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In this paper we discuss the asymptotic behavior of a predator-prey model
with distributed growth and mortality rates. We exhibit simple criteria
on the parameters which guarantee that all subpopulations but one preda-
tor-prey pair are driven to extinction as t--<x. Finally, we present numeri-
cal simulations to illustrate the theoretical results.
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1. Introduction

In recent years, several researchers have investigated the dynamics of the following
multispecies Lotka-Volterra competition models:

dxi(t) xi(t) ai- E bijxj(t)dt j=l (1.1)
xi(O)-x, i-1,...,N.

In [4], Ahmad and Lazer gave conditions under which the Nth component of the
solution of (1.1) approaches zero, while the other components approach a certain
solution of a lower dimensional system. In [5], Montes de Oca extends this result to
the nonautonomous case where the a and bij are functions of t. In [8], Zeeman gives
conditions under which all but one of the species is drive to extinction, while the
remaining species approaches the carrying capacity determined by its growth and
mortality parameters. Montes de Oca and Zeeman generalize this result to the
nonautonomous case in [7]. In [6], these same authors consider the nonautonomous
case where there is a balance between extinction and survival of different species. For
a system with N populations, and for each r < N, they give conditions under which r
of the populations survive while the remaining N-r populations are driven to
extinction.
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A generalization of the logistic model is developed by Ackleh et al. [2]. In this
generalization, the growth and mortality parameters are chosen as elements of
continuous intervals rather than from discrete sets of numbers. That is, the
population is divided into subpopulations having growth and mortality parameters
q (ql, q2) lying in the set Q [al, b1] x [a:, b:], where al, a, bl, b E +. The point
q*= (bl,a2) locates the subpopulation with the highest growth to mortality ratio. It
is assumed that the growth part of the interaction function is subpopulation specific
while mortality is driven by interaction with the entire population. Subpopulation
densities replace subpopulation sizes as the state variables, and x(t,q) denotes the
density of individuals having parameter q at time t. The resulting model,

dx(t, q)
x(t, q)[qI q2 f x(t, q)dql,dt Q (1.)
x(O, q) xO(q),

is an integro-differential equation that can intuitively be thought of as a Lotka-
Volterra model of type (1.1) with "infinitely many" competing subpopulations. In [2]
the authors show that at each time t, the solution of system (1.2) induces a measure
on the growth-mortality parameter space. All subpopulations, but the one with the
highest growth to mortality ratio, become extinct as t---,oc. The surviving
subpopulation then stabilizes at the level determined by the carrying capacity of a
classical logistic model specified by the growth and mortality parameters of q*. This
implies the measure induced by the limit of x(t,q) as t--oc is a delta measure of

weight _L centered at q*.
In the

2
present paper, we consider a generalization of the predator-prey Lotka-

Volterra model. Because of the different structures of the interaction functions for
the predator-prey models considered here, we cannot employ the same techniques as
those used in [2, 4-8] to establish the boundedness and strict positivity of the total
predator and prey populations (these bounds are crucial in proving extinction).
Instead, we construct an auxiliary function which will be used to establish such
bounds.

This paper is organized as follows. In Section 2, we review the basic facts about
the classical Lotka-Volterra predator-prey model. Then we discuss the structure of
the generalized model and what is meant by dominance and by the extinction of non-
dominant subpopulations. In Section 3, we state and prove the theorems that make
precise those ideas discussed previously. Section 4 is devoted to the numerical illustra-
tion of the theory. In Section 5, we summarize the main results and indicate possible
directions for future research.

2. The Generalized Model

We establish some notation for the discussion that follows. In the space NN, we
denote the closed positive cone by N and the open positive cone by intNN+.

Recall that the classical Lotka-Volterra predator-prey model is given by:
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(dX’t-------A X(t)[a bY(t)],dt

’dY(t___.) Y(t)[- c + dX(t)],dt

X(O)- X, Y(O)- yO.

(2.1)

Here X(t) and Y(t) denote the prey and predator population size, respectively, at
time t >_ 0. For the prey component, the parameters a and b are the fixed growth
and mortality rates, respectively. For the predator component, the parameters d and
c are the fixed growth and mortality rates, respectively. Note that these four
parameters are meant to represent these rates for all individuals in the population. It
is well known that for system (2.1) with fixed point (,)E intR2+, the solution is a
closed curve in intR2+ satisfying dX + bY-clnX-alnY- k, where k is a constant

adepending upon initial conditions and the point (,) is interior to the curve.

In order to incorporate differences among individual growth and mortality, we

must alter the model. We follow the approach given by Ackleh in [1]. We assume
the prey and predator populations are divided into M and N subpopulations,
respectively. We assume that growth for the prey is subpopulation specific, while
mortality is driven by interaction with the entire predator population. Similarly, the
mortality for the predator is subpopulation specific, while growth is driven by inter-
action with the entire prey population. Let xi(t and yj(t) be the sizes of the ith
prey subpopulation and the jth predator subpopulation, respectively, at time t _> 0,
where i= 1,...,M; j = 1,.. N. Let x(t)- (xl(t),.E..,xM(t)) and y(t)- (Yl(t), ...,
YN(t)). We use X(t)= E "i lxi(t) and Y(t)- }_= lyj(t) for the total prey and
predator population sizes, respectively. Then the generalized predator-prey model is:

dxi(t)
dt =xi(t)[ai-biY(t)]’ i-1,...,M,

dyj(t)
dt yj(t)[ cj + djX(t)], j 1,..., N, (2.2)

x(O) (Xl(O),...,XM(O)) y(O) (Yl(O),...,YN(O)).

Given any (x(0) y(0))_ intM + N the existence and uniqueness of global solutions+
(x, y) e CI([0, cxi; intR + N) follow from standard results in the theory of systems
of ordinary differential equations.

a1 akIn system (2.2) suppose the subpopulations are ordered such that
bl bkd1 dk2,...,M, and > --, k- 2,...,N. With this specification, we say that subpop-

ulations xI and Yl are dominant in the sense that they have the highest growth to
mortality ratios within the prey and predator classes, respectively. We will show that
for such a system, xk(t)---,O as t--oc, k=2,...,M and yk(t)-O, as t---.cx,
k 2,...,N. Meanwhile x and Yl remain bounded and strictly positive and as

toc, this dominant pair of subpopulations traces a trajectory in intg2+ such that it
becomes increasingly close to a classical Lotka-Volterra orbit.
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3. Extinction of Nondominant Subpopulations

We begin by outlining our strategy. We define a scalar valued auxiliary function H
and show that H’, the total derivative of H along solutions of system (2.2), is nega-
tive. So H is bounded above by H(0). From the boundedness of H along solutions of
(2.2) and from the formula for H, we deduce that all of the components
i- 1,...,M, and yj, j- 1,...,N, of a solution of (2.2) are bounded above and that
the dominant subpopulation components x1 and yl are strictly positive. Using these
facts, we show that all non-dominant subpopulations approach zero in the limit as

Throughout the discussion, (x(t),y(t)) denotes the solution of (2.2) corresponding
to given initial conditions (x(0),y(0))E int + N. For any t 0, define H(t)-
r(t) + i(t) + O(t) + (t), where

C1 C1 (d11()))d dl
In

and

r(t) -1 xl(t)

A(t) (Yl(t) al al ln(blYl(t)))bI bI al

N

Observe that H CI([0, cx:)); + ).
Lemma 3.1: The total derivative of H along any solution of system (2.2) is nega-

tive. That is,

H(t)_ OH dXl OH dxi OH dyl OH dYN
Ox dt +’"- OxM dt OyI dt +’"- OyN dt < 0

for all t > O. Hence, the auxiliary function H is bounded above on [0, c).~ M
Proof: For convenience, we suppress the explicit dependence on t. Let X x

N i=2
andY- Yd" ThenH-F+A’+(I)+’,where

j=2

Cl XI)dl ( cl(al-blY))-1 xl b--(xl (al blY) dlXl

dl (dxl-cl ) 1blXl(a biN) dlXl (al-blY)(dlXl-Cl)

1-Yl (dlXl-Cl)-(dlXl-Cl)Y;

A’- al y--y(1 al l)91 b Yl /)1 Yl
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bl Yl Yl( Cl -- dlX) bl Yl al
blYl

(-Cl-+-dlXl) Y1--1 +dl Y1---1
M d M d M d M d

i--2

and

< ,.2dlXi Yl dlXY Yl dlX dlXY

N N, - C1 --. Cl
2_, + e x)
j=2 3

(Cl E Yj 1 +-X1 ---X Cl E Yj x 1 / c1 E yj-X
j----2 j--2 j--2

N(l )dl< Cl E YJ x1 1 +c1 yj-d-lX (dlX1 -Cl)Y +dlXY.
j-2 j--2

Combining these results, we have

H’ < Yl (dlXl Cl) (dlXl Cl)Y

-+" (-- el -+" dlXl) Yl -1 -+" dl Yl bl ]

+ -1- Yl dl dlXY -- (dlXl Cl)Y - dlXY O.

That is, H’(t) < 0 along solutions of system (2.2). So H(t) <_ H(O) for each t _> 0. [:]

From Lemma 3.1 we obtain the following corollary.
Corollary 3.2: There exists a positive constant U such that 0 <_xi(t <_U,
1,...,M, 0 <_ yj(t) <_ U, j- 1,...,N, t >_ O. Furthermore, there exists a positive

constant 5 such that 0 < 5 <_ xl(t), 0 < 5 _< Yl(t), Vt _> O.
Proof: The results follows immediately from H being bounded on [0,
Remark: We point out that U and 5 depend on the initial conditions and the

growth and mortality parameters.
In the next theorem, we show that all nondominant subpopulations are driven to
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extinction.
Theorem 3.3: For system (2.2), xk(t)--,O and yk(t)--,O as t--o, for k 5 1.

1

Proof: We begin by considering the prey case. Use the ratio r(t)-
xbkk(t)

1 to
b1 (t)

establish a comparison between x(t) and xk(t) and then use the fact that xx(t is
bounded on [0, oo), along with the comparison result, to conclude that xk(t)O as

t. If k {2,...,M}, then

xkk(ak Xkk(aI bl @

ak a1
bk hi)"

ak a1By the dominance of Xl, we have -K-1 -"k, where "k is a positive constant. So

we have a first order differential equation of the form r’(t) -Akr(t), whose solution
is r(t) r(O)e- "kt. In terms of x, we have

1 I11
Solving for xk, we obtain

bk

Since xl(t is bounded on [O,c), there exists a positive constant A such that
Xk(t <_ Ae- kbkt, for t >_ O. So Xk(t)---,O as t--,oo, for k 1.
An analogous argument for the predator case yields yk(t)O as t-c, for k - 1. V1

4. Numerical Results

We present an example to illustrate the behavior of the model (2.2). In this simula-
tion, there are ten predator and ten prey subpopulations. For the dominant prey sub-
population, the growth parameter is a 1 and the mortality parameter is b -0.8.
For the dominant predator subpopulation, the mortality parameter is cI 0.6 and
the growth parameter is dl 1.2. Using these parameters a, b, c and d in the setting
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Cof the classical model (2.1), the equilibrium value for the prey population is 2 0.5,
while the equilibrium value for the predator population is - 1.25.

Each xi(O), i-1,...,M, and yj(O), j-1,...,N, is set equal to 0.1. The growth
and mortality parameters for the nondominant subpopulations are set as follows:

an an 1 O.020(n 1),

bn bn- 1 + 0.016(n- 1)

cn Cn- 1 + 0.012(n 1)

and

dn dn-1- 0.024(n- 1), n 2,..., 10.

With these initial conditions and parameters, we solve system (2.2) for t E [0,250].
Figure 1 represents the predator population vs. prey population for t E [0, 50]. The

solid curve is the trajectory for the total populations, while the dashed curve is the
trajectory for the dominant subpopulations. When t- 0, the total population
trajectory starts at the point (X(0),Y(0))= (1,1) and moves in a counterclockwise
fashion. The trajectory for the dominant subpopulations begins at the point
(Xl(0),yl(0)) (0.1,0.1) and moves in a counterclockwise fashion as it approaches
the total population trajectory. The behavior discussed in the previous sections is
already becoming clear. Since every prey subpopulation other than the dominant one

approaches zero as t---,oc, the dominant prey subpopulation must approach the total
prey population as t---o. The predator case is strictly analogous. So the trajectories
must approach one another. Figure 2 shows the same trajectories for t G [0,250]. In
the later portion of this time interval, the trajectories are indistinguishable.

1.6

1.4

0.8

0.6

0.4

0.2

Prey Population

Figure l" Total and dominant population trajectories for E [0, 50].
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Figure 2: Total and dominant population trajectories for t E [0,250].

Figure 3 is a plot of total population minus dominant subpopulation vs. time.
The upper (lower) curve is the difference of the total and dominant predator (prey)
populations. This plot clearly indicates that the dominant subpopulations of preda-
tor and prey cease to differ from the corresponding total populations by any appreci-
able amount after a sufficient amount of time has elapsed.

1.5

The upper curve is the predator case.

50 100 150 200
Time

250

Figure 3: Population differences vs. time.

Consider the classical predator-prey system (2.1) with a- al, b- bl, c- cI and
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d=d1. Solving this system for the initial conditions (X(O),Y(O))=(Xl(250),
Y1(250)), we obtain the solution curve illustrated in Figure 4. The small circle in the
middle of the figure marks the equilibrium point for the system. Figure 5 is an

overlay of the dominant subpopulation trajectory from Figure 3 and the classical
solution curve from Figure 4. The generalized system evolves in such a way as to
"become classical." That is, after enough time has passed, the trajectory for the
dominant predator-prey pair from the generalized system closely approximates the
solution curve of a classical predator-prey system whose initial conditions are taken to
be the values of the dominant pair at a late enough time.

.4

1.2

Prey Population

Figure 4: Classical population trajectory.
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Figure 5: Overlay of classical and dominant population trajectories.
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5. Conclusions

As we have seen from both the theoretical and numerical results, all nondominant
subpopulations in system (2.2) are forced to extinction as t--oc. This is due to the
fact that in the development of the model (2.2), we have assumed that reproduction
is closed, that is, those individuals with the highest growth to mortality ratio only
produce more of themselves. We believe that this conclusion changes with open repro-
duction, where individuals in one subpopulation have a positive probability of
producing individuals with different characteristics (i.e., belong to a different
subpopulation). In this case, the dominant subpopulation produces individuals that
belong to nondominant subpopulations. Hence, survival of the dominant species
implies the survival of some of the others. In fact, initial numerical results
corroborate this idea and furthermore, they indicate that surviving subpopulations
have an oscillatory behavior. We remark that the assumption of open reproduction is
studied in [3] for a special case of the finite dimensional generalized logistic model,
where individuals of one subpopulation have an equal probability of producing
individuals that belong to any other subpopulation. Therein, the survival of all
subpopulations is established.

Another system we plan to investigate is the continuum version of the predator-
prey model, as is done in [2] for the generalized logistic model. In the continuum
case, subpopulation numbers are replaced by subpopulation densities, and solutions of
the system induce time dependent measures on the growth-mortality parameter
space. Hence, using convergence of measures as in [2], we expect to extend the results
in this paper to analogous results in the continuum case.
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