYN/\/;(s/\/ﬁ))ds, i.e. their difference converges to 0. If we use (as we may) the

killing functionals converge in probability to [ (()t

same exponential random variable e to do the killing for both, it is clear that, with
conditional probability near 1, either both are killed by time ¢ -7 or nelther, in
such a way that the Feller property holds for the semigroup TN of W

Turning to the assertion about the infinitesimal generator of T V, note ﬁrst that
f(A) =0 for f € C2EY ). We have

1 TNV =)=t TN = )=t IR (W)W, () = B)
on E, while the same expression is 0 at A. The first term on the right converges to
A(f) uniformly on E. Using (1.6) as before, we may assume |W n(t) = (2,y)| <35
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with error o(t) uniformly on € as t—0. Then f(W n(t)) may be replaced by f(z, y;
r t/?”Pall t, uniformly \on FEp,, and we are left with f(z, y)t ~1pley
Jo ~@sV(Wn(s))ds > e). This vanishes outside supp f, and P("”’y)(TabS <t)=

o(t) uniformly on supp f. Thus we can extend the integral to ¢, and then

t t
P(M( / V(W y(s))ds > e) =1- E’”’yexb< - / V(WN(S))dS)
0 0

t
:Em’y(/V(WN(s))ds)+o(t)
0

=tV(z,y) + o(t),

uniformly on E ;. This completes the proof, the last assertion being obvious.
We come now to the key method (of Kac).
Theorem 1.3.4: Continuing the f;otation of Theorem 1.3.3, for p >0 and (z,y) €

En set H (z,y) = E¥Yexp(— p [ o 2PV (W y(s))ds). Suppose there exists an H €
C(EN)nC"(E‘}V) with A(H)—pVH =0 on E%; and H=1 on absEy. Then H =
H, on Ey.

Proof: We have H  (z,y) = P(z’y){WN v Teaches absEy before time T(A)} =
P(w’y){T(A) = oo}, when T(A) is defined for uV in place of V. Clearly, H,=1on
absEy, and if we set H (A)=0 then H, is harmonic for the process W N, uvs at
least if it is continuous. Indeed we have H  (z,y) = E®YH (W (T ;,, AT(A))),
and it follows by the Markov property of Wy i that H (Wy (1)) is a P*Y-
martingale for (z,y) € E .

On the other hand, if we set H(A) = 0, then H = H, on absEn UA, and we claim
that H (being continuous by assumption ) is harmonic for W N, uv- As in the discuss-
lon above for Wy, this is taken to mean that H(Wy ,y(t)) is a P ¥Y-martingale,
(z,y) € Ey. The proof is much the same as above for Wy (see (1.10)) only now the
martingale has a (possible) jump. In short, using Ey .= [e, N —€]®[¢,1~¢] as
before but H in place of f with H, = H on Ey e H.€ Cz(E(])V), and H, (A)=0,
optional stopping of the martingale H (W y (1)) for (z,y) € Ey . shows that
HWy ,w(iAT, ) is a P%Y-martingale, where T, :=T,AT(A). Now
li_%Te’uV =T, AT(A), and li_rf(l)H(WN,yV(t AT, ,v)=HWy ,y(t)) except on

the P*Y-nullset where T, = T(A). By dominated convergence of conditional ex-
pectations, H(W y /(1)) is P™Y-martingale if (z,y) € E%;. The assertion is trivial
for (z,y) €absEpnUA, and letting t—oo we have H(z,y)= Ez’yH(WN’“V
(T,ps AT(A))). This is the same as with H, in place of H, so the proof is complete
(except if y =1, but that case now follows from the continuity of H, which implies
that H  extends by continuity to y = 1).

What we need for Section 2 below is a form of Theorem 1.3.3 applying to the case
N = oo, or rather, to the limit as N—oo. This means replacing W by the process
W of (1.0) ff. We first modify the definition of E slightly, by identifying the line
{(0,2),0 <z < oo} with (0,0), so that En C E with the relative topology. We do
not compactify FE; however, we know from [10] that on E P(z’y){T0<oo}= 1,

2
where T is the passage time to (0,0) as before. Moreover, since 4 —%-<4 on E, it
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follows as in the comparison Lemma 1.2.1 that P® y{X <X(2) t<Ty} =1 for
(z,y) € E, where X( ) is a diffusion with generator 2x +4— on RT. For ng)

there are no “explosions” (oo is inaccessible) ([6, 4.5]) and it follows by comparison
that as N—oo, P™Y {X, reaches N before T} tends to 0 uniformly on compact sets
of E. It follows easily that the semigroup T, of W preserves C(E) (but of course, it
is not strongly continuous at ¢t = 0), and 1ts mﬁn1tes1mal generator has the form Af
for f € CZ(EO), A as in (1.2), just as for TV

For V € C;' (E) (bounded, continuous on E') we define Wy, from W just as in
Definition 1.3.2 for W N,V where T, is replaced by T,. The scaling (1.7) remains
valid for T, (only it is a little simpler here without absorptlon at N), and the
coupling argument remains valid to show that the semigroup T of WV preserves
Cy(E). Likewise, the argument after (1.9) for the generator of T V' goes through
for T{. Thus we see that Theorem 1.3.3 carries over to Wy, w1th only the changes
noted: the generator is Ay f for fe€ CZ(EO) and the process is absorbed on
(0,0)UA. We also have the analog of Theorem 1.3.4_as follows:

Corollary 1.3.5:  Set H,(z,y) = E"Yexp(~p [V (W(s))ds), (z,y) € E, with

Vet (E), p>0. Suppose there exists an H € Co(E)NCA(E®) with A(H)—
pVH =0 on E® and H(0,0)=1. Then H,=H on E.

Proof: There is nothing really new here, but it recapitulates the former proof.
We have H (z,y)=P"Y{To<T(A)} where T(A) corresponds to uV, and so

M(m,y) is W uv-harmonic (if we set “(A) =0) apart from continuity
considerations. On the other hand, H is continuous by assumption (and we set
H(A)=0). Since H=H, on (0,0)UA and H (z,y) = EYH (W (T AT(A))),
it suffices to show that f(z,y)= EZVH(W ,/(ToAT(A)), (z,y)€ E. We note
from the definition that if we absorb W, on {z = N}, for (z,y) € E)y we get a
process with P%¥'Y-law the same as W N,uv (actually, uV restricted to (x,y) € Ep).
The proof of Theorem 1.3.4 shows that H (W N, uv(?)) is a P Y-martingale. Now for
(z,y) EE, Wy ,y(-) and W () coincide for N sufficiently large, (depending on
the path), so 1t follows by bounded convergence of conditional expectations that
H(W ,y(t)) is a martingale for P*¥. Then letting t—oco we obtain the assertion.

2. Derivation of the Conditional Moments

We now specialize Corollary 1.3.5 to V(z,y) =y, writing for brevity H , for H,,.
Then, as noted following (1.0), we have H (z,y)=E*¥(exp(— ufo U y(s) ]

-ds)| €,(0) = ) where U, is a Brownian bridge of term y, and ¢ (v) the local time at
v of |U |. Thus H (:c,y) is the Laplace transform whose inversion gives the law of

(fOIU(s)lds|Z(OS‘_:c)_(fov£ (v)dv|e,(0)=z). We do not solve (A-—

py)H , = 0 per se, but instead we assume an expansion H (z,y) = o 0( nu) E*Y
(f g 0¥ (v)dv)", and then solve recursively for the terms. It is shown that the series
converges for p € R and satisfies the conditions for H e Hence the expansion is justi-
fied and the conditional moments are

n

Ty

y n
ETY / Y(v)dv | = F ( / | Uy(s) | ds) Ey(O) =z |
0 0
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and they determine the (conditional) law of ([ §|U,(s) |ds | ¢,(0) = z).
In order not to prejudice the notation, let us write formally

Hyzy) =1+ (=) ay(z,y), (2.0)

n=1
and try to solve for the functions a,(z,y). First we note from the scaling property
(1.1) that we have
H (z,y) = H#c3(xc"1,yc_2),0 <ec. (2.1)
Indeed, since Y, = [ % X(u)du, we have for B> € B,
2
P™Y{(X,,Y,) € B?} = pe/ev/e {(eXy, c2yv) € B?},

and so fg Y, dv( = f8°Y dv) for P*Y is equivalent to ¢3 [ Y dv for pele y/c
asserted. Then we may impose

a,(z,y) = c2"an(wc “Lye™%),e>0,1<n. (2.2)
Remark: We do not need to justify (2.2) rigorously, because it leads to the

explicit solution, which is unique and verifiable.
Recalling (Corollary 1.3.5) that the equation satisfied by H , is

—( 9,4 _2*\d o d g =
AH, = <2$d 5 +<4 )(Tx zdy)Hl‘ =pyH ,on E, (2.3)
we have by matching powers of y,

Aay = —y; Aa, = —ya, 1<n (2.4)

and we are lead to guess the existence of solutions in the form

ap(z,y) =1,

,y) ank )Z’,

2
by formal analogy of A with the heat operator ———, when y replaces t).
gy g2 dt
T

(2.5)

We remark that a,(0,y)(=b, o(y)) should be the n'® moment over n! of the

3n
integral of the Brownian excursion of length y. By scaling this is ¢,y 2 where

Cpt = ~m'1 with M denoting the n*® moment for the integral of standard Brownian
excursion. These moments figure prominently in Takacs [13], where M, k < 10, are
tabulated (Table 4) and a recursion formula is given. Here they provide a check on

our answers. When we work out the b, k(y) by power series method, it turns out
that the series of even and odd terms commence with b, o(y) = ¢, 3% , " and by 1(y) =

—n-lyn (where ¢o = 1), respectively, where at first the ¢, are arbitrary constants
whose identity is known only from the (assumed) excursion connection. However
later on, when we sum the series in terms of parabolic cylinder functions D _, it
emerges that the values of ¢, are dictated uniquely by the behavior (limit 0) of the
solution as y—0. Thus it turns out that the case of the excursion (z = 0) follows as a
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consequence.

When we substitute the series (2.5) into (2.4), it emerges that there is a solution in
(3n —k) .

the form b, k(y) =c, ¥y % , so that c, 0=¢, and c, ;= — ”4_1. Indeed,

granted a solution of the form (2.5), this form for b k follows by the scaling (2.2).
Thus we expect

3n oo ( _1>’“
a,(z,y)=y?2 Z Chk\ZTY %), (2.6)
k=0
and the summation of the series reduces to identifying the generating functions
[0.8]
G,(s): = Z cnyksk; Gy(s) =1. (2.7)
k=0

Let us go through the case n =1 directly (although it is a consequence later of
more general considerations) since (unlike n = 2) we can derive the result by direct
summation of the series, and it shows where the functions D _, come from in this
problem.

Lemma 2.1: There exists a bounded continuous solution a,(z,y) on E of Aay =

—y having the form (2.6)-(2.7) with ¢; y=c; =M, and Gy(s) = 2exp(le) 1),
where D _ is the parabolic cylinder function [15,16.6]. Moreover, llrln ay(z,y) =0
and this is the unique such solution. Ty~ T—00

Proof: Substituting (2.5) for a; into (2.4) gives b; ; = —= Y from the constant term
(in z), and then b) 5 =12b; , from the coefﬁc1§nts of z. From the scaling (2.2) we

need c3b1 0(yc - 2) =b; o(y), hence by o(y) = ¢y? for a constant € not yet determined.

Then b1 2 _8y , and continuing in this way, each b1 ok +1 follows from b1 2k —1
unlquely, as does b1 2(k + 1) from by, (the latter all have the factor ¢). Thus we get
formally

= 3
a(2,9) =(— o4 * (k4 1)(2k - 1>~-1>-ly-k+1x2k+1)+ay§exp(g—;)

o k 3 (2.8)
_ -y (ﬁ) 1 o2 (ﬂ)
=— = T |t cy“exp | o ),
P28 (prp) o (&

where for k£ =0 the expression %§(k+%) =1. Now comparison with the series

expansion of the confluent hypergeometric function My ., ([15, XVI, 16.1]) shows
that this becomes

=3
—zy 22V 22\ 4 22 N % 22
a(z,y) =\ —/—M 1(——X——> exp-=— |+ cy?exp | & ) (2.9)
4 -3 8y \ 8y 16y 8y
Similarly, by Kummer’s first formula [ibid, 16.11] we get
1
123 2 3 o 22\ —2) 4
cy’expg = cyexpis—M _% Sy 8y



112 FRANK B. KNIGHT

and hence
a(z,y) = — a2 _%42%M z? —-"24§M z? 2.10
1 ay)“ explﬁy z y _11 8y ¢ _1 1 8y N ( . )
4'4 4 4

2
Here the functions M on the right are unbounded as %5-—»00, but the expression of
the Whittaker function Wy ., in terms of M ., from [ibid, 16.41] shows that if

2
c= Tﬂ', then (2.10) becomes

_3 2\ -7 22
ay(z,y) =2 4(expm>a: 24w L _}1_<@) (2.11)
_1
The asymptotic expansion of W [ibid, 16.3] gives W ;| (z)~exp (—F)z % as
~1 %

2 2
r—00, so that a,(z,y) ~ ¥_ which tends to 0 as &—oo (if ¢ < k fixed then §—oo, and

2 2
¥ <%0, but if z—oo then 4 <1-0). On the other hand, if §—oo, while 5- < k

13
fixed, then (¥)2y2—0 and so (2.11) tends to 0 as asserted. As for boundedness,

13
2 -17 13
we have limit 0 if z—0 with - > ¢ > 0 since z 2yt = (—%)41;2 and y—0, so it only
x

2 -
remains to consider the case 5-—0. In this case, (2.8) gives the asymptotically #
3

+ ¢y2, where y < 1 and £—0, so boundedness follows.
As for the uniqueness assertion, let @, denote the difference of two such solutions.
Then Aa; =0, and it follows as in Section 1 that @ (W(t)) is a bounded martingale

for P*'Y, (z,y) € E. Since Y (t) = ffO(X(s))ds, we see that as t1T (and X(t)—0)
we have Y(t) < (Ty—t)X(t) when X(t) =m§)t(X(s), hence for a random sequence
8

t,—T,. Then X(t,)/Y(t,)—0o0, and so @;(W(t,))—0. Hence a;(W(t))—0 as t—T,
and it follows that @,(z,y) = 0 as asserted.

It remains to express (2.11) in terms of D _;. By definition of G, and using the
definition of D _, in [ibid, 16.5], we have as asserted

Remark 2.1: From the expression of W in terms of M ([ibid, 16.41]) it follows
that W ; (z)=Wj; (z) for £>0. Then by [ibid, 16.2] we get G,(s)=
1 71

-1 2
2 2exp(%) erfc (L>, 0 < s. This is useful below in Section 3. Using the recurrence
/5

formula for D, and Dy(s) =exp( —34—), an analogous “erfc representation” of G,
holds for every n, but seems too complicated to be very useful.
Turning to the case of general n, two separate substitutions into (2.4), one for even
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powers of z and one for odd, reveal that both sequences ¢, 5, and c,, ;) ., satisfy
the same recursion relation for £ > 0. Namely, we have (settlng o0 = =1 Cok = =0,
1<k),

Lemma 2.2: For any initial sequence c,: =c, o, 1 <n, the form (2.6) and (2.7)
for the solution of (2.4) implies that

(3"+k 2)e, k2= 2¢, 1 k-1
&k + 1)

—c
n-11<p; and ¢,

ai=—7F 2<k  (212)

c
This determines the c, k uniquely.
In view of the extra k in the denominator of Cp, k» WE can see by induction on n
that the series G, (s) converges absolutely for all 'real 5. But we will find G (s)
M

bounded for s >0 if and only if ¢, = , , j <n, and then nla (z,y) = E® y(f
-Y(v)dv)™. It also can be seen from (2.12) that whenever c;> "0 for all Jj, we have
2k > 05 €y op 41 <0 for all n, k.

Taklng generating functions of both sides of (2.12) leads to:
Lemma 2.3: Let K, (s): = sG,(s), 0 <n. Then (for any choice of c,,)

Ki(s) = $K(5) — (22K () = —1G, _4(5), 1< (2.13)
Proof: By (2.12) we have

3n—3 3 :
G.(s)=c, zllcn—13+4 Z n-3+(+ )C ~s’+1

(G+2)G+3) ™
2 Z (7 : 1)1(}]+ )= e~ 4fn -1
4(n—-1)8_lz nkk(kfl) 1 Z nk 28
il 1k2=3267c(_1c13rk1_)13k Tl —gen-1s

s v s
+Z31'("" 1)3—1/ / an(u)dudv%—%/ vG,,(v)dv
0 0 0

——%—s—l/ /(Gn_l(u)—cn_l)dudv.
0 0

Multiplying through by s, and differentiating twice yields the assertion.

Remark: It is seen that, in fact, (2.12) is equivalent to (2.13) with the initial
conditions K,(0) =0, K, (0) =c,, 1 <n.

The eigenvalue problem X'—zX'-2X =0 is known [2, Darling and Siegert] to

have the solutions (exp 4)D A(z) and (expF )D \(—z). For A>0, the only

solutions bounded for z > 0 are c(exp%- )D_/\(l’) (For a discussion of the eigenfunc-
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tions of the Hermite equations, see [1]).
By change of variables of the homogeneous form of (2.13), namely

X"(s) - 5x(s) = (3271 )x(s) (2.14)

2
has c(expiz)D _ (Bn-1 (3) as unique solution bounded for s > 0. To give a probabilis-
tic interpretation, let V(t), 0 <t be an Ornstein-Uhlenbeck velocity process on R
with generator QF = F" —ZF’, and for initial value z>0let Ty=inf{t >0: V(t)=

n—1
0}. Then E%e - )TO—D_13n_1)(O) (exp16)D 3n_1)( ). This represen-

tation of the Laplace transform of a diffusion passage time distribution is familiar ([4,
4.10]). Let us moreover observe at this point, that by the recurrence formula for D,
[15, 16.61] we have

_n
D_ 0=y (2, 0<n, (2.15)

s0 (explz)D 3n—1 (2) is real-valued and decreases to 0 as z—oo0.

Our general( method now consists in solving recursively equation (2.13), dividing
by s after each step to obtain the new G,. One method would be to apply the
resolvent operator of the Ornstein—Uhlenbeck process, but that is unnecessary because,
as it turns out, each G, is a finite linear combination of eigenfunctions. Let us rede-
rive the expression for G1 of Lemma 2.1 to illustrate the method. Since Gy =1 we
want to solve Ky —7K; — 1K = ——%. A particular solution is K =1 (an eigenfunc-
tion, incidentally). The only solutions of the homogeneous equation bounded for

2
5> 0 are c(expig)D _,(3). The general solution bounded for s>0 is thus 1+

2
c(expig)D _4(3), and we must choose ¢ in such a way that division by s at 0 gives a
finite G;. Clearly there is exactly one c¢ possible. By the recurrence formula [loc.
sit] D _4(2) = —2zD _4(2) + Dy(2) where D,y(0) =1, so we have only to take ¢ = —1

and the solution becomes G(s) = (expls)D 1(3), in accordance with Lemma 2.1.
The general case is quite analogous, only complicated. The following is the main
result of our paper.
Theorem 2.4: For n>1 and G, as in (2.7) (see also (2.6), (2.0)) we have
3n—2
G,(s)= (expw) Z d; D ( ) (2.16)
j=n
where the coefficients dj,n are determined by dj,n =0 j—n is odd, and otherwise

1

d1,1:§
dn+1+2i,n+1:

S+ 1 NG -3

n .

22 ip(2dd 1) 2 T NOEn+26A(-1)
f="FT)
(2.17)
+1 l/\(n—l) 2-] d )
—g+i-1Ip z) nt2in 0 <i<n
( & Ty Gl S
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Proof: We proceed by induction on n. For n =1 the assertion has been shown.

Suppose that (2.16) holds for n( > 1), and let us derive (2.17) for d; ,, , ;. We first
require a particular solution X P of
3n—2
n__ Sy In+2 . S
Xp—8X, —SrEX = ‘<exp 16) Z d; D_]-( ) (2.18)
j=n
in view of Lemma 2.3, where dn+1 n dn+3n . 3(n—1) =0. But by

(2.14) we have, setting X = (expm)D_](Z), the equation X" —2X’ ——ZX =0, so we

can take
2n—2 d.
_ 1 s ain (s
X,= -3 (exp—16) ,~§= n; 4———-———]._(3n+2)D_](2). (2.19)

The general solution of (2.18) bounded for s > 0 has the form c(eprZ)D ~ (3n +2)( )
+ X ,(s), so it remains to choose ¢ such that this times s ~1 remains bounded at s =
0 (clearly ¢ is uniquely determined), and to simplify the division by s. To this end,
we will need the following simple lemma.

Lemma 2.5: For 2 <2i < j,

D_j(2)=(G-1D)7"G-3)"" -2+ )7 D _;, 5.(2)
—Z(i-1)7'D_ ;@) + (-1 =3)) TP _(;_gy(2) +...

F(( -1 =3)(G=241) "D _ ;49 1(2)]

- +1 —1fj+1
=27 (J )F l(]_z“'>D—j+2i(z)

T (”1)[2—1!( . )D Gie (z)+2‘2I‘(1;—3)D_(j_3)(z)

+...+2_ir <%1_—i)D—j+2i—l(z)]'

Proof: The first equality follows by repeated application of the recursion formula
D, ,1(z) = 2zD,(2) +nD, _(z) =0, starting with n—1 = — j ([15, loc. sit., 16.61]),
and the second then follows by repeated use of I'(n + 1) = nI'(n).

To determine first the constant ¢, we only need to use (2.15). It follows that

:2%nr<3(n+1)> R a2
2 j=n(j—(3n+2))I‘(#)

-2
2

and hence

2
(exp —%)Gn s1(8)=s"

e n—j n 1 s s d',n
(e (o af)- 20 (5) i
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Now in the special case n=1=j, we apply Lemma 2.5 with j=5 to get
D_4(2)=8"'D 1(z) —2[471D_,(2)+87 1D _,(2)], and substituting into the
above gives dj 5 = =81, dy 4 =477, as in (2.17). In other cases n>1, we apply
Lemma 2.5 tw1ce, once to D ~(3n+2 with j=3n+2 and 2¢: = 2(n + 1), and once to
D_; with j=j and 2i=j—n+2. (Note that when j—n+2 is odd, d; ,=0 by
induction hypothesis.) Then the s~ ! cancels with z = 5 and we are left With

(e"p“f—Z)GnH(S) = *inzrl(i;_li{ﬁsn—mr(g""—zﬂ)’?—(sn+1>(5)

ji=n

V{3 1)D_(3n_1)(.§_)+...+ﬁ"_jf("gl)D—(n+1)(%)}
’{F(jE_I)D —G-nE) 2"1F(L5“§)D ~G-a(8)* (2:20)
VA T ) B .
IS [ )
d

+\/§3n—jr(3n2—1)D_(3n_1)(%)+ +2r(’+1)D (a+1)(%)]j——(§jh'

We see that terms in D —(@Bn+1) and D — (3n—1) Occur forall j=n+2¢0<i<
n—1, while terms in D — (3n —3) Occur for0<i<n-—2,...terms in D _ 1)1 occur

(nt

only for i =0 (j = n), and there are no terms in D _ for n+ 14k odd. Collecting
coefficients, we get j
FHin+1 NX(? 2 %,
dpny142ine1= —22 F( +i) . d

) 2 .
F=n0(22 )5 - (3n +2))

;s 0<i<n.

This reduces immediately to the expression of (2.17) as required.
Remark 2.2: It is clear that d kn2>0 for all (k,n). By simple calculations we get
for dy ,, 1 <n <4, the values

Table 2.1. Values of dk,n

k= 1 2 3 4 5 6 7 8 9 10
n=12 000 00 0 0 0 0
210 L o7 00 0 0 0 0
300 Lo £ 0 2 0o 0 0
-7
400 0 0 250 275 011275 0o L ¢

M
Substitutions of (2.15) into (2.16) gives values of G, (0) (=—7") equal to those of
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[14].
As a further check on the formula (2.17) let us rederive the equation G;, | 1(0) =

—%GH(O), 1 <n, which is clear from (2.12) of Lemma 2.2. Using the formula

D! (2) =nD,, _(z) —3zD,(2) from [15, 16.61] gives D'_, (0)= —nD_,_4(0)=
_n +1

-n2 2 \/;F_1(n-21-2), and substitution into (2.16) and (2.17) yields (somewhat

tediously)

_1
- \/7—r ~ 2 %, ¥ In—-2+j
Gy + 1(0) =" Z I‘(
=n0(22 )30 -2+ PR
% Z: nD _ j(0), as required.
3n

We have obtained the functions a,(z,y) =y 2 G, (zy 2) for (2.0) which, along
with ag(x,y) =1, gives our solution for H (z,y). But to establish it rigorously we
still have to justify summation of the series. Adding (2.4), for each n we have

A(Z;"'_'(l)( mla;(-)) =py(3X 7ol = ,u)’a (+)). We will show that as n—oo, the
series converges umformly in (z, y) € E, in any finite interval of y and that term-by-
term differentiation of power series twice is justified (1t suffices to justify differentia-
tion of Y2 7°_ ;u"G(s) twice in s) to obtain AH, = +puyH ,, ie. (2.3) as required.
Indeed, such H, satisfies the boundary condition’ H (:L- 0) = "1. Note that the limit

1 is even un1f0rm31n x as soon as », o _,(—p)"G, (s) is bounded for s > 0, because

of the powers y2, 1<mn, in a,(z,y). Moreover, it is not hard to see that
0<G,(s)l0 as s—o0 for each n > 1: we have remarked above that d; , are nonnega-
tive for all k,n while by the representation as transform of Orns}em Uhlenbeck pass-
age probabilities to zero (see (2.14) ff.) it follows that 0 < (exp{)D _ ;(3)10 as s—o0
for 0 < j.

Remark: Since G, (s) has its maximum on R at s =0, where G, (0) is (n!)~!
times the n'® moment M n of the integral of the Brownian excursion, it would seem
that convergence of the series could easily be proved by using the recursion formula of
Takacs [14] for the excursion moments. But this argument is circular - we do not
know that G, (0) has the required interpretation until our solution is rigorously esta-
blished.

Lemma 2.6: The series Y, 5 1(— p)"G,(s) converges uniformly and absolutely in
s >0 for every p € R and may be differentiated (twice) term-by-term for s > 0.

Proof: For convergence, by the preceding remarks it suffices to show that

-1
m=1k"G,(0) <oco. Let us set e, 14,41t =d; D _;(0) :dj,nﬁ2 2r -1

.(J'-;l)’ from (2.15). Then (2.17) becomes

-1
_2—'21+i—1——-——zr( -2|- + ) )en+2j,n
Cn+1+2i,n+1~— F( n+2 =0 (n+1—])
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n+1 NIA(R—-1
T AT,

and of course, G,(0) = 372 de, 4 o

Tk +3) o ATk (2k—1) (2k — 2)\/‘ \/'

the I-duplication formula and [3, VII (2.6)]. So we get, as n—oo,

, where we used

Now as k—oo,

iA(n—1)

Z €n+2j,n
=5 n+1-—7

3.n 1 in(n-1)

_72 .
<2 ® \/n+2 nt+1—1 Z €n+2j5,n

1=0 +1

_3xn
Gn+1(0)g2 ZZ

=0

— N+,_
+

2 1=0
_3 n—1 n—1 -1 1 { 1
=972 Zen+2m+zen+21, E — '\n+1_i)
\/ AV

n-—1

<2—7<%)G (0)+J¥06n+21n(ﬁ<% % n—ll—l))

~ %Gn(O)(—\}—ﬁln n).

By the ratio test, we see that the series converges as required. As to the differentia-
tion with respect to s, we have (as in Remark 2.2)

H(oo85)p-9) (88 -0) 80— (3] (o) <0
e e e O S O 0]

2
.(exps—) = n(n + 1)D e 2(%) > 0, and similarly

d> s? s\_ _ n(rn+1)(n+2) s s
ds3 exp—lE>D - n(§> = - ——-———T——D - 3(5) €XP1g <0.

Thus we see that the (two) derivatives are bounded in absolute value by their values
n(n+1)
4

at 0, which are at most D _,(0). This does not change the radius of conver

gence of the power series. Since the series of derivatives converges uniformly in s > 0,
we have
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and the second derivative is handled in the same way.

Remark 2.3: It might be quite interesting if the recursion formula of Takacs [14]
for M, (= n!G,,(0)) could be derived directly from Theorem 2.4.

Recapitulating, we have proved:

Theorem 2.7: With G, (s) as in Theorem 2.4, we have for 0 < n,

n

y
3n _1
(| [ 1v,o1as) o == |=myTe a2 0csocy <
0
where U, is a Brownian bridge of span y and éy(O) is twice its local time at 0.

3. Points of Contact with Perman and Wellner [9]

As in [9], we set A = [{UT(t)dt, Ay = [3U ™ (t)dt, where U is a standard
Brownian bridge. Thus we have [ U(t)dt = Ay" — Ay and [§|U(t)|dt= Ag +
Ag i = Ay, where the first is Gaussian with mean 0, hence its law is easy to find,
while the law of the second has been obtained through a series of papers - see [9,
Introduction]. The moments p;: = EA’S follow from a recursion formula of L. Shepp
(see [9, Theorem 5.1]), while u;f: = E(A4 )* follow from a recursion formula of
Perman and Wellner [9, Corollary 5.1]. By combining the above results, one can
derive the joint moments p,, .: = E((Ag")™(Ag )") for m+n<5. For example,
Hy1 = ;11-(;42 — E(AgH — A5 )?). But for m+n > 5 the method does not suffice because
in the expansion of E(AO'" Ay )6 there are already four distinct joint moments
Bm. n With m +n =6 (discounting 3 symmetries) while there are only three ‘knowns’
(including pgh).

All of these moments (including arbitrary (m,n) in um,n) follow in principle by
our method, by integrating out over the local time and bridge span variables (z,y).
But if we require explicit expressions not involving integrals (i.e., that the
integrations involved be done explicitly) a surprising fact emerges: we can do the
integrations precisely for the bridge moments treated already in [9] - neither more not
less. And besides, our comprehensive recursion formula of Theorem 2.4 is doubtless
more unwieldy to apply then the separate recursions noted above, which (apparently)
do not follow easily from it. Thus our results, at present, seem to provide a strong
vindication of the results of [9] for the moment problems treated here. 9

The density of £,(0) (the local time of |U| at 0) is given by 4~ 'zexp(—%),

2
according to P. Lévy (see [7, p. 236]), and so p, = n!f8°4_1:cexp(—£8—)Gn(:c)dx.
This yields

Proposition 3.1: For 0 < n, we have with dj,n from Theorem 2.4
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2
Proof: Noting again that exp(—%-) = Dy(z) =z~ 1D, (x), we have

/ e 1,7;exp( - f—;)D B = /ooyDo(y)D _ )y
0 0

[o.¢]
_—_(1+j)‘1/ (D,D"_ ;= D _ ;D})dy
0
=(1+4)"YD,D"_ i—D_ Dyl

where we used [15, p. 350] for the second equality. Now by substituting for the two
derivatives (see Table 2.1ff.) this becomes by (2.15)

:(1+j)‘1(—jD1D_j_1—D_,~Do]8°=(1+j)‘lD—j(°)

=(1+4)" /w2 or- (J;I)

and substituting these values into Theorem 2.4 completes the proof.
Remark: Using the values of d; , from Table 2.1 for n <4, we get values

4\/"' /"2-6%’ Py =555 512 7 and ,u4::-712%, in agreement with Table 1 of [9]
(Whlch continues to n = 10).

To handle the moments ,uk (or py analogously) we note from [10] as in (1.0),
that the P® Y-law of X is the same as that of the (spatial) local time process of | B |
at the time when it reaches « at 0, conditional on that time being y. Suppose that in
this statement we replace | B| by the reflected Brownian motion obtained from B by
excising the negative excursion, i.e., B(xz(t)) where (t)I(O (B(u))du =1t. Since
this has the same law as | B|, it also has the same local tlme process (equality in
law). But now the time when the local time at 0 reaches « is, in terms of B, the
time spent positive at the instant T'(a) when the local time of B at 0 reaches a. The
local time of B(z(t)) at £ >0 at time T(«) is the same as that of B (since the
negative excursions do not contribute). Thus P*Y is also the law of the local time of
the process of positive excursions of B (holding the value 0 during the negative
excursions) at T'(«) given that the time spent positive equals y at the instant T'(a).
Since it is entirely defined from B(x(t)) is not hard to see that this remains true if
the time spent negative at this instant, say z, is also given, in such a way that up to
time y + z, B is in law a Brownian bridge of span y + z given that its local time at 0
is o and its time spent positive is y. But here y + z may be fixed ( > y), and in
particular we may set y+ 2z =1. Thus we have shown the following (see also [10,
Corollary 18]):

Lemma 3.2: The law P*Y of (1.0) ff. is also the law of the local time process in
parameter x > 0 of the standard Brownian bridge U conditional on its local time at 0
being a and its time spent positive being y.

Next we need the law of time spent positive by U conditional on local time « at 0.
This is easily recognized as the time spent positive by B at time T'(«) given T(a) =
1. As noted by P. Lévy, this is the law of T'(§) given T(§)+ To(5) =1, where
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T',(3) are independent copies of T'(5), i = 1 or 2, and we have:
Lemma 3.3: (See also (7, Corollary 1]) The above law has density

_3 a2<y—%)2
(4y/2r) "~ a(y(l— ) 2exp(—m , 0<y< 1.

Combining the two lemmas with Theorem 2.4 gives the following theorem.
Theorem 3.4: Forn >0, we have (with d; ,, from Theorem 2.4)

En_
n' 3n
_n 9 =i In+i F(T)
\/—\/- nzZ:Odn+21nn+1_i)(n_1) F(n+1+l) —3nr(3"2+1)]:‘(g+i)

Remark: We are unable to simplify this further (see calculations below). Mean-
while we have checked it against [9, Table 1] for n = 1,2 and 3, where it gives u;m =

7 .
}Z\/%’ pgt = 515, and p3t = ?1'(')%6\/22!’ as required.
Proof: We have to integrate out z and y in the product

3 —1:2 2 1
wexp(—ﬁ)‘i\/?_?r)—lw(y(l—y))_iem (——2-1;(—(12—-@2—> G (:cy 2) (3.1)

where G, (s _exp(16)z3""2d D _ (2) Fixing j: =n+2i, 0<i<n-1, and

j=n
setting (4 2m) "~ d ,, aside untli the end the i*! term becomes

> 2 ' %(""1) “% z? z? & \jud
# [0 oty ) (g - 52 v
0 0

=8/ z2(exp%2->D_(n+2i)(z)( /1 2" (1-y) gexp 2(1 )dy)dz
0

0
(3.2)
0 2 > 3n+1 2
= 8/ z2<exp54—>D —(n+20)(2) / 7 (14v) 2 (exp - 52—v)dv z,
0 0

Where we used z = then v = _—y—y_ Here the inner integral is a Laplace transform

in —, and it is foun{ [12, p. 13, #9]. The result is that (3.2) equals

o0
V23t 12r (3_2n_ + 1) / zD _5,. _1(2)D _, _5i(2)dz.
0

Next we use —an-1(z)=D _3,(2)=(Bn+1)D _5, _4(2) to write (3.2)

=T,+T,, where T1 has the form

00
Tl = cl/ D-—n—2i(z)D—3n(z)dz
0
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€y "
:2(n—i)/ D—n—-Zi —3n_D 3n” —n-— 21d

( )

1 . .
_ T o-n—i-of L _13n\-1n+204+1\ n-1f3n+1\n—1/n+2i
BCEnS (F (=25 ) e (e (% ))
where we proceeded much as in Proposition 3.1 above. Similarly (replacing D _4,, by
D _5,, _,) we obtain

o0
s~ 3nD—n—2iD—3n—1+(n+2i)D—n—2i—1D—3nL

[o.o]
T,= —61(3"‘”)/ D_ o _9i(2)D _3n_5(2)dz

—cym(3n+1) —2n-i-1 (3n)_lr-l(§2ﬂ)r_1(n+2i+1)

2 2

(n—i41)

e () ()

= e ()

_ I«l(?)n;- 1)F—1(n q; 2z)+_?)_nr— 1(32n)r— 1(n + 221 + 1))

3 12
Combining with ¢, = /2 "t I‘(%E-f- 1), we obtain finally

T, +T,

_my2mrnodty F_l(n+2i+1) I‘(3n 1)F‘1(3n+1)r“1(n+2i)]
(n—z+1)(n—z)|_(n+ ) — ) N2t 2 7
(where the second term comes from combining the second terms of T'; and T,), and

multiplication by (4\/2_7r) 1d ., yields the assertion.

Finally, we consider the mlxed moments f,, ... In addition to Lemmas 3.2 and
3.3 this requires:

Lemma 3.5: Given that the local time at 0 of a Brownian bridge U is « and that
the time spent positive is y, the conditional local time processes of U in parameters
z >0 and £ <0 are independent.

Proof: The easiest way to see this is to use the well-known fact that the two corres-
ponding local time processes of B at time T'(«) are independent (but also see [10,
Corollary 18]). As in Lemma 3.2, conditioning their integrals to equal y and 1—y
respectively gives the joint law of the conditional local time processes of U, and it
obviously preserves the independence.

From this lemma we see that the conditional local time process of U has law
PYYPAH1=Y where P*Y governs the local time with parameter z >0 and P*!~Y
that with parameter — z,z > 0. In this way, one obtains:

Theorem 3.6: For m >0, n >0, we have (with d; ,, from Theorem 2. 4) =

| 1
m-—] Tl—-] .
=0~ “Odm+221,mdn+2z ,nI( 111g), where
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us

I(iy,iy) = 2\/—%—/ (cos§)3™ T 1(sing)3n 1
0

S 2
X / D_m_zil(rcose)D_n_ziz(rsinﬁ)e_Tr2d7‘ dg.
0

Note: Of course, for m = 0 or n = 0 this is subsumed by Theorem 3.4.

3m 1
Proof: We need only multiply (3 1) by (1-y) 2 G, \z(1-y) 2). The exponen-
tials combine in a factor exp — z%(16y(1 —y)) ™1, and routine changes of variables
(set z =2, /yz = 24/1 —yv) reduce the double integral to the expression of I (21,12) in
Cartesian coordinates (z,v). The polar coordinate form given here seems slightly sim-
pler.
While we do not know how to integrate I(iy,i,) in general, we can reduce 1t for

the case m =n =1 by use of Remark 2.1 to the effect that G,(s) =s 2exp (’ )erfc

(s8 2). Since the integration is, even there, a bit unorthodox, we shall conclude by
presenting it. In this case, the combined expogent of exp reduces to 0 in the analog

of (3.1) with n =1 and an extra factor (1 —y)2G,(z(1—y) 2) (using the erfc repre-
sentation of G,), and we are left with altogether

TR 11—6\/% [Oﬁ { I(erfcw(Sy)_%) (erfcx(S(l -v)) _%)dy dz

:—1—6- —72f/ /exp —tl—t) // zdz dy dt,dt,,
D(ty,t,)

_1 _1
where D(t),t,): = {z(8y) 2<t,z(8(1—-y)) 2<t,}JNE. By simple algebra we
have D(t,,t,) = {z?(8t3) " ! <y < 1-2%(8t,) "1} N E, so the y-section of D at z is

2 2
void unless (¢, 24+1t5 %) <1, in which case it has length 1 —Z(t] 2+ ty %). The
integral becomes

0o 00 L 4

1./2 - =

Eﬁ/ / eXP(“tf“’g)/ 932—%‘(751 2'*"52 %)z dt, dt,
0o O 0

-1
where L = \/§t1t2(t% + t%) 2 and integration over z gives

00 00

1./2 231 _1\s3

1—6-#/ / eXp(—t%‘“t2)<§~g)L dtldt2.
0O o0
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2 us
Expressing this in polar coordinates, it equals ﬁ( e ridr) J gcos3asin3 6de,
n

and by routine calculus it yields p; ; = (120)~ ! as expected.
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