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In the studies of acoustic waveguides in ocean, buckling of columns with
variable cross sections in applied elasticity, transverse vibrations in non-

homogeneous strings, etc., we encounter a new class of problems of the
d2yl

X---2-rUl( )Yl- "Yl defined on an interval [dl,d2] andtype Llyldy
L2Y2 + q2(x)y2 .y2 on the adjacent interval [d2, d3] satisfying

certain matching conditions at the interface point x- d2.
Here in Part I, we constructed a fundamental system for (L1,L2) and

derive certain estimates for the same. Later, in Part II, we shall consider
four types of boundary value problems associated with (L1,L2) and study
the corresponding spectra.
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1. Introduction

In studies of acoustic waveguides in ocean [1], buckling of columns with variable cross

sections in applied elasticity [9], transverse vibrations in nonhomogeneous strings [2],
etc., we encounter a new class of problems of the type

defined on an interval [dl, d2] and

L2y2

d2yl
dx2 ql(x)Yl "Yl

d2y2
dx2 + q2(x)Y2 )Y2,
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defined on the adjacent interval [d2, d3] where , is an unknown constant (eigenvalue)
and the functions Yl, Y2 are required to satisfy certain matching conditions at the
interface x- d2. In most of the cases, the complete set of physical conditions give
rise to (selfadjoint) eigenvalue problems associated with the pair (L1,L2). The
spectral analysis of these boundary value problems (BVPs) can be carried out to some
extent by recasting them as operator equations in an appropriate abstract space [3,
8]. But some of the nice and useful properties of the original BVPs cannot be
captured so easily in the abstract space settings. In the literature, there do not seem
to exist may results in this area. However, O.H. Hald [5] discusses the inverse theory
of some problems of this type which arise in torsional modes of the Earth, and B.J.
Harris [6] obtains series solutions for certain Riccatti equations with applications to
Sturm-Liouville problems

Hence here and in the sequel, we adopt the classical approach for the study of
eigenvalue problems (EVPs) associated with the pair (L1,L2) and prove a few
spectral analysis results for the new class of BVPs.

Before proceeding to the work, we shall introduce a few notations and definitions.
Let R denote the real line, and C denote the complex plane with their usual
topologies. For a complex number ,, Re, and ImA denote the real and imaginary
parts of ,, respectively. For any two nonempty sets A and B, A\B denotes the
collection of elements in A which are not in B. Again, for any two nonempty sets V1
and V2, V1 x V2 denotes the Cartesian product (space equipped with the product
topology) of V1 and V2, taken in that order. For a compact interval In, b], of R,
L[a,b] (L[a,b]) denotes the complex (real) Hilbert space of all complex (real)
valued Lebesgue square integrable functions defined on [a,b]. The inner product
(.,.)andnorm II" II in L[a, b] (L2R[a, b]) are given by

(f,a)
b

f- dx and II f II (f, f)/2
a

where y denotes the complex conjugate of g. For a function y, y’ and y" denote the
first and second order derivatives of y, respectively, if they exist. Let AC2[a,b]
denote the space of all twice continuously differentiable complex valued functions y
defined on [a,b] such that y’ is absolutely continuous. Let H2c[a,b] denote those
functions y E AC2[a,b] such that y" L2c[a,b]. Let 0 < h < 1 and let (ql,q2)
L[O,h] x L[h, 1]. Let wI and w2 be nonzero constants.
We consider the pair of Sturm-Liouville equations

LlYl YI + ql(x)yl yl, O <_ x <_ h, (1)

L2Y2 -Y’2’ + q2(x)Y2 Y2, h < x < l,

together with the matching conditions at the interface x- h given by

Yl(h)- Y2(h), WlYi(h) w2Y2(h) (3)

where , is a complex constant.
Definition 1" By a solution of the problem (1)-(3), we mean a pair of functions

{Yl, Y2} satisfying the following conditions:
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(i) Yl @ AC2[O, hI and satisfies Equation (1) for almost all x E [0, hi,
(ii) Y2 AC2[h, 1] and satisfies Equation (2) for almost all x [h, 1],
(iii) Yl,Y2 satisfy the matching conditions (3).
Definition 2: We say that the nontrivial pairs {Y11,Y12},{Y21,Y22} where Yll,Y21

are defined on [0, hi and Y12, Y22 are defined on [h, 1] are linearly independent if for
any two scalars a and/, the equations

cY11(X)-- Y21(X) 0 for all x [0, hi and

ozYl2(X -- Y22(x) 0 for all x [h, 1]
imply a 0.

Definition 3: By a fundamental system (FS) for the problem (1)-(3), we mean a
set of two linearly independent solutions of (1)-(3), which span the solution space of
(1)-(3).

In Part I, we construct a FS for the problem (1)-(3) and establish certain estimates
for the components of FS. In Part II, we present results concerning the location of
the spectra of various associated BVPs.

2. A Fundamental System for (1)-(3)" Construction and Estimates

sinv/xFor the sake of simplicity, we denote C,()= (cosv/) and S,()=----
proving the main theorem, we state the following easily verified lemmas.V/’
Lemmal: Let (gl,g2) eL2c[0, h]xL2c[h, 1 ]. Then for x e [h, 1],

h x

/ Igl(t) dt + / Ig2(t) dt - (ll gl ]]2 + I] g2 II 2)1/2V/"
o h

Lemma 2: (A) The problem (1)-(3) along the initial conditions

Yl(0) 1, y(0) 0

is equivalent to the Liouville integral equation
x

yl(x) CA(x + / S(x- t)ql(t)yl(t)dt
o

O<_x<_h,

Y2(X) yl(h)CA(x- h)+ (Wl/w2)Yl(h)SA(x- h)

x

+ / S),(x-t)q2(t)y(t)dt h <_ x <_ 1.

h

(B) The problem (1)-(3) along with the initial conditions

y(O) O, y’l(O) 1

is equivalent to the Liouville integral equation

Before

(4)

(6)

(7)
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x

yl(x)- SA(x - / SA(x-- t)ql(t)Yl(t)dt 0 <_ x <_ h,
o

(8)

y2(x) Yl(h)C)(x- h) + (Wl/W2)Yl(h)A(x h)

x

+ j S(x- t)q2(t)y2(t)dt
h

h<_x<_l. (9)

Theorem 1: (Construction of a FS for (1)-(3)) (A) The unique solution of initial
value problem (1)-(4) is given by the pair (11’Y12) where

Yll (x) CA(x)+ E CA(t1)
n=l i=1o_<tI _< t, _< , + =z

,k(ti -t- 1 ti)ql(ti)dt’’’dtn, 0 <_ x <_ h, (10)

Y12(x) Co(x’ ") + E C0(tl’ ))
n=l /=1

h <_ 1 <_ <_ tn <_ tn_t_ 1 x

S(ti + ti)q2(ti)dtl’" "dtn, h < x < 1, (11)
where

Co(x,, Y11(h)C(x- h) +2(Y11(h)S(x h)), h <_ x <_ 1. (12)

(B) The unique solution of initial value problem (1)-(3) and (7) is given by the
pair (Y21, Y22) where

n=l i=1O<_tI <_...<_tn<_tn+ =x

X SA(t h- ti)ql(ti)dtl" "dtn, 0 < x < h,

Y22(x) SO(X’ ) -" E So(t1’ )
n=l i=1h<t <...<_tn<tn+ 1 =x

(13)

where

Here

SA(ti + ti)q(ti)dtl.. "dtn, h < x < 1,

WlCoo(X, Y21(h)CA(x h) q-2(Y21(h)CoA(x h)), h <_ x <_ 1.

(14)

(15)
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2

/
0<_ <_..._tn _tn+l---x 0 0 0

and
x 2

/ d’l""d’n-/ / .../ ...dl...dn.
h<_t1 <_...<_tn<_tn+ =x h h h

Proof: We prove part (A). The proof of part (B) follows similarly. Expression
(10) follows from Theorem 1 (on p. 7 [7]). One can also refer to Equation (8) on
page 9 [4], for the power series representations in (10) and (13). Below we derive
Expression (11).
We assume that Y12 is a power series in q2, that is

Y12(X) Co(X")"nt- E Cn(X’’q2)’ h _< x _< 1 (16)
n=l

"’" q22 .... qn2 q2’
and Cn(x,A, q12,’",where Cn(x A, q2) Cn(x, A, q12’ qn2) Iql 2

qn2), for each x and A, is a bounded, multilinear symmetric form on L2c[h, 1] x... (n
times) x L2c[h, 1].

Formally differentiating the power series for Y12 twice with respect to x and
substituting into Equation (2) then equating the terms which are homogeneous of the
same degree in q2, we obtain

Cg AC0 (17)

-C ACn -q2Cn_ 1, n

_
1, h

_
x <_ 1. (18)

In view of the matching conditions (3) to be satisfied by the pair (Y11,Y12) at the
interface x- h, we impose the following initial conditions on the Cs"

Co(h, ) Y11(h), C;(h, ) Wl-2Y11(h) (19)

Cn(h C’n(h 0, n _> 1. (20)

Clearly, the solution of (17) satisfying (19) is given by

WlCo(x,,, Y11(h)V.x(x h) --k-2(Yll(h),..)(x h)).

Also the solution of (18) satisfying (20) is given by

x

Cn(x,,q2) / S,x(x t)q2(t)Cn_ l(t, ,q2)d/,
h

n>l.

Proceeding by induction, we get
n

C0(tl’ ")H S)(ti +
i--1h<_t <_...<tn<tn+ l=x

-ti)q2(ti)dtl...dtn.

Substituting the expressions for Co, Cn in (16), we obtain (11).
Note 1: We note that
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Yjl(X)--Yjl(X,,ql)
and

Yj2(x) yj2(x, , w, w2, q, q2), J 1, 2.

Theorem 2: (A) The formal power series for Yjl, J- 1,2 converge uniformly on

bounded subsets of [0, h] x C x L[O, h] and

Yjl(X) <-- exp( Imvf x q- II ql II /r), 0 <_ X <_ h.

(B) The formal power series for Yj2, 2J 1 2 converge uniformly on bounded
subset of [h, 1] C (C\{O}) (C\Br(O)) Lc[O,h] L2c[h, I], for any r > 0 and

lyj2(x) l< 1+ 1-2 ex V/ h x l.

Proof: The proof of part (A) follows from Theorem 1 (on p. 7 [7]). Below we

shall derive the estimate for [Y12(x)]. The estimate for ]Y22(x)] can be derived
along similar lines.
We note that

and for 0_<x_<l,
C(x) <_ exp(lImv/lx),

]S,(x)] <_ exp(lImv/-[x), (see p. 8 [7]).

Substituting the series (10) and its derived series for Yll(h) and yl(h), respectively,
into Expression (12), regrouping the terms, taking modulus and using the triangle
inequality, we obtain

W1 )Sin(v/h)C(x) +(1- 22)Sn(’-(x- h)

n--1

C)(tl)ql(tn) H S)(ti + 1
i=1O_<tl<...<tn < n + h

--ti)ql(ti)

[S(x- tn)+(-2--1)S(x- h)C(h-tn)]dtl...dtn

_< 1+ 1-2 xp IImvlx x 1+
n--1

Iql(ti) ldtl...dtn
O<_t <_...<tn<_tn+l_h i-1

I1+11-2 xp(lImv/-lx)x 1+ Iql(t)
0

dt p. s [7])
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( WeICo(x,,)] _< 1+ 1-22 exp Imv/lx + Iql(t) ldt,
0

Finally from Equation (11), we get

lYl2(X) _< C0(x,)l /
n=l

h<x<l.

n

x Co(tl,,) H S(ti- 1 ti) lq(ti)[dtl"" "dtn
i=1

( -We)e IIXf x+-< 1+11 22 xp (t) ldt
0

1 + [q2(ti) ldtl...dtn
i=1n=i h<_t1 <_...<_tn+ 1 =x

(21)

(using (21)and simplifying)

(as before>

_< 1+ 1-2 xp Imv/lx + II ql II + II II h _< x _< 1 (22)

(by Lemma 1).

The above estimate readily implies the uniform convergence of the power series for

912"
Note 2: Theorem 2 and Lemma 2 readily imply the uniqueness of the solution stat

in Theorem 1. Moreover, every solution (Yl,Y2) of the problem (1)-(3) is uniquely
expressed in the form

Yl(X) Y1(0)Y11(X) nt- YI(0)Y21(X)’ 0 _( Z

_
h,

y2(x) Yl(O)Yl2(X)-- y1(0)Y22(X), h<x<l.

Lastly, we prove the following theorem on the asymptotic estimates for the
components of the FS.

Theorem 3" (A) On [0, hi x C x L[0, hi,

(i) Yl (x)- cosv/X --
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(ii)

(iii)

sinx/fx

Wl(vii) Y12(X) + X/sinv <_ v/ I1 --1 ea:p( Imv x)

+ 1+ 1-@-2 (llqll] 2+ II q2 II )1/ <ex ]Imx/lx +( II ql II 2"1" 11 q2 I1 2)1/2

Wl(viii) Y22(x)- cosx/rx <_ I1--1

-4- Vf 2 (l] ql II 2 -4- II q2 ])2)1/2
/( II ql II 2-4- I1 q2112)1/2V/’")

Proof: The proof of part (A) follows from Theorem 3 (p. 13 [7]). We establish
inequalities (v) and (vii) of (B). Inequalities (vi) and (viii) can be established
similarly.

(v) From

W
Co(x,A C)(x) +(1 2)Sln(V/(x h))Sin(v/h)

+ E CA(tl)ql(tn) s,(ti + 1 ti)ql(ti)
n=l i=1O_<t <_ <_ tn <_ tn + h

x S(X-tn)+ 22-1 S(x-h)C(h-tn)dtl...dtn
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it follows by using the same type of estimating as in (21) that

c0(,)- cosvX

-Wlxp(llmv/-l:e/4. 1 I14.]1- wl]) ( / )_<11 22 [V/ 22 exp IImv/[4. ]ql(,)]dt
o

By (11)
Y12(x) Cos(v/-X)

(23)

Co(x,/)-CA(x)] 4"n_1-[
n

Co(tl, A) H qA(ti + 1 ti)q2(ti)dtl’" "dtn
i=1h<_tl...<tn+l =X

Wl xp(I Imv/- I)<]1

)e ( /h n=11( /x )n/xp ]Imv/lx + ql(t) dt 1 + -. q2(t) dt

o h

(by using (21), (23) and the second sum estimation in (22))

_Wlxp(llmv/-lx)+ 1 (1+11- wl I)e (<[1 22 V/-[ 22 xp IImv/-lx+( ]]ql II 2+ ]1q2[[2)1/2

(by Lemma 1).

(vii) Differentiating integral equation (6) for Y12 with respect to x, inserting
Y11(h), yl(h) from integral equation (5), and simplifying we obtain

Yl2(X) cos(v/-h)sin(v/(x h)) 4. 2sin(v/-h)cos(x//-(x h))

h

4. ql(t)Yll(t) sin(v/(h t))sin(x/(x h))+ 2cos(v/(h t))cos(v/(x- h)) dt

0

Hence

x

+ f C)(x- t)q2(t)ya2(t)dt.
h

yi2(x) 4" X//-sin(v/rx)

w

h

/ exp(lmv/;]t / II ql I’ 1 4- 1-22 xp(llmv/;](/-t) ql(t)]dt
o
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h

Iq2(t) ldt (by Theorem 2)

Wl xP(I Imv/ Ix )< Iv l]l
2+ IIq2 112)l/2exp(Iimv/lx+( Ilql I] 2+ IIq2 112)1/2V/)

(by Lemma 1).

Note 3: It follows from standard results for initial value problems that Yij,
i, j 1, 2 and their derivatives are analytic functions of A.
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