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A bulk M/G/1 system is considered that responds to large increases (de-
creases) of the queue during the service act by alternating between two ser-

vice modes. The switching rule is based on two "up" and "down" thre-
sholds for total arrivals over the service act. A necessary and sufficient
condition for the ergodicity of a Markov chain embedded into the main
queueing process is found. Both complex-analytic and matrix-analytic
solutions are obtained for the steady-state distribution. Under the assump-
tion of the same service time distribution in both modes, a combined com-

plex-matrix-analytic method is introduced. The technique of "matrix un-

folding" is used, which reduces the problem to a matrix iteration process
with the block size much smaller than in the direct application of the ma-
trix-analytic method.
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1. Introduction

In controlled queueing systems, it is usually assumed that parameters of the arriving
and service processes may depend on some characteristics of the queueing process
(usually the queue length) at certain moments of time. This assumption enables the
system to change input and service parameters in order to keep important elements of
the queueing process under control.

In particular, in [1, 2] the authors considered bulk queueing systems where the aver-

age number of arriving groups of customers per unit time, their random sizes, and
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the service capacity depend on queue length at some special moments of time. As
such, those parameters can be changed if the length of the queue reaches an
unacceptable level.

This approach seems to be very promising and productive under one indispensable
condition: the information about arrival and queueing processes must be complete,
reliable, and available at any time the system is functioning. However, it is
sometimes difficult or even impossible to achieve that condition in real-life queueing
situations, at least for certain periods of time. For instance, in queueing problems
with "server’s vacations", the information about the number of customers in the
system may not be available when the server is "on vacation" and, therefore, in such
problems the system can control the queueing process only during busy periods. To
find out how effectively the system can control the queueing process under these
conditions, it is necessary to analyze the corresponding queueing model with the help
of queueing theory methods.

In the existing literature, there are many publications related to controlled queue-
ing systems with state dependent parameters. (The most recent and complete survey
of these methods is contained in [5]). Due to the importance in computer science
applications, many articles are devoted to systems with a "vacationing" server, in
which the server may not be available for service during some periods of time. (An ex-
cellent survey of hundreds of models of this kind is contained in [4].) In all of those
papers, it was supposed that the system has complete information about the queueing
process all the time. To the best of our knowledge, controlled queueing systems with
incomplete information have not been considered in the literature.

In this article, a controlled queueing system is analyzed where the waiting line is
not reliably observable. Thus, parameters of the service process and service discipline
depend in a certain way only on the number of customers that arrive to the system
during the busy period. The following is the general description of this queueing
model"

Customers arrive at a service station by a Poisson process and are served
in groups. The service time has a general distribution corresponding to the
current service mode. The service station has two available modes of work"
in Mode 1, the service group size is n, in Mode 2 it is m, where m > n.
Mode 2 being more "expensive", the station seeks to restrict its usage to
"heavy arrival" situations by imposing "arrival thresholds". At the moment
before completion of a service act, a decision is made on the next service
mode" it switches "up" from 1 to 2 if the number of arrivals over the last
service period reached or exceeded m; it switches "down" from 2 to 1 if the
number of arrivals was less than a "down threshold" N, where n _< N <_ m;
otherwise the mode remains as it was.

In the next section, we analyze the queueing process in this system via an
imbedded, two-dimensional Markov chain, and establish transition equations for its
steady-state probabilities and the necessary and sufficient condition of ergodicity.

In Section 3, we obtain a system of equations for the generating functions of the
steady-state probabilities and represent its solution in terms of a finite number of
undetermined constants. In the framework of the classical complex-analytic method,
the missing constants are found from a system of equations based on the ("Rouche")
roots of a characteristic equation.

Under the assumption that the service time distribution is the same for both
service modes, a divisibility method is introduced to set up a real-arithmetic
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system of equations for the missing constants. The equations follow from the fact
that a polynomial involving the constants should be divisible by the "characteristic"
polynomial that vanishes at the above mentioned "Rouche" roots. Three special cases
are studied, in which explicit formulas are obtained for the generating function of the
stationary queue-length distribution:
Case 1. N m;
Case 2. N=m-1, n=l;
Case 3. N=n=l.

In Section 4, we discuss possible ways of finding matrix-analytic solutions for this
system. In one method, we replace the two-dimensional, imbedded Markov chain by a
one-dimensional chain of the so-called block type. For this chain, the steady-state
probabilities can be found by a matrix-iteration process (e.g., Neuts [9]) with matrix
size M- 2m.

At the same time, under the assumption that the service time distribution is the
same for both modes, we apply the technique of "matrix unfolding" for a power series
to the complex-analytic formulas of Section 3, and construct a matrix-analytic solu-
tion where the block size is reduced to M m + n- N.

2. System Description, Basic Notations and Equations

Customers arrive to the queueing system by a Poisson process with a rate . The
server operates continuously, and has two modes of work: in Mode 1, the service
group size is n, in Mode 2 it is m. When the mode is r, the service time distribution
function has Laplace transform Gr(s). The mode switching rule described in the intro-
duction is formalized as follows.

Let rlj be the service mode of the (j + 1)st service act starting at the moment tj.
At tj-0, a decision is made on rlj. If rj_ was 1, and the number of arrivals aj
over the jth service period was below m, then r/j is set to 1; if aj_> m, the mode
switches "up" to 2. If rlj_ 1 was 2 and cj < N, where n _< N _< m, the service mode
switches down to 1; otherwise, it remains the same.

Let Qj be the queue length at tj + O. Clearly, {(Qj,Ij)) is a Markov chain, and
its transitions can be formalized as follows:

1 if((j--lAaj<m) V(r/j--2Acrj<N)),
2 if((r/j--lAaj>m) V(rj--2Acj>N)),

(2.1)

max(0, Qj + aj n) if rlj -t- 1 1,
Qj + 1

max(0, Qj + ctjOm) if Vii -t- 2.

By construction, the conditional probability gen.erating function (pgf) of aj, j-
0,1,..., given that rlj- r, is Kr(z)- y]iC=okriz’-Gr(,-,z). For an arbitrary
power series W(z) o wz, we win denote(for an integer s > 1) Ws-(Z)=- 10wizi; W2 (z) ’ sWizi-s" Now, all transition probabilities aSr of the
chain {(Qj, rj)}2from state (i,r) to state (l,s) can be written in terms of coefficients
of Kl(z) and K (z)(see Appendix).

As usual, the transition relations for the steady-state probabilities Pjs, J 0, 1,...,
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s- 1,2, (if they exist) are"

s. 1. (2.3)Pjs EPirair E
$ r $ r

In terms of generating functions Pr(z)- c= oPirZ, r- 1,2, relations (2.3) can be
written as follows"

n .1- 2N- (z) + ql(z),PI(Z)-PI(Z)Z Iim (z)+P2(z)z nK

P2(z) P1 (z)Klm+ (z) + P2(z)zN- mK2N+ (z) + q2(z),

(2.4)

where

and

2 n-1 n-i-1

ql(Z) E E Pir E 1(zn- zi + J)’
r=l i=0 j=0

m-N-1 m-i-1

q2(z) E Pi2 E
i=0 j=N

Or, in the vector form,

/: -- + ).j(z N_ z

[Pl(z),P2(z)][I H(z)]- [z-nql(z),zN- mq2(z)]

where
-n -1- I+z (z) (z)

H(z)
z-nK2N- (z)zN-mK2N+ (z

(2.7)

Theorem 2.1" The chain {(Qj, qj)} has a steady-state distribution if and only if

6 71" l(rz K’(1)) + r2(m K2’(10) > 0,

where 7r1 --PI(1) and rr2 -P2(1) are the steady-state probabilities that the system is
in Mode 1 or 2:

7r KV- (1)[Kv- (1) + Klm+ (1)]- 1; 7r2 Klm+ (1)pKv- (1) + Klm+ (1)1-1. (2.9)

Proof: The transition relations (2.1) and (2.2) show that the chain {(Qj, rlj)} is ir-
reducible and aperiodic, and from (2.2) it follows that it is also a so-called Markov
controlled random walk (see Dukhovny [6]), with the jumps depending on the con-

trolling parameter q. Formula (2.7) gives U(z), the matrix generating function of its
jumps.

It was proved in [6] that the condition

d det[I- H(z)] > 0 (2.10)dz z=

is necessary and sufficient for the ergodicity of such a random walk. Condition (2.10)
can also be written as

rrl[Hl(1 + HI2(1)] + rr2[Hl(1 + H2(1)] < O. (2.11)
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It follows from equation (2.6) that

[rl, 2][I- H(1)]- 0, with ’1 -- 7r2-- 1. (2.12)

Now, we use (2.7) to derive (2.9) from (2.12), and use (2.9) to derive (2.8) from
(2.11).

3. Complex-Analytic Approach to Stationary Probabilities

In the framework of the traditional complex-analytic approach, a formula for the
generating function of the steady-state probabilities often contains a finite number of
unknown constants. To determine the constants, a system of equations is obtained
based on the fact that some expression containing the constants has to vanish at the
roots of a "characteristic" equation (i.e., "Rouche roots").

Here, on the strength of (2.7), (2.6) can be written as

[Pl(z),P2(z)]( zm- NKlm+ (z) )zm- N K2N+ (z)
[ql(z)’q2(z)]" (3.1)

Solving the system (3.1), we obtain

Pl(Z) A1/A; P2(z) A2/A (3.2)

for all z such that A - 0, where

A zm + n- Ndet[I H(z)] zm + N ’(z),

(z) zm- NKlm- (z) + znK2N+ (z) + zm- NI m.1 + (z)K2N (z) im,.1 (z)K2N+ (z),

/1 {ql(z)[zm- N K2N+ (z)] + q2(z)K2N (z)},

(3.3)

(3.4)

and

A2 {ql(Z)Zm- N -1+ -1-(Z)]}(Z) + q:(Z)[Z"-

Therefore, by the definition of ql(z) and q2(z), the formulas in (3.2) contain
m + n- N unknown constants Pil, 0,...,n- 1, and Pi2, O,...,m- N- 1.

Theorem 3.1: Under the condition of ergodicity (2.8), A has m + n-N roots in

zl

_
1 (we denote the roots by o-1, i,"’,mTn-N-1)" Assuming that the

roots are distinct, the constants Pil, O,...,n-1, and Pi2, O,...,m- N-1,
form a unique solution of the system of equations:

ql(Z)[Zm-N_K2N+(z)]_q2(z)K2N-(z)- 0, /Z-- l,’",mTn-N-1 (3.6)

2 n-1 n-i-1 m-n-1 m-i-1

E EPirE k(n-i-j)+ E Pi2E kj(m-i-j)-5. (3.7)
r=l i=0 j=O i=0 j=N
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(In the case when, for some t the multiplicity of t is s > 1, (3.6) would include
vanishing derivatives of the left-hand side at t up to the order of s- 1.)

Proof: It was proved in Dukhovny [6] that under the condition of ergodicity (2.8),
the number of roots of det[I- H(z)] in the region z < 1 is equal to the number of
its poles in the same region less 1 (both numbers counted with multiplicities). By
(2.7), the only pole of det[I- H(z)] in z < 1, is z 0, with multiplicity m + n-
U. Thus, the number of roots of det[I-H(z)] and, therefore, of A in [z < 1, is
m+n-N-1. Since Pl(Z) is analytic in ]z[ <1, by A1 has to vanish at those
roots, and (3.4) yields (3.6). Also, (3.7)follows from the normalizing condition

P1(1) + P2(1) 1.
Under the ergodicity condition (2.8), the system (3.6)-(3.7) has a unique solution.

Indeed, one solution is provided by the stationary probabilities. If there was any
other solution, the formulas (3.2)-(3.5) would have provided a new absolutely summ-
able solution of the transition equations (2.3), which is impossible under the ergodici-
ty condition.

Remark: Naturally, once the missing constants are found that make A1 vanish at
the roots of A, it will also make A2 vanish at those roots, which guarantees that
P2(z) is also analytic in z < 1. In fact, (3.5) could have been equivalently used in
place of (3.4) to generate the equations of (3.6).

It turns out that under the assumption that the service time distribution is the
same in both modes, a different method can be used to obtain the missing constants,
thereby avoiding using the roots of A directly. Under this assumption,

Kl(z)- K2(z)- K(z)- E kjzj’
j=O

n-1 n-i-1 m-N-1

ql(Z) y: n z + q (z)
i=0 j=0 i=0

kj(zm- N_ z + j),

where Pi- Pil + Pi2;

5 rln + 2m K’(1),

rl K (1)[1 h(1)] -1 r2 Km+ (1)[1 h(1)]- 1

where h(z) Y] im---Nklizi n.
Now, adding (3.4) and (3.5) we obtain the generating function of the stationary

queue length distribution P(z)- Pl(Z)/ P2(z), which is given by

P(z) A l{ql(z)[zm N h(z)] q- q2(z)[zn- zNh(z)]}. (a.8)

We denote
m+n-N-1

zm+m-N--g(z)- H (z t)’ (3.9)
t-0

re+n-N-1 jwhere g(z)- j =o gjz. Since the left-hand side of (3.6)is a polynomial,
(3.6) is equivalent to the divisibility of that polynomial by zm + n-N_ g(z).

Corollary 1: Under the assumption of the same service time distribution, if the



Complex-Analytic and Matrix-Analytic Solutions 421

ergodicity condition (2.8) is true, the constants Pi-Pil + Pi2, i-O,...,n-1, and

Pi2, i- 0,...,m- N- 1, form a unique solution of the system of equations:

ql(z)[zm- N h(z)] q- q2(z)[z’ zNh(z)] 0 mod[zm + n- N g(z)], (3.10)

n-1 n--i-1 m-n-1 m-i-1

-.Pi kj(n-i-j)+ Pi2 kj(m-i-j)-6. (3.11)
i=0 j-0 i=0 j=N

In general, to implement (3.10), the remainder of division of its left-hand side by
zm+ n- N_ 9(z) must be obtained, and all its coefficients must be equated to 0. The
resulting form of (3.10) is

n-ln-i-1

E PiE ]J{(zn zi + J)[zm- N h(z)]mod[zm + n- U g(z)]}
i=0 j=0

m-N-1 m-i-1

"+" E Pi2E ]J{(zm- N z + j)[zn zNh(z)lmod[zm + n- N
i=0 j=N

-0.

The "divisibility" approach involves a system of equations with real coefficients (as
opposed to (3.6)). Also, it is obviously insensitive to repeating roots.

For some important special cases, under the assumption of the same service time
distribution, it is possible to present the solution in an explicit closed form.

Special Case N- m: A simple way to organize switching is to use the "expensive"
mode 2 only when the arrival over a service act is m or more, that is to set N m.
Then h(z)- q2(z)- 0, and (2.9)shows that r1 gr (1), r2 gm+ (1).

Now, equations (3.10) yield that ql(z)- c[zn-g(z)], where c is found from the
condition P(1)- 1. Formulas (3.2)-(3.5) yield a complete closed-form solution:

[?rlrt q- rr2m- g’(1)][z- g(z)]
P(z) In- g’(1)][zn gn (z) zng +

m (z)]’

PI(z) P(z)[1 -Km+ (z)], P2(z) P(z)K+m (z).

Special Case N=m-l,n= 1: In this case, h(z)= ]m-1, ql(z) Po]o(z- 1),
and q2(z) PO2km l(Z- 1).

Since m-t-n-N= 2, A has only one root in zl <1, so z2-g(z)=
(z- 1)(z- ).

The system of equations (3.6)-(3.7) reduces to

PO]O( --/m q- P021m ( m 11m 1 O. (3.12)

Polio 4- Po2lcm_ 5 rr1 -4- rr2m- K’(1). (3.13)

Solving the system (3.12)-(3.13), we obtain"

Pok- (5(" ’m- 1/m- 1)//m- 1(1 era- 1),

Po2]Cm 5(1’m )/1m 1(1 m- 1).
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Now, (3.8) yields a closed-form result for P(z)"
(z 1)z 1r. 1
A 1_m-1

]m 1 .Zm 1

Special Case N--n- 1" Suppose the server is allowed to return to the (single ser-

vice) Mode 1, from Mode 2, only if no customers arrived during the preceding service
act. In this case, ql(z)- Poko(Z- 1). Therefore, (3.8) reduces to

P(z)A- l{poko(Z 1)[zm- 1 h(z)] + zq2(z)[1 h(z)]}. (3.14)

Under the assumptions of the case, it is possible to present the result in a closed form
with two easily determined constants.

By the definition of h(z), 1-h(z) 0 in z _< 1. Therefore, function f(z)=
[zm- 1_ h(z)]/[1- h(z)] is regular (i.e., analytic inside and continuous on the bound-
ary) in z _< 1. Let f*(z) be an (m-1)st degree polynomial such that (z)=
[f(z)- f*(z)]/[zm- g(z)] is regular z _< 1. (That is, f*(z) interpolates values and,
possibly, respective derivatives of f(z) at the m roots of zm- g(z) in z -< 1.)

Theorem 3.3: WhenN=n=l,

P(z) A- l[zm g(z)][1 h(z)][Poko(Z- 1)(z) + c], (3.15)

C [7rI + 7r2rn- K’(1)][rn- g’(1)]- 1, (3.16)

Poko- cg(O)/f*(O). (3.17)

Proof.- Let us rewrite the right-hand side of (3.14) as

A- 111 h(z)]{Poko(Z 1)(z)[zm- g(z)] + Poko(Z- 1)f*(z) + zq2(z)}. (3.18)

Since both sides of (3.14) must be regular in zl _< 1, it follows that the polynomial
Poko(Z- 1)f*(z)+ zq2(z must vanish at the roots of A in ]z _< 1. Since the degree
of the polynomial is m, it can therefore be expressed as c[zm-g(z)]. Hence we
achieve (a.15). Evaluating (3.15)at z 0 and z 1, we obtain (a.16) and (a.17). n

Clearly, the success of the "divisibility" method depends on how efficiently and
accurately we can compute coefficients of zm+ n-N_ g(z). When m + n-N is not
large, one can find the roots of A in zl < 1 and expand the product
I-[m+n-N-10 (z- (t)" When m + n- N is large, root-finding entails certain difficul-
ties such as possible loss of (complex arithmetic) accuracy or handling of multiple
roots. (We refer the reader, for example, to Chaudhry, et. al [3] for the discussion of
root-finding.) As an alternative, a real-arithmetic method is presented below to find
g(z) using matrix iterations.

4. Matrix-Analytic Approach

In its common framework, using the matrix-analytic approach, one has to arrange the
states of the Markov chain in point into a one-dimensional sequence so that the
matrix of transition probabilities would have a characteristic M/G/l-type structure.
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Namely, there would be some integer M, such that if one partitions the transition
matrix into M x M matrix blocks, the blocks, starting from some block-row:

(1) would be the same along every direction parallel to the main diagonal, and
(2) all blocks below the first subdiagonal would be zero matrices.

Denoting by Ki, 0,1,..., the non-zero blocks in the repeating block-rows, a so
called power bounded matrix G is sought that satisfies the characteristic matrix
equation"

a
i=0

Such a matrix G is usually (approximately) obtained by successive iterations in
(4.1)"

Gj + 1 K(Gj), GO O.

Based on the elements of G, blocks of the steady-state probabilities are then found
one-by-one. We refer the reader to Neuts [9] for the fundamentals of the matrix-
analytic method. In Gail, et. al [8], a formula was developed that expresses G in
terms of its first row in a way that leads to faster computation of G.
To implement this method in our case, we replace the two-dimensional chain

{(Q,r/j)} by a one-dimensional chain {uj}. The states are mapped as follows:
(0,1)40, (0,2)41, (1,1)42, (1,2)43, etc.; that is, (Qj, rlj)4uj 2Qj+ rj-- 1.

Respectively, transition probabilities of the chain {j} are given by:

P(Vj+l-VlVj u}- is
air

wherei-[u/2], r-u-2i+l, 1-[v/2], s-v-2i+l.
ts given in the Appendix demonstrate that the transitionNow, the formulas for air

matrix for the chain {uj} is of block M/G/I-type, with the block size being M 2m.
From the same formulas we obtain the elements of matrices Ki, and find the matrix
G by successive iterations in (4.1). For brevity, we have omitted the standard
technical details of the computation process.

At the same time, under the assumption of the same service time distribution,
based on the formulas developed in Section 3, the solution can be obtained by a

matrix-analytic method with a significantly smaller block size To accomplish this,
we apply the technique of matrix unfolding for a power series that was introduced in
Dukhovny [7].

Definition: Let I(z)- w. This represents the Wiener algebra of
Laurent series with absolutely summable coefficients. A matrix unfolding of dimen-
sion M (M-unfolding) of I(z)is a matrix series

U{f(z)} EUj{f(z)}xj, x 1, (4.2)

where the coefficients of xj are M x M matrices whose (r,s) elements are equal to

fjM + s-r, r,s 1,2,...,M.
For example, if f(z) is a polynomial of degree M,

U{f(z)}-L]WR]x, (4.3)
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fo fl fM-1 fM 0 0

0 fo fM- 2
R]

fM- 1 fM

0 0 fo fl fi- 1 fi

(4.4)

It is easy to see that if f(z)E W, U{f(z)} absolutely converges Vx, Ix I- 1.
Also, if f(z)e w + (that is, fj-O, Vj < O) U{f(z)} absolutely converges
x < 1; if f(z) V-, (that is, fj O, Vj > O) U{f(z)} absolutely converges

Lemma 1: The M-unfolding of the product of two functions belonging to W is the
product of the M-unfoldings of the factors.

The proof of Lemma 1 follows directly from (4.2).
Definition: Let ]]. ][1 be the norm of a matrix equal to the maximum of the

sums of the absolute values of the elements of every row. Matrix D- (drs) will be
called power bounded if ]]Dm ]]1 .cost, j- 1,2,

Suppose a series f(z)- E"o liz W. A matrix "substitution" can be defined for
its M-unfolding, where x is replaced by a power bounded matrix D of the same size
M. It is easy to see that the following matrix series converge absolutely:

U{f(z)} ID E Uj{f(z)}Dj" (4.5)
j=O

For an arbitrary (M- 1)st degree polynomial g(z), denoted by C its M M com-
panion matrix whose first superdiagonal consists of ls, the Mth row elements are

go,’", gM- 1, and all the other elements are zeros. It is a standard fact of the theory
of matrices that the eigenvalues of C coincide with the roots of zM- g(z) (with the
same multiplicities). Let G- CM.

The proofs of the following Lemmas 2 and 3 are given in the Appendix.
Lemma 2: For an arbitrary (M- 1)st degree polynomial g(z),

(I Rg)G Lg. (4.6)

root of zM- to z <_ 1,
zl 1 are simple, then G is power bounded.
Now, let M-m + n-N, let g(z) be the polynomial defined by (3.9), and use its

companion matrix C to define matrix G- CM. By (4.6), the first row of G consists
of the coefficients of g(z). Having found G, we complete and solve the system of
equations (3.10)-(3.11), thus completing the formulas for the steady-state probabili-
ties.

Let (z) Z
m- NK(n (z) + znK +

N (z)- h(z)K(z and let j Uj{(z)},
j 0, 1,..., be the coefficients of the M-unfolding of K(z).

Theorem 4.1: Matrix G is a unique power bounded solution of the characteristic
equation

-----0
Proof: Consider the function
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+ --g(z)] -1. (4.8)

A routine analysis shows that under the condition of ergodicity (2.8), both (z) and
[(z)]-1 are analytic in z < 1, continuous on z -1, and belong to W. To
find G, let us rewrite (4.8) as:

/k Z
m + n- N- (z) (Z)[Zm- n + l g(z]. (4.9)

Using M m + n- N, substitute G into M-unfoldings of both sides of (4.9) as

defined in (4.5). On the strength of (4.6), we obtain:

G E ;JGj E Uj{(z)}[- Lg + (I Rg)G] O. (4.10)
j=O j-O

Therefore, by Lemma 3 and (4.10), G is a power bounded solution of (4.7).
Any other power bounded solution of (4.7) must coincide with G. Indeed, suppose

G is a power bounded solution of (4.7). Rewrite (4.8) as

[(Z)]- l[zm + n- N ’(z)] zm + n- N g(z). (4.11)

Again, substitute D- G into. the M-unfoldings of both sides of (4.11) as defined in
(4.5). The left hand side of (4.11) belongs to W by construction.., so the resulting
matrix series in the left hand side will converge absolutely. Since G is assumed to be
a solution of (4.7), we obtain from (4.11) that

O- Lg + (I- Rg)a,

so by (4.6), G- G. Therefore, G is the unique power bounded solution of (4.7).
Similar to (4.z 1), we compute G by an iteration process in (4.7), setting GO -0,

with Gj+ 1 K(Gj). However, the block size M has now reduced from 2m to
m + n-N. The benefit can be immediately seen, for example, in the special case

(see Section 3) where N m- 1, n 1; here M reduces from 2m to just 2.

Appendix

Transition Probabilities of the Chain ((Qj, r/j)}: Analyzing transition relations (2.1)
and (2.2), one can see that

01 E 1
a01 ]cj, a/011 + n

j=o 0

if 0 < < m- n, 12 klao1 + m,
ifl>m-n

ail
k]_i+ n ifO<l<m+i-n,

0 if >_ m + i- n,

i+m if0<i</,

if 0 < < i,
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N f ]01 2 tl
if 0 < < + N- n,

a02- kj, ai2-
3-0 [ 0 if >_ + N- n,

m kj2 ifi+N _<m, (
O2 j N + 12

ai2 ai2
0 if + N > m,

k_i+ m if l>_i-m+N,

0 if < i-m+N.

Proof of Lemma 2: Suppose, at first, that all roots of zM- g(z) are simple, and

denote them by j, j-1,...,M. Let j--(1,j,...-I)T and let f be the
Vandermonde matrix whose jth column is j. By the definition of C, Cfvj
SO

Gffj (ffj, Ga [diag((4, j 1,..., m)]. (A.1)

On the strength of (A.1), since det f :/= 0, (4.6) is equivalent to

f[diag(/, j 1,...,M)]- Rgf[diag(, j 1,..., M)] + Lg.f. (A.2)

An (r, s) element of the left-hand side of (A.2) is (sr -1 + M. An (r, s) element of the
r--1 r--lTright-hand side is s g((s) =. 8 M, since (s is a root of zM- g(z

If some of the roots of zv-g(z) repeat, then it is always possible to find an

(M-1)st degree polynomial ’(z)arbitrarily close to g(z) such that zM--’(z)
would have only simple roots, and (4.7) would hold. Since the elements of matrices
in (4.6) are continuous functions of the coefficients of g(z), it means that (4.6) holds
for every g(z).

Proof of Lemma 3: Let {Aj} be the eigenvalues of G. Since G-Cm, these
eigenvalues are Mth powers of the roots of zM- g(z). Under the assumptions of
Lemma 3, it means that all the eigenvalues belong to the unit disk, and those
eigenvalues that belong to the boundary zl 1 are simple. Let us represent
G WAW- 1, where A diag{Aj}; Aj are the Jordan cells for each of the Aj. Since
G WAW-1 and, under the assumptions of the lemma, II Ai II 1-1 as i--oc, we
conclude that G is power bounded.
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