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Analogues of Fatou’s Lemma and Lebesgue’s convergence theorems are

established for f fd#r when {#n} is a sequence of measures. A "generaliz-
ed" Dominated Convergence Theorem is also proved for the asymptotic be-
havior of f fnd#n and the latter is shown to be a special case of a more

general result established in vector lattices and related tot he Dunford-
Pettis property in Banach spaces.

Key words: Measures, Fatou and Lebesgue’s Theorems, AM-Spaces,
AL-Spaces.

AMS subject classifications: 28A33, 28C15.

1. Introduction

One purpose of this paper is to derive analogues of Fatou’s Lemma and of the Mono-
tone and the dominated Convergence Theorems for measures instead of functions.
We show that these theorems with respect to a sequence of measurable functions
and some measure # also hold for a sequence of measures {#n} and a function f. In
the Monotone and Dominated Convergence Theorems, one formally replaces the point
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wise convergence of fn to f by its natural counterpart for set functions, namely, the
setwise convergence of #n to #.

As in Lunges [8], Serfozo [12], and Hernndez-Lerma and Lasserre [3], we also con-

sider the asymptotic properties of f fnd#n for sequences of functions fn and mea-
sures #n and provide "generalized" versions of Fatou’s Lemma and Lebesgue’s Domin-
ated Convergence Theorem. We show that coupling the assumptions of both Domin-
ated Convergence Theorems for functions and for measures yields a natural "generaliz-
ed" Dominated Convergence Theorem.

Another purpose of this paper is to show that the latter can be obtained as a spe-
cial case of a more general result which we establish for the convergence of a sequence
(yn, xn) in a dual pair of vector lattices. This result is a variant of the Dunford-
Pettis property in Banach spaces.

In Section 2 we present the main results for asymptotic properties of f fd#n and

f fnd#n. Some examples of applications are also briefly discussed.
In Section 3, we present a "generalized" Dominated Convergence Theorem for the

convergence of (xn, Yn) for two sequences {xn} and {Yn} in appropriate spaces and re-
late the result to the Dunford-Pettis property.

2. Convergence Theorem in Measurable Spaces

In this section, we consider a measurable space (X, ), a sequence of measures
on %, and a real-valued measurable nonnegative function f on X.

2.1 Fatou’s Lemma and Lebesgue’s Convergence Theorems for Measures

We have the following result:
Theorem 2.1: Let f be a real-valued nonnegaive measurable function on X, and
{#n} be a sequence of measures on .
(a) "Fatou". If linrnf#n(A >_ p(A) VA for some measure p, then

li i ff fdpn f fdp. (2.1)

(b) Dominafed ff ,n(A),(m) VA e and "n for some measures ,
and v such that f fdv < , then

2i. f fdpn / tap. (2.2)

(c) "Monotone". If n n+l for all n, there is a measure such that
n(A)(A) VA and

Prfi (a) Every nonnegative measurable function f is the pointwise limit of a
nondecreasing monotone sequence {fro} of simple functions, i.e., fmf and fmPm 1 where I > 0 and Bmk - 1 Therefore, for everyk=l mk Bmk ink--

1,2,..., we have"
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lim infI fdpn > lim inf / f

Pm
lintnifE "mk#n(Bmk)

k=l

Hence, as f,Tf, by the standard Monotone Convergence Theorem for functions (see
for instance, [1, 11]), we get

liminf/ fd#n > fd#,

which is (2.1). (Notice that f need not be #-integrable.)
To get (b), apply (a) to the sequences {u- #n} and {#n} so that

 imsup f f <_ f f _< limninf/ fd#n

which implies (b).
To get (c), note that as {#n} is increasing, there is a measure # such that

#n(A)T#(A) for every A E % (see Chapter III in Doob [1]). From (a)

fd# < lim inf / fd#n. (2.4)n--oo J

Now, as f is nonnegative and #nT#,

liminf/n__, fd#n =nlrn /fdln <- /fdl,
which is combined with (2.4) yields (2.3). I-1

Theorem 2.1(a) is an analogue for measures of the celebrated Fatou’s Lemma for
functions, whereas (b) (resp. (c)) is the analogue for measures of the Lebesgue’s
Dominated (resp. Monotone) Convergence Theorem for functions.

Examples of minorizing measures # in (2.1) are:
The order-liminf of #n defined as O-liminfn_.,#n: V n > Am > n#m
(e.g. see [6] or Chapter XII of [14]).
#: the lower envelope of {#n}, already used in [7].

Hence, for instance, using the order-liminf we may rewrite (2.1) as

f f
inf I fd# > I fd( V > A > n#m)" (2.5)

n--+oo j n-
J n_ m_

2.2 Asymptotic Properties of f fndPn
Let us now investigate the asymptotic properties of f fnd#n for two sequences {fn}
and {#n} of functions and measures, respectively. The next theorem shows
"generalized versions of Theorem 2.1(a), (b).

Theorem 2.2: Let {#n} and {In} be two sequences of measures and measurable
functions respectively.



140 O. HERN/NDEZ-LERMA and J.B. LASSERRE

(i) "Generalized Fatou". Let # be a measure such that #(A)_ liminfn#n(A
for every AE, and let f(x): -liminfnfn(x), xEX. If fn_g for alln
with g measurable and limn f gd#n f gd# > oc, then

liminff flap. (2.6)

(ii)

Then

"Generalized Dominated". Assume that"
() f < g Vn for some measurable function g > O.
(a2) #n < u Vn for some measure u.

(bl) fn(z)f(z) a.e. [u].
(b2) n(A)---*(A) VA for some measure .
(c) f <

lim f f.dun- f YdP. (2.7)

Proof: (i) We first prove (2.6) for a nonnegative sequence {fn}, and then the
general case follows by applying the result to the nonnegative sequence {fn-g}"
Therefore, assume that fn >- 0 Vn. For every (fixed) arbitrary u0 we have:

i fnd]An - i [mifnofm]d#n’
Therefore, from Theorem 2.1(a),

Vn

_
n0.

lim inf fnd#n k rnifnO_
But we also have [infm>n_fm]Tf: = liminfnfn as n0--c.0standard Monotone Convergence Theorem,

Therefore, by the

limninf/ fndln >_nlirn /[_fnfm]dp /fd/,
which is the desired result (2.6).

(ii) In view of (a2), (b2) and (c), from Theorem 2.1(b)one has f gd#n--- f gd#.
Also, observe that f is measurable as it is the pointwise limit of measurable func-
tions.

As g + fn >- 0 Vn, from (2.6) we get lim infn f (g :t: fn)d#n >_ f lim infn(g q- fn)d#.
Thus, since f gd# <_ f gdu < cxz, and noting that from u >_ #, the u-a.e, convergence
fn’--*f implies its #-a.e. convergence

limsup/fnd#n<n---,oo jfd#<liminf/fnd#n’-
which yields the desired result (2.7).

Theorem 2,2(i) has also been proved by Serfozo (see Lemma 2.2. in [12]) with the
same hypotheses we use and fn nonnegative but with a longer proof, and also in
Royden (see Chapter 11, Proposition 17 in [11]) under stronger hypotheses (namely,
fn--*f pointwise and/n--.u setwise).

Theorem 2.2(ii), on the other hand, has also been proved in Royden (Chapter 11,
Proposition 18, in [11]) and Serfozo [12] under different hypotheses. In [11], one
assumes (al), fn _< gn with limngn(x) g(x)Vx, and lim
whereas in [12], one requires (el), liminfn#n(A

_
#(A)VA
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with limsuPnfgnd#n= f(liminfngn)d# < cx). These assumptions are weaker than
those of Theorem 2.2, but the assumption that there exists a sequence gn such that

f gnd#n---* f gd# is not easy to check, and in fact, this assumption is similar to the
result one wants to prove.
We believe Theorem 2.2(ii) is more natural and more in the spirit of the "tradi-

tional" Dominated Convergence Theorem.
Indeed, Lebesgue’s Dominated Convergence Theorem states that if {fn} is a

sequence of measurable functions on X, with [fn <- g/n, (g integrable) and such
that fn--f pointwise, then f fnd#--* f fd#.

Hence, (al),(bl) (rasp. (a2),(b2)) are the assumptions in the Dominated Conver-
gence Theorem for functions (rasp. for measures) whereas (c)links (el) and (a2).
Combination of both yields the generalized Dominated Convergence Theorem 2.2(ii).

2.3 Weak Convergence

A frequent case encountered in practice is when {#n} is a sequence of finite measures
on (X, %) and instead of the setwise convergence of #n to # (which in general is hard
to establish), one often has a much weaker type of convergence, for instance

f gd#n---* / gd# Vg E G, (2.8)

where G is a set of bounded measurable functions that separate points in M(X), and
M(X) is the Banach space of finite signed measures on (X,%), equipped with the
total variation norm. The convergence in (2.8) is the convergence in the weak topo-
logy on M(X) generated by G, denoted r(M(X),G). For instance, for a sequence
{#n} of probability measures on a locally compact Hausdorff space X (with % its
usual Borel a-field), typical choices for G are"

(i) G Co(X), the space of continuous functions that vanish at infinity;
(ii) G Cb(X), the space of bounded continuous functions on X.

When (2.8) holds with G as in (i) (rasp. (ii)), one has the usual "vague" (rasp.
"weak") convergence of probability measures in the weak topology tr(M(X),Co(X))
(rasp. weak topology tr(M(X),Cb(X)) ). One then has the following Dominated
Convergence Theorem.

Proposition 2.3: Let f be a nonnegalive measurable function and let {#n) and #
be such that f gd#n-- f gd# for every g G, where G is a set of bounded measurable
functions that separates points in M(X). If #n <-v Vn for some finite measure v,
then, as n---,oc,

(a) #n(A)#(A) YA e %.
In addition, if f fd, < oc, then

(b) f fd#- f fd#.
Proof: As , is finite and #n- ’, the sequence (#n) is norm-bounded (that is,
bounded in the norm of M(X)) and the countable additivity of the #n’s is uniform in
n. Therefore, (/) is sequentially compact in the weak topology (M(X),M(X)*),
(see Theorem IV.9.1 in [2]). In particular, every accumulation point M(X) of a

converging subsequence {#nk} satisfies pnk(A)--,(A VA %. Moreover, we also

have f gd#,---, f gd# for every g e G. Hence, identifying G with a subset of M(X)*
and using the fact that G separates points in M(X), we must have - #. As was

an arbitrary accumulation point, we get (a).
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(b) follows from Theorem 2.1(b). E!
As an application in Stochastic Control Theory, consider the sequence of

probability measures #,:- Q(. x, a,) on (X,%) with X being a locally compact
separable metric space and Q a stochastic kernel. Then, #n < u ’n implies, e.g.,
"tightness" of the sequence {#n} which in turn is used to prove the existence of
optimal controls (see [4, 7]). Similarly, if : P(. Ix) denotes the sequence of n-

step transition kernels (with initial state x E X) of a stochastic (Markov) kernel
P(" Ix), and if #,<u for some finite measure u, then we obtain the
"constrictiveness" of the stochastic kernel P, which yields the "Spectral
Decomposition Theorem" (see [9]).

Another typical application is, for instance, to study the ergodic behavior of
functionals of Markov chains. Consider a Markov chain {xt, t- O, 1,...} on a locally
compact separable metric space X and suppose one wants to evaluate the limit (if it

exists) when noo of in(W):- n-l-lof(Xt(w)) on a sample-path {Xt(w)} and
for some nonnegative (possibly) unbounded (and possibly not continuous) function f.
Write in(W)- f fd#Wn where #n

w is the n-step occupation (probability) measure for
the sample path w. It has been shown (e.g., see [10]) that #nw# Pz-a.s. in the vague
topology and # is a (possibly trivial) invariant measure for the Markov chain {Xt}.

Thus, if for some finite measure u, # _< u ’n and f fdu < oo, then the direct
application of Proposition 2.3 yields

nli__,mjn(W) / fd# Px-a.s.
with # being an invariant probability measure.

2.4 Locally Compact Spaces

When the underlying space X is a locally compact separable metric space, specialized
results are known for Fatou’s and Dominated Convergence theorems using weak con-
vergence of measures and continuous convergence of functions (see Langen [8], Serfozo
[12] and references therein).

However, we would like to point out part (b)in the proposition below [(a)is
already well known for a sequence of "bounded" measures #hi that might be useful
when dealing with a sequence of possibly infinite measures that converge in a weak
sense to be precised below.

Let X be a locally compact separable metric space with % as its usual Borel r-
field, and let Co(X be the (separable) Banach space of real-valued continuous func-
tions that vanish at infinity.

Proposition 2.4: Let f be a nonnegative lower-semicontinuous function on X and
let {#n} be a sequence of measures such that

/ hdttn / hd# Yh Co(X), (2.9)

for some measure p. Then"
(a) lira infn f fd#n >_ f fd#.
(b) If, in addition, #n -u for some measure u such that f fdu < oo, then

lim /fd#n- /fd#. (2.10)
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Proof: (a) As f is nonnegative and lower semi-continuous, there exists an increas-
ing sequence of nonnegative continuous bounded functions vk on X such that vk(x)T
f(x) Vx E X. Similarly, as each vk is a nonnegative continuous bounded function and
X is (r-compact ([11, p. 203, Theorem 21]), for every k, there is an increasing
sequence {Vkl l= 1,2,...} of nonnegative functions Vkl in Co(X with Vkl(X)lVtc(x
for all x E X as 1---,c. Hence

lim inf/ f -> lim inf/ Vk

_> liminf/ vkld#n Vk,

f

J vkld# [by (2.9)].

Thus, letting lcx and then kcx the result (a) follows.
(b) Apply (a) to the nonnegative sequences {u 4-#n}, which immediately yields

limsup/fdpn<r,.-, ffdp<liminfJfd/r’-,--’

as the desired result.
In the general setting, a result like (2.10) requires the setwise convergence of #n to

#, which is implied by the condition #n -< u when u is finite.
The important thing in Proposition 2.4 is that (2.9) and the condition #n-< Vn

do not imply that #n---Iz setwise if is not finite.

3. A "Generalized" Dominated Convergence

We recall that a Banach lattice ; with a positive cone S is called an AM-space if. the
norm has the following property

II ,v#ll- I1 ,11 v Ilull, ,,ues.

A typical example on an AM-space is B(X), the Banach space of bounded measur-
able functions on the measurable space (X, %), with the sup-norm.
On the other hand, a Banach lattice it; with positive cone S is an AL-space (or

abstract Lebesgue space) if

A typical example of an AL-space is %: Ll(X,,kt for some measure space
(X, %, #) or the space of %: M(X), the Banach space of finite signed measures on

%, for some measurable space (X, %), and the total variation norm.
Every AM-space or AL-space % has the so-called Dunford-Pettis property, that is,

for a sequence {xn} in %, a sequence {Yn} in a Banach space %J and a continuous
bilinear form (.,.) on % x ctJ, it holds true that (see e.g. [13])

lim (xn, yn)(x y> if xn--,x weakly and yn y weakly.
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In the sequel, we sometimes use the notation y(x) for (x, y).
In Theorem 2.2(ii), if we assume g to be bounded, it can be shown that the

sequence {Yn} obtained from {Pn} by yn(A):- f Agd#n, A E, converges in
qJ: =M(X) to y(A): = f Agd# in the a(CtJ, qJ*) topology (that is, the weak
topology). On the other hand, assuming without loss of generality, that g > 0, from
Lebesgue’s Dominated Convergence Theorem, the bounded sequence {xn}:-
{fng -1} in "- B(X), converges to x- fg- in the a(,) topology, but not
necessarily in the (stronger) a(,*)topology (that is, the weak topology).
However, we still have limn(xn, Yn)(x,y), but again, this is because the sequence
{Yn} C B(X)* is in fact in M(X), a special subspace of B(X)*, so that the weak
convergence of xn to x is not needed.

In fact, the Generalized Dominated Theorem 2.2(ii) can be viewed as the following
variant of the Dunford-Pettis property. We recall that for a vector lattice , a

positive linear functional y is said to be a-order continuous if (see Definition 21.5 in
[1])

y(Xn).O whenever xnO (3.1)

with {Xn} C it; and where zn0 means that the infimum of the monotone sequence
{xn} is 0. It also implies that y(xn)--,y(x for every sequence {xn} that is order-
convergent to x, that is, such that Ixn-x <_ wn for all n and for some sequence

wn0 in . This suggests the following:
Proposition 3.1: Let (,) be a dual pair of normed vector lattices, with if3 being

a-complete. Consider two sequences {xn} C and {Yn} C ctJ, and assume that
(a) xn order-converges to x as n--,oo.

(b) 0 <_ Yn-*Y in the weak topology a(, 93).
(c) y is a-order continuous.

Then
lim Yn(Xn) y(x).

Proof: It; being a-complete, if xn order-converges to x, then infm > nXm is well-
defined in %, and so is the "order-liminf" which by definition-is x- order-
liminfnXn’-SUPn[infm > hi" Similarly, supra > nXm is well-defined in and so is
x order-lim SUPnXn: =-]nfn[suPm > nXm].
We have in fact, infm > nXm--7.ZnX and supra > nXm- "Unix as n--,oc, where

and denote monotone no’decreasing and nonincreing order-convergence.
As Yn >- O, we have

Therefore, using the convergence of Yn

liminfy (x)> lim y.. (miffs
0

n--, n, n -n-, [Xm]) Vn0

Y(mfno[Xm])- "y(Zno VnO.

Now, from the order-convergence of xn to x, {zn0} order-converges to x as n0---,oo so
that, using (c),
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liminf Yn(Xn) > lim y(zn )-- y(x).
n--+oo no-’+cxa 0

A similar argument yields limsuPnYn(Xn) <_ y(x) and the result follows.
Examples of Banach lattices ;, with property (3.1) are the Lp spaces 1 _< p <

(see e.g. [15]).
For an AM-space like : = B(X), note that every finite measure # on % (hence

# e B(X)*) is a-order continuous (cf. [16]), whereas for X: = [0,1] and : C[0, 1],
the Banach lattice of real-valued continuous functions on [0,1], # is not a-order
continuous (see e.g. [15, p. 149]). However, even in the latter case, the following
weaker property is still sufficient for Proposition 3.1 to hold,

fkd#O whenever fk(x)O, x E [0, 1],

(by the standard Monotone Convergence Theorem, since fl E C([0,1]) and # is
finite).
We now see how Theorem 2.2(ii) can be deduced from Proposition 3.1 with an

appropriate choice of the spaces and ctJ.
For instance, if the functions f, fn and the measures #,#n are norm-bounded,

choose : B(X) and ctJ" M(X), the Banach lattice of finite signed measures on
%. Let fn: SUPm > nfn an_d _fn" infm > nfn for every n 1, 2, The pointwise
c__onvergence fn--*f iYnplies fnf and _fnT], i.e., the monotone order-convergence_ of

In and _fn to f. Thus (a) in Proposition 3.1 holds for the sequence {In} and {_fn}"
The setwise convergence #n--*# is precisely the r(,)-convergence, so that (b) also
holds. Finally, (c) is satisfied because every # is r-order continuous. From
f_n <-fn <-fn for all n, it suffices to apply Proposition 3.1 to both sequences {fn}
and {_fn} to prove Theorem 2.2(ii).
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