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Analogues of Fatou’s Lemma and Lebesgue’s convergence theorems are
established for [ fdu,, when {,} is a sequence of measures. A “generaliz-
ed” Dominated Convergence Theorem is also proved for the asymptotic be-
havior of [ f ndu,, and the latter is shown to be a special case of a more
general result established in vector lattices and related tot he Dunford-
Pettis property in Banach spaces.
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1. Introduction

One purpose of this paper is to derive analogues of Fatou’s Lemma and of the Mono-
tone and the dominated Convergence Theorems for measures instead of functions.
We show that these theorems with respect to a sequence of measurable functions {f}
and some measure p also hold for a sequence of measures {y,} and a function f. In
the Monotone and Dominated Convergence Theorems, one formally replaces the point
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wise convergence of f_ to f by its natural counterpart for set functions, namely, the
setwise convergence of U, to p.

As in Langen [8], Serfozo [12], and Hernandez-Lerma and Lasserre [3], we also con-
sider the asymptotic properties of [ fndp,, for sequences of functions f, and mea-
sures u,, and provide “generalized” versions of Fatou’s Lemma and Lebesgue’s Domin-
ated Convergence Theorem. We show that coupling the assumptions of both Domin-
ated Convergence Theorems for functions and for measures yields a natural “generaliz-
ed” Dominated Convergence Theorem.

Another purpose of this paper is to show that the latter can be obtained as a spe-
cial case of a more general result which we establish for the convergence of a sequence
(Y, 2,,) in a dual pair of vector lattices. This result is a variant of the Dunford-
Pettis property in Banach spaces.

In Section 2 we present the main results for asymptotic properties of [ fdu,, and
f fndp,. Some examples of applications are also briefly discussed.

In Section 3, we present a “generalized” Dominated Convergence Theorem for the
convergence of (z,,y,) for two sequences {z,} and {y,} in appropriate spaces and re-
late the result to the Dunford-Pettis property.

2. Convergence Theorem in Measurable Spaces

In this section, we consider a measurable space (X, %), a sequence of measures {yu,}
on B, and a real-valued measurable nonnegative function f on X.

2.1 Fatou’s Lemma and Lebesgue’s Convergence Theorems for Measures

We have the following result:

Theorem 2.1: Let f be a real-valued nonnegative measurable function on X, and
let {u,} be a sequence of measures on B.

(a)  “Fatow”. Ifliminfu,(A)> pu(A) VA € B for some measure p, then

imint [ fd, > [ sdp. (21)

() “Dominated”. If pu (A)—p(A) VAEDB and p, <v for some measures p
and v such that [ fdv < oo, then

s, [ sdn, = [ fan (22)

(e) “Monotone”. If p, <p, | for all n, there is a measure p such that
p(A)—p(A) VA€ DB and

dim, [ fdu, = [ san (23)

Proof: (a) Every nonnegative measurable function f is the pointwise limit of a
nondecreasing monotone sequence {f, .} of simple functions, i.e., f,1f and f, =
ZZ’Q lx\mlemk where A, >0 and B, €%®B, k=1,...,p,,. Therefore, for every

m=1,2,..., we have:
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tyninf [ fdu, > it [ £,,dn,
pm
= l}{‘l.%}éfz ’\mkiun(Bmk)

k=1
> /fmdu-

Hence, as f, 1f, by the standard Monotone Convergence Theorem for functions (see
for instance, [1, 11]), we get

tniat [ ds, > [ s,

which is (2.1). (Notice that f need not be p-integrable.)
To get (b), apply (a) to the sequences {v — p,} and {u, } so that

timsup [ fan, < [ fau <tipmit [ fan,,

which implies (b).
To get (c), note that as {u,} is increasing, there is a measure p such that
P (A)Tp(A) for every A € B (see Chapter III in Doob [1]). From (a)

/fdugl;lrgggf/fdpn. (2.4)

Now, as f is nonnegative and g, Ty,

tmigf [ fdue, =iy, [ san, < [ i

which is combined with (2.4) yields (2.3). a
Theorem 2.1(a) is an analogue for measures of the celebrated Fatou’s Lemma. for
functions, whereas (b) (resp. (c¢)) is the analogue for measures of the Lebesgue’s
Dominated (resp. Monotone) Convergence Theorem for functions.
Examples of minorizing measures y in (2.1) are:

. The order-liminf of p, defined as O-liminf, | _p.: =V, s 1A > bm
(e.g. see [6] or Chapter XII of [14]). - -
. p: = the lower envelope of {1, }, already used in {7].
Hence, for instance, using the order-lim inf we may rewrite (2.1) as
tminf [ fd, > [ 1AV 051 Ao it (25)

2.2 Asymptotic Properties of [ fadp,

Let us now investigate the asymptotic properties of [ f, du, for two sequences {f .}
and {u,} of functions and measures, respectively. ~The next theorem shows
“generalized versions of Theorem 2.1(a), (b).

Theorem 2.2: Let {u,} and {f_} be two sequences of measures and measurable
functions respectively.
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(%) “Generalized Fatou”. Let p be a measure such that p(A) > liminf, u (A)
for every A€ B, and let f(z): =liminf f, (), c€ X. If f,>g for alln
with g measurable and lim,, [ gdp,, = [gdp > — oo, then

lmigt [ £, du, > [ fdp. (2.6)

(1)  “Generalized Dominated”. Assume that:
(al) | f,| < g Vn for some measurable function g > 0.
(a2) p, <v Vn for some measure v.
(01)  f.(x)—f(x) a.e. [v].
(42)  p,(A)>u(A) VA € B for some measure .
() [gdv<oo.
Then

Jim, [ f.dn,= [ fan (27)

Proof: (i) We first prove (2.6) for a nonnegative sequence {f,}, and then the
general case follows by applying the result to the nonnegative sequence {f, —g}.
Therefore, assume that f,, >0 Vn. For every (fixed) arbitrary n, we have:

[ fatiaz [ gt fuddin, 2o

Therefore, from Theorem 2.1(a),

tmigt [ f,dm> [ [ jaf ol

But we also have [inf, 5, f ]If: =liminf_ f,  as ny—oco. Therefore, by the
standard Monotone Convergence Theorem,

lin}zinf/fnd,un ani—{rolo/[migfnfm]dﬂz /fd/z,

which is the desired result (2.6).

(i) In view of (a2), (b2) and (c), from Theorem 2.1(b) one has [ gdu,— [ gdp.
Also, observe that f is measurable as it is the pointwise limit of measurable func-
tions.

As g+ f, >0 Vn, from (2.6) we get liminf, [ (g + f,)dp, > [liminf, (g% f,)dp.
Thus, since [ gdp < [ gdv < oo, and noting that from v > y, the v-a.e. convergence
fn—f implies its p-a.e. convergence

timsup [ fodu, < [ fdu<timint [ 1,dn,

which yields the desired result (2.7). 0

Theorem 2.2(¢) has also been proved by Serfozo (see Lemma 2.2. in [12]) with the
same hypotheses we use and f, nonnegative but with a longer proof, and also in
Royden (see Chapter 11, Proposition 17 in [11]) under stronger hypotheses (namely,
fn—[ pointwise and p,—pu setwise).

Theorem 2.2(i%), on the other hand, has also been proved in Royden (Chapter 11,
Proposition 18, in [11]) and Serfozo [12] under different hypotheses. In [11], one
assumes (al), | f, | <g, with lim g, (z) = g(z)Vz, and lim, [ g,dp, = [gdp < oo,
whereas in [12], one requires (al), liminf, u, (A) > u(A)VA€B and |f,.| <g, Vn
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with limsup,, [ g,dp, = [ (liminf, g,)dp < co. These assumptions are weaker than
those of Theorem 2.2, but the assumption that there exists a sequence g, such that
J 9,dp,,— [ 9dp is not easy to check, and in fact, this assumption is similar to the
result one wants to prove.

We believe Theorem 2.2(i%) is more natural and more in the spirit of the “tradi-
tional” Dominated Convergence Theorem.

Indeed, Lebesgue’s Dominated Convergence Theorem states that if {f.} is a
sequence of measurable functions on X, with | f, | < gVn, (g integrable) and such
that f,—f pointwise, then [ f du— [ fdpu.

Hence, (al),(b1) (resp. (a2),(b2)) are the assumptions in the Dominated Conver-
gence Theorem for functions (resp. for measures) whereas (c) links (al) and (a2).
Combination of both yields the generalized Dominated Convergence Theorem 2.2(iz).

2.3 Weak Convergence

A frequent case encountered in practice is when {y,} is a sequence of finite measures
on (X,B) and instead of the setwise convergence of y, to y (which in general is hard
to establish), one often has a much weaker type of convergence, for instance

[odu—~ [atuvgea, (2.8)

where G is a set of bounded measurable functions that separate points in M(X), and
M(X) is the Banach space of finite signed measures on (X,®), equipped with the
total variation norm. The convergence in (2.8) is the convergence in the weak topo-
logy on M(X) generated by G, denoted o(M(X),G). For instance, for a sequence
{u,,} of probability measures on a locally compact Hausdorff space X (with B its
usual Borel o-field), typical choices for G are:

() G = Cy(X), the space of continuous functions that vanish at infinity;

(1) G = Cp(X), the space of bounded continuous functions on X.

When (2.8) holds with G as in (i) (resp. (i¢)), one has the usual “vague” (resp.
“weak”) convergence of probability measures in the weak topology o(M(X),Cy(X))
(resp. weak topology o(M(X),Cp(X))). One then has the following Dominated
Convergence Theorem.

Proposition 2.3: Let f be a nonnegative measurable function and let {p, )} and p
be such that _]'gd,un—»fgdu for every g € G, where G is a set of bounded measurable
functions that separates points in M(X). If p, <v Vn for some finite measure v,
then, as n—oo,

(@) n(A)—p(4) VA € B,

In addition, if [ fdv < co, then
() [ fdp,~ [ fdp.
Proof: As v is finite and p, <v, the sequence {u,} is norm-bounded (that is,
bounded in the norm of M (X)) and the countable additivity of the u,’s is uniform in
n. Therefore, {y,} is sequentially compact in the weak topology o(M(X), M(X)*),
(see Theorem IV.9.1 in [2]). In particular, every accumulation point ¢ € M(X) of a
converging subsequence {unk} satisfies pnk(A)—>ga(A) VA € B. Moreover, we also

have [ gdu,— [gdp for every g € G. Hence, identifying G with a subset of M(X)*
and using the fact that G separates points in M(X), we must have ¢ = y. As ¢ was
an arbitrary accumulation point, we get (a).
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(b) follows from Theorem 2.1(b). a

As an application in Stochastic Control Theory, consider the sequence of
probability measures p,.: = Q(- |z,a,) on (X,B) with X being a locally compact
separable metric space and @ a stochastic kernel. Then, pu, <v Vn implies, e.g.,
“tightness” of the sequence {u,} which in turn is used to prove the existence of
optimal controls (see [4, 7]). Similarly, if p,: = P"(- | z) denotes the sequence of n-
step transition kernels (with initial state € X) of a stochastic (Markov) kernel
P(-|z), and if p,<v for some finite measure v, then we obtain the
“constrictiveness” of the stochastic kernel P, which yields the “Spectral
Decomposition Theorem” (see [9]).

Another typical application is, for instance, to study the ergodic behavior of
functionals of Markov chains. Consider a Markov chain {z,,t =0,1,...} on a locally
compact separable metric space X and suppose one wants to evaluate the limit (if it
exists) when n—oo of j, (w): =n 'Y P2 f(X,(w)) on a sample-path {X,(w)} and
for some nonnegative (possibly) unbounded (and possibly not continuous) function f.
Write j, (w) = [ fdu¥ where p is the n-step occupation (probability) measure for
the sample path w. It has been shown (e.g., see [10]) that y —pu P -a.s. in the vague
topology and p is a (possibly trivial) invariant measure for the Markov chain {X,}.

Thus, if for some finite measure v, y;, <v Vn and J fdv < oo, then the direct
application of Proposition 2.3 yields

Jdim i, (w) = /fd/z P -as.
with u being an invariant probability measure.
2.4 Locally Compact Spaces

When the underlying space X is a locally compact separable metric space, specialized
results are known for Fatou’s and Dominated Convergence theorems using weak con-
vergence of measures and continuous convergence of functions (see Langen [8], Serfozo
[12] and references therein).

However, we would like to point out part (b) in the proposition below [(a) is
already well known for a sequence of “bounded” measures ] that might be useful
when dealing with a sequence of possibly infinite measures that converge in a weak
sense to be precised below.

Let X be a locally compact separable metric space with B as its usual Borel o-
field, and let Cy(X) be the (separable) Banach space of real-valued continuous func-
tions that vanish at infinity.

Proposition 2.4: Let f be a nonnegative lower-semicontinuous function on X and
let {u,} be a sequence of measures such that

/hd;zn—>/hd,u Vh e Cy(X), (2.9)
for some measure p. Then:

(a) liminf,_, [ fdp, > [ fdp.
(b)  If, in addition, p,, <v for some measure v such that [ fdv < oo, then

Jim, [ fdu, = [ sap. (2.10)
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Proof: (a) As f is nonnegative and lower semi-continuous, there exists an increas-
ing sequence of nonnegative continuous bounded functions v, on X such that vi(x)7
f(z) Yz € X. Similarly, as each v, is a nonnegative continuous bounded function and
X is o-compact ([11, p. 203, Theorem 21]), for every k, there is an increasing
sequence {vy;, [ =1,2,...} of nonnegative functions vy; in Cy(X) with vy (x)Tvi(z)
for all z € X as [—o00. Hence

lin}linf/fdunZIin}linf/vkdun Vk
> lirr}linf/vkldun Vk,l

= /vkld,u [by (2.9)].

Thus, letting [—oco and then k—oo the result (a) follows.
(b)  Apply (a) to the nonnegative sequences {v =+ p,}, which immediately yields

timsup [ fdu, < [ fan < tmint [ fau,
as the desired result. O
In the general setting, a result like (2.10) requires the setwise convergence of p to
4, which is implied by the condition p, < v when v is finite.
The important thing in Proposition 2.4 is that (2.9) and the condition p, <v Vn
do not imply that p,—pu setwise if v is not finite.

3. A “Generalized” Dominated Convergence

We recall that a Banach lattice % with a positive cone S is called an AM-space if the
norm has the following property

levyll =llzll vyl zyes.

A typical example on an AM-space is B(X), the Banach space of bounded measur-
able functions on the measurable space (X, B), with the sup-norm.

On the other hand, a Banach lattice % with positive cone S is an AL-space (or
abstract Lebesgue space) if

le+yll =Nzl +llyll,zyes.

A typical example of an AL-space is %: = L;(X,B,u) for some measure space
(X, B, ) or the space of B: = M(X), the Banach space of finite signed measures on
B, for some measurable space (X,®B), and the total variation norm.

Every AM-space or AL-space & has the so-called Dunford-Pettis property, that is,
for a sequence {z,} in %, a sequence {y,.} in a Banach space Y and a continuous
bilinear form (-, -) on % x 4, it holds true that (see e.g. [13])

nli_)rgo(a:n,yn)ﬁ(x,y) if z,— weakly and y,,— y weakly.
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In the sequel, we sometimes use the notation y(z) for (z,y).

In Theorem 2.2(i7), if we assume g to be bounded, it can be shown that the
sequence {y,} obtained from {u,} by y.(A): = [ 49dp,, A€ B, converges in
Y: = M(X) to y(A): = [ 49dp in the o(U,Y*) topology (that is, the weak
topology). On the other hand, assuming without loss of generality, that g > 0, from
Lebesgue’s Dominated Convergence Theorem, the bounded sequence {z,}: =
{fn_q‘l} in %: = B(X), converges to = fg~ ' in the o(%,%Y) topology, but not
necessarily in the (stronger) o(%,%") topology (that is, the weak topology).
However, we still have lim,(z,,y,)—(z,y), but again, this is because the sequence
{v,} € B(X)* is in fact in M(X), a special subspace of B(X)*, so that the weak
convergence of z, to z is not needed.

In fact, the Generalized Dominated Theorem 2.2(7i) can be viewed as the following
variant of the Dunford-Pettis property. We recall that for a vector lattice %, a
positive linear functional y is said to be o-order continuous if (see Definition 21.5 in

(15])
y(z,)10 whenever z,_|0, (3.1)

with {z,} C % and where z,|0 means that the infimum of the monotone sequence
{z,} is 0. It also implies that y(z,)—y(z) for every sequence {z,} that is order-
convergent to z, that is, such that |z, —2| <w,, for all n and for some sequence
w,, |0 in %B. This suggests the following:

Proposition 3.1: Let (%,9Y) be a dual pair of normed vector lattices, with % being
o-complete. Consider two sequences {x,,} C% and {y,,} C Y, and assume that

(a)  x, order-converges to x as n—oo.

() 0<y,—y in the weak topology o(Y,%).

(¢) y is o-order continuous.
Then

Aim y,.(z,) = y(z).

Proof: & being o-complete, if z, order-converges to z, then inf , > nm is well-
defined in %, and so is the “order-liminf” which by deﬁmtlon is z = order-
liminf z,: =supn[in > pJ- Similarly, SUPp > nTpy 1S well-defined in % and so is
¢ = order-limsup,z,: = inf, [supm >n z,.]

We have in fact, inf, 5,z =72, Tz and SUPp > T = 1 U nl% as n—oo, where |
and | denote monotone nondecreasmg and nonincreasing order—convergence.

As y, >0, we have

yn(zn) Z yn( mlgf;lo[zm]) vn 2 nO‘
Therefore, using the convergence of y,_ to y,
liminfy,(z,) 2 lim y, (inf o[wm]) Vn,
= y(mlgt;lo[wm]) = :y(zno) vnO'

Now, from the order-convergence of z,, to z, {z,, } order-converges to x as ny—oo so
. 0
that, using (c),
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lim inf yo(z,) > nthooy(z ) = y(x).

A similar argument yields limsup,,y,,(z,,) < y(z) and the result follows. O

Examples of Banach lattices %, with property (3.1) are the L, spaces 1 < p < oo
(see e.g. [15]).

For an AM-space like %: = B(X), note that every finite measure u on B (hence
u € B(X)*) is o-order continuous (cf. [16]), whereas for X: =[0,1] and %: = C[0,1],
the Banach lattice of real-valued continuous functions on [0,1], p is not o-order
continuous (see e.g. [15, p. 149]). However, even in the latter case, the following
weaker property is still sufficient for Proposition 3.1 to hold,

/fkd,ulO whenever ()]0, z € [0,1],

(by the standard Monotone Convergence Theorem, since f; € C([0,1]) and p is
finite).

We now see how Theorem 2.2(ii) can be deduced from Proposition 3.1 with an
appropriate choice of the spaces % and Y.

For instance, if the functions f,f, and the measures yu,u, are norm-bounded,
choose %: = B(X) and Y: = M(X), the Banach lattice of finite signed measures on
B. Let f =sup,, s ,f, and f,: =inf >nf for every n = 1,2,.... The pointwise
convergence f,—f implies f |f and In Tf, i.e., the monotone order -convergence of
fnand f, to f. Thus (a) in Proposition 3.1 holds for the sequence {f,} and {f,}.
The setwise convergence p,—pu is precisely the ¢(Y,%)-convergence, so that (b) ‘also
holds.  Finally, (¢) is satisfied because every p is o-order continuous. From
fnlFfa< f,, for all n, it suffices to apply Proposition 3.1 to both sequences {f,}
and {fn} to prove Theorem 2.2(ii).
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