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We study numerically the long-time dynamics of a system of reaction-diffu-
sion equations that arise from the viscous forced Burgers equation (u +
uux -uuxx F). A nonlinear transformation introduced by Kwak is used
to embed the scalar Burgers equation into a system of reaction diffusion
equations. The Kwak transformation is used to determine the existence of
an inertial manifold for the 2-D Navier-Stokes equation. We show
analytically as well as numerically that the two systems have a similar,
long-time dynamical, behavior for large viscosity u.
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1. Introduction

In recent years, there has been growing interest in studying dynamical systems that
arise from solving the initial value problems for nonlinear partial differential equa-
tions. Starting in the 1970’s, similarities between the theories of ODEs and PDEs
have been observed in the context of the qualitative theory of differential equations,
especially in the case of parabolic PDEs. Henry [12] gives various examples of this
trend, comparing the stability properties of PDEs to those of ODEs. Later, the work
of J. Mallet-earet [17], Ma [18], and others opened up new avenues for understand-
ing the long time dynamics of a more general class of dissipative PDEs.
A similarity between the two fields were further strengthened by the results of

Babin, Vishik, Constantin, Foias, Temam, and Ladyzhenskaya [1, 7, 10, 15, 20] that
proved the finite dimensionality of the global attractor for the 2-D Navier-Stokes (N-
S) equations. Because of the importance of the N-S equations in aerodynamics, ocean-

dynamics, fluid mechanics, and hydrodynamic stability, the finite dimensionality of
its attractor suggests that the dynamics on the attractor can be captured by a system
of ODEs. Hence, the long-time dynamics of the PDEs is equivalent in some sense to
the dynamics of a suitable system of ODEs. Smaoui [19] has shown that the dynam-
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ics of Kolmogorov flow is equivalent to the dynamics of a system of ODEs for a cer-
tain parameter range. The notion of inertial manifold was introduced by Foias, Sell
and Temam [9] as a way to obtain such a system of ODEs. Subsequently, various
attempts have been made to exhibit inertial manifolds for a large class of PDEs [8].

More strikingly yet, even in the case of the scalar viscous Burgers equation, due to
the non-availability of the spectral gap condition, the existence of an inertial mani-
fold remained an open problem. Recently, Kwak [14] introduced a nonlinear trans-
formation that embeds the scalar Burgers equation into a system of reaction-diffusion
equations that admit an inertial manifold. The Kwak transformation is briefly sum-
marized in Section 2. Until now, the nature of this transformation has not been stud-
ied numerically. In particular, the dynamics of the scalar viscous Burgers equation
have not been compared with those of the reaction-diffusion system that arises before
adding additional corrective camping terms. The work reported herein describes a
numerical study of the two PDE systems without the additional corrective terms.

The remainder of this paper is organized as follows: In Section 2, we briefly intro-
duce the Kwak Transformation. Section 3 discusses some analytical results of both,
the forced scalar Burgers equation and the transformed reaction-diffusion system. Sec-
tion 4 shows the numerical results of both of these equations which supports the
analytical ones.

2. The Kwak Transformation

The viscous Burgers equation

u + uux uuxx 0 (1)

with periodic boundary conditions u(2r, t)= u(O,t) and given initial value u(x,O)=
Uo(X is a well known and well understood quasilinear parabolic equation. It first
appeared in a paper by Bateman [2] and was used extensively by Burgers [4, 5] as a
simple model for turbulent liquid flow through a channel. Burgers equation was also
used to model certain gas dynamics [16] and acoustic waves [3]. A complete solution
for Equation (1) is presented by Hopf [13]. In the present paper, we study the forced
Burgers equation where the force is sinusoidal

u + uux uuxx = F(x). (2)

Equation (2) can be transformed by the transformation J(u)= (u, ux,
v- uz, and w- -1/2u2, into the system

u = uuzz + wz + F(x)

1 2-u ), with

vt=uvzz+wxz+F’(x (3)

w uwxz + v2 + u2v- uF(x)

with periodic boundary conditions u(2r, t) u(0, t), v(2r, t) v(0, t), and w(2r, t)
w(O,t). The given initial conditions are specified as u(x, 0)= Uo(X), v(x,O)= Vo(X),
and w(x, O) Wo(X ).
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This transformation is utilized in a slightly different way than that used by Kwak
[14]. Kwak, when studying the asymptotic dynamics of a class of quasilinear para-
bolic equations given by

u Uxx + (f(u))x + g(u)+ h(x) (4)

on the interval [0, L], introduces a nonlinear change of variables to transform Equa-
tion (4) into a reaction-diffusion system. The transformation is defined by

J(u) (u, ux, f(u)) (5)

so that (u, v, w) J(u) satisfies the system of equations

+ + ()+ h()

v v +x + ’(u)v + h’() ()

f"( )v2 + f’(u)2v + f’(u){g(u) + h(x)}W Wxx ?2

with the periodic boundary condition given by J(u(O,t))= J(u(2r, t))and initial val-
ues given by J(uo(x)). In (6), the prime denotes the derivative of the corresponding
function. We apply this transformation to the forced Burgers equation-u+ h(), ()

where h(x)- F(x)/u2, by setting u- u, v- ux and w- -1/2u2 and obtain

u Ux + w + h(x)

v=v++h’()

w w+ v + uv- uh(z).

3. Analytical Results

In this section, we prove that the steady state solutions of (7) and (8) coincide.
Furthermore we note that solutions of (7) remain finite and (7) has a unique steady
state solution for small force.

The forced Burgers equation

u + uux -.ux = F(x) (9)

is transformed to

ut=Uxx-UUx+h(x), (10)

by letting u- u, t-17 and h(x)- F(x)/u2 so that the viscosity only appears in
the forcing term. The mean value of u is given by
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271"

0

(11)

and the rate of change of m with respect to time satisfies

27F

0

(12)

The force h will be assumed to have zero mean so that by (11) the mean of u is
conserved.

The solution of Equation (7) is treated as a solution of a reaction-diffusion system
by introducing a nonlinear change of variables. Let u be a solution of Equation (7)

1 2 W)- J(u) satisfies Equation (8). The meanand let J(u)- (u, Ux,-Tu ). Then (u, v,
of u in (8) is conserved since h has zero mean and the mean of v is also conserved if h
satisfies the periodic boundary conditions. However, the mean of w is not conserved.
To conserve the mean of w, we modify Equation (8) by setting

27I"

0

(13)

The drift-free reaction-diffusion system becomes

ut Uxx W oxq- h(x

vt vxx + )zz + h’(x) (14)

2

+ v +
0

Lemma 3.1: If v(x, O) uz(x, 0), then v(x, t) ux(x t)Vt > O.
Proof: Let r v- uz. Then tit qzz with r/(x, 0) 0. The uniqueness property

of solutions to the diffusion equation with periodic boundary conditions and zero
mean implies that r]- 0; hence v(x, t)- uz(x t).
Lemma 3.2: For any steady state solutions of (8), ux -v.
Proof: Let r/(x)- uz- v. Then r] satisfies xz- 0. Since r/ is periodic in space

with zero mean, q- 0.
Lemma 3.3: For any steady slate solutions of (8),

(u2- uh)dx O. (15)

Proof." From (8),

(16)
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Lemma 3.1 implies that

(17)

Using the periodicity of u and v, the result

follows at the steady state.
Lemma 3.4: Let

27r

’(-) o
0

0

(18)

(19)

(, t) (, t) + 1/2,(, t), (20)

and

(x, t) w(x, t) + 1/2u2(x, t). (21)

Then at the steady state.
Proof: Since f or w(x, t)dx is independent of x, we have x- wx and zx- wxz"

Therefore, using (19), (20) and (21), we get

uu. + wx x, (22)

x (x) +x+ Wx x,
and

2rr

t UUt q- Wt t -t- wt(x t)dx.
0

Using Equation (14) we get

(23)

(24)

ltx, (25)

where r v ux. By Lemma 3.1, 0. Hence, v2 uz2 and t Ux + xx" Thus,

By Lemma 3.3,

27r

1 / t)dx (26)t u + 2 wt(z’
0

27F

t Ux + (zx 2r (ux- uh)dx. (27)
J
o

In the steady state, the result
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(2s)

follows from the fact Ux + (xx 0 ux + (xx, and u has zero mean. V1

Now we will prove that the steady state solution of the forced Burgers equation is
also the steady state solution of the transformed reaction-diffusion system and con-
versely.

Theorem 3.1: The steady state solution of the forced Burgers equation

ut-u-uu+h() (29)

is also the steady slate solution to the transformed reaction-diffusion system of the
Burgers equation:

ut u + ox + h()

(30)

Conversely, any steady state solution (u,v,) of (30) is necessarily of the form v-
Ux, o w with w- -1/2u2, and u being a steady state solution of (29).

Proof: Because v -t- O, it follows from (30) and (15) that

v uv + v uh() h’() O. (31)

Since v- ux, Equation (31) becomes

which implies

However,

2 uh(x) h’u- u2u- u + + (z) 0

(u- uu + h()) + u(- uu + h()) o.

%-uu+h(z)-0,

(32)

(33)

(34)

since u is a steady state solution of the forced Burgers equation. Similar arguments
hold in the case where h(x) -O.

To prove the converse, observe that the steady state solution of (30) satisfies

++h()- 0

Vx++h’()-O (35)

+ u2v + v uh(x) O.

By subtracting the last two equations in (35), one obtains

v + h’(z)- u2v- v2 + u O. (36)
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Since v ux, from Lemma 3.1, (36) becomes

2+ h’()-- + h(.) O,

which can be written as

(x- + h(.))x + (xx- + ()) O.

Let

Then

If

then

-Uxx-UUx+h(x).

ex+u- 0.

(i")0 exp u(s)ds
0

(0)- 0,

which implies that - Cl/0.
2r 2vr

0 0

27r 2"n"

t
2J (Ux-)xdx+ / h(s)ds.

0 0

Using the periodicity of u and the fact that f rh(s)ds O, we get

27r

()d o,
0

which implies f rdx O. Since 0 > O, we have C t 0 nnd

u-uu+h(z)-0.

Theorem 3.2: Every solution to the forced Burgers equation

u Uxx- uux + h(x)

satisfies the inequality
2" 2
o UoaXfort>_to, with o-cln c2f h2dx

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

and c being the Poincare constant.
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Proof: If we multiply the above equation by u and integrate, we get

u2dx uuxxdx + uhdx.

0 0 0

(48)

Since u is periodic, Equation (48) becomes

d u2dx u2xdx+ uhdx.
dt

0 0 0

(49)

Then using the Poincare inequality on (49) and the zero mean condition on u, we get

dt
0 0 0

(5o)

and the Cauchy Schwartz inequality on (50) to obtain

1 u2dx + u2dx < _d_dx ch2dx
2

0 0 0 0

a2 b2Also, using the inequality ab < -+ -, Equation (51) becomes

1/2

(51)

)u2dx + 1
F u2dx (_ c h2dx.

o o o
(52)

Finally, using the Gronwall inequality on (52) we arrive at

2r 2r 2r

u2dx (_ e -5 udx + c2(1 e -) h2dx.
0 0 0

f 2ru2dxiJO oGiven f2r0uoax,2" for t

_
to with o clntc2- frh2dxJ,

we have that

(53)

2r 2"

/ u2dx<_2c2/ h2dx,
0 0

(54)

which implies that

< x/c II h [III It Lo,2 Lo,2 (55)

Inequality (55) can be refined for the steady state, since from (52) it follows that
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Hence, we have the first part of Lemma 3.5 proved.
Lemma 3.5: The steady state solution u of the forced Burgers equation satisfies

the following inequalities:

(57)

Proof: Since
Uxx-Uuz+h=O, (59)

we can multiply Equation (59) by u, integrate the result from 0 to 2r, and use the
periodicity of u to obtain

,2r) (0 (0,2)

Since II u ]1 L0,2r) < c II h II Lo,2 Equation (60) becomes

Theorem 3.3:
equation

There is a unique steady state solution to the forced Burgers

u =ux-uu+h(x), (62)

when h satisfies II h II L= < 2/(3CLC), c is the Poincare constant, and C1 is the
Sobolev constant. (0, 2r)

Proof: Suppose there are two solutions u and v such that

and

Let w=u-v. Then,

Ux-Uu+h(x =0,

Vx- vv + h(z) O.

Wxx-- tWx- wvx O.

(63)

(64)

(65)

Multiplying the above equation by w, integrating from 0 to 2r, and using the
periodicity of u and w leads to

2r 27r

0 0

(66)

The latter can be rewritten as
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and by (58) in the form

Since

LO, 27r)

3V/
w2 (68)

2) (o, 2)

II < c II w II 2

it follows that
1/2

IIllz=,=)(o

(69)-- Cl II w II Lo,2 II w II Zo,2

1

(70)II h II o,2) II w II Lo,2),

)-if I] h II L2,(0 < CCl
1
then w wz = 0, which implies u v.

4. Numerical Results

4.1 Fourier Representation of the Transformed Burgers Equations

The quasilinear parabolic equation

u =u-u%+h(z) (71)

with u(2r, t) = u(0, t) and u(x, O) Uo(X can be written as

o a( h) (72)

where G(u,h)= uzx-uux + h(x). The discretization process consists of defining a

space XN of trial functions, a space YN of test functions, discrete approximations
GN of the operator G, and an orthogonal projection operator QN from a suitable
Hilbert space, which contains XN onto the space YN" We choose the spaces XN and

YN to be the space SN of all trigonometric polynomials of degree < N/2. If uN E
SN, then

N/2-1
uN(x, t) E k(t)eikx’ (73)

k= -N/2

where ilk(t), k -N/2,...,N/2-1 are the Fourier coefficients If the residual of
(71) is orthogonal to all test functions in SN, then a set of ODEs will be obtained.
The scalar Burgers equation in the Fourier space can be written as

tt(t’k)- -k2(t’k)- E (t,p)(t,q)+(k)- E (t,p)(t,q).
p+q=k p+q=k+N

(74)
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The transformed Burgers equation is

ut-Ux+w+h(z)

vt-Vx+Wx+h’(x) (75)

w w. + uv + v uh(z),

where v(x, t) Ux(X t), w(x, t) 1/2u2(x, t) and h(x) F(x)/,2, with u(2r, t)
u(0, t) and u(x, O)- Uo(X). The rate of change with respect to the time of the mean
of u and v in the above system is zero, but that of w is different from zero. We
modify (75) so that the drift in the mean of w is normalized to 0, i.e.,

27I"

o
(76)

The drift-free transformed Burgers equation is now

ut-Uxxq-xq-h(x

vt vxx q- )xz q- h’(x (77)

271"

0

If uN E SN, vN SN, and N SN then

N/2 1

k= -N/2
(78)

and

N/2
t)
k= -N/2

N/2
t)
k= -N/2

(79)

(80)

The transformed system in the Fourier space is

,(t, ) (t,) +i (t,) + ()

V,(t, ) V(t, ) (t, ) + i()

wt(t’k)- -k2w(t’k)+ E (t,p).(t,q)+ E (t,p)(t, 1)’(t,q)
p-f-q k pW q + k

(81)
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E f(q)(t,p)- E (q)(t,p)
p+q k p+q k:t:N

+ E t(t, p)(t, q) + E (t, 1)(t, p)(t, q) (t),
p+q=k:kN p+q+l=k+N

where re(t)--f2’o[uz-2 uh)dx. In the transformation method, all the nonlinear
terms in (74) and (81) were evaluated by performing all the multiplications in a phy-
sical space followed by the discrete Fourier transform to determine the corresponding
Fourier coefficients. The aliasing error was removed by truncation, as it will be des-
cribed in the next section.

4.2 Aliasing Removal by Truncation

The aliasing removal by truncation in the scalar Burgers equation proceeds in the
manner described in [6], which is the "2/3 rule". In the transformed system, the 2/3
rule is not appropriate because of the third order nonlinearity in the third equation of
the system. The "de-aliasing" technique that is used in the transformed system
involves the use of the discrete transform with M rather than N points, where
M > 2N. Let

xj- 2rj/M, j-O,I,...,M-1

M/2 1
ikx

Uj "ke 3

k= -M/2

M/2-1 ikx.
Vj vice
k= -M/2

(82)

k= -M/2

Uj UjVj’rj,

where

if <_N/2

otherwise,
(83)

if <_N/2

otherwise,
(84)

and
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t"
| k if kl <_ N/2

Wk
0 otherwise.

(85)

Thus, the coefficients k,k and k are the coefficients k,k, and k padded with
zeros for the additional wavenumbers. Similarly, let

1
M 1 ikx

Uk =- E gje a; k- M/2,...,M/2-1. (86)
j=0

Then

m+l+p=k m+l+p=k:t:M

Since we are only interested in Uk for kl <_ N/2, we can choose M such that the
second term on the right-hand side vanishes for these values of k. Since m, m and

m are zero for m > N/2, the worst case condition is

M >_ 2N- 1. (88)

If M is chosen as above, then the aliasing error in all terms of the third order and less
will be zero. This is the "2-rUle" de-aliasing technique used in the reaction-diffusion
system.
Two computer programs have been written to solve (74) and (81). In the first, a

spectral Galerkin method with N 256 is used. The Fourier coefficients, for which
]k > (1/3)/, are set to zero at each time step so that the aliasing term in (74)
vanishes. In the second program, a spectral Galerkin method with N- 256 is also
used. The Fourier coefficients, for which kl _> (1/4)N are set to zero at each time
step so that the aliasing term in (81) vanishes.

The integration is done using the spectral Galerkin method described above with
the "slaved-frog" as a temporal scheme [11], i.e.,

qn + e 2aatqn (1-- e 2c5t )q-
Ce fn, (89)

where qn q(tn), fn- f(tn)" This is obtained from the exact relation

t+St

q(t + St) e 2c5tq(t 6t) + f e a(t + 5t- s)f(s)ds. (90)
t-St

This scheme reduces to the "leapfrog" scheme when a 0. It is a second order in
time and unconditionally stable when f 0.

Figure 1 depicts the time evolution of u for the forced scalar Burgers equation with

F(x) 3cosx and u(x,O)= sin x and Figure 2 describes the time evolution of u for
the transformed system.
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Figure 1. The time evolution of u for the scalar Burgers equation (86) with

F(x) 3cos x, 5t = 0.0002 and u(x, 0) = sin x. Output is every 200 time steps.

Figure 2. The time evolution of u for the transformed system (92) with
F(x) 3 cos x, 5t 0.0002 and u(x, 0) sin x. Output is every 200 time steps.

In both cases, the steady state solutions converge with at least four accurate digits in
104 time steps, depending on u (when u is large, there is a critical slow down). The
steady state solutions of the scalar Burgers equation was also used as the initial
condition for the system and vice versa. After only one time step, the four digits of
accuracy were observed. Figures 3 and 4 show the time evolution of u for the scalar
Burgers equation and for the transformed system, respectively, but with a different
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forcing F(x) 3 cos 2x.

Figure 3. The time evolution of u for the scalar Burgers equation (86) with
F(x) 3 cos 2x, 5t = 0.0002 and u(x, 0) sin x. Output is every 200 time steps.

Figure 4. The time evolution of u for the transformed system (92) with
F(x) 3cos2x, 5t 0.0002 and u(x,O) sinx. Output is every 200 time steps.
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Other sinusoidal forcing terms were used and similar results were obtained.
Thus, one can conclude that both analytical and numerical results presented here
show that if Burgers equation is transformed to a reaction diffusion system, then the
two systems have similar long time dynamical behavior. Hence this work not only
supports Kwak’s theory on the existence of inertial manifold for the 2-D Navier-
Stokes equation, but also opens up a new numerical approach to study the dynamics
of more complicated PDE’s.
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