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Using recent results in tandem queues and queueing networks with renewal
input, when successive service times of the same customer are varying (and
when the busy periods are frequently not broken up in large networks), the
local queueing delay of a single server queueing network is evaluated utiliz-
ing new concepts of virtual and actual delays (respectively). It appears
that because of an important property, due to the underlying tandem
queue effect, the usual queueing standards (related to long queues) cannot
protect against significant overloads in the buffers due to some possible
“agglutination phenomenon” (related to short queues). Usual network
management methods and traffic simulation methods should be revised,
and should monitor the partial traffic streams loads (and not only the
server load).
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1. Introduction

In this paper, we utilize recent results in tandem queues and queueing networks to
evaluate the local queueing delay in single server queueing networks (excluding ring
networks) with renewal input, when successive service times of the same customer are
varying, and when busy periods are frequently not broken up in large networks
(leading to the useful concept of equivalent tandem queue). We assume that
customers only gain access to a downstream queue after completion of the upstream
service. At each queue, the service discipline is “first-come-first served” (FC-FS).
Classical theories (i.e., the product form theory) ignore some queueing phenomena
which occur between entry to the network and the considered local point, and in-
fluence the local queue. In particular, the influence of the indistinguishability of the
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customers inside the upstream busy periods affects the distribution towards a given
destination. Markovian queueing networks typically use the concept of local transi-
tion rates independent of upstream interferences. For converging traffic sireams,
busy periods tend to amalgamate from state-to-stage, leading to a predominant in-
fluence of the longest service times. In the same way, this indistinguishability in the
upstream busy periods leads to a new concept of a local apparent queueing delay
related to the overall upstream queueing delay. Here, only a part of the delay observ-
ed upstream is perceived downstream, leading to some reduction factor for diverging
traffic streams, and to new concepts of virtual and actual local queueing delays, res-
pectively.

Curiously and due to this reduction factor, this last phenomenon of indistinguisha-
bility tends to assimilate the long local queue to a classical G/G/1 server queue, and
the usual queueing standards may only use the G/G/1 server model. This does not
mean that the actual queueing model can be represented simply by a G/G/1 server.
On the contrary, it may be dangerous to dimension the buffers using only this G/G/1
server model, particularly in case of infinite support for the service time distribution.
In the network, servers are occupied by service time. But in the buffers, servers are
occupied by sojourn time (i.e., the sum of the queueing delay and the service time).
Short and medium service times may overload buffers due to the agglutination pheno-
menon of short service times behind long service times, leading to the same occupan-
cy for long and short service times. Since busy periods tend to amalgamate, this
phenomenon is amplified from stage-to-stage, leading to a strong influence of the
longest service times with a necessarily limited length.

If the methods of buffer dimensioning have to be revised, the same follows fro net-
work management methods in which partial traffic streams loads (i.e., traffic intensi-
ties) should be monitored (and not only the server loads). This avoids some fast
buffer congestion generalizing (in a large area of the network) the inaccessibility to
the servers, since the agglutination phenomenon is transmitted downstream imme-
diately.

In Section 2, we define our notation and assumptions. In Section 3, we outline our
earlier studies in tandem queues and queueing networks for the case of single servers
with renewal input. In Section 4, we deduce the evaluation of the local queue distri-
bution in single server queueing networks (with renewal input), with an application
to buffer overload and buffer rejection rate. In Section 5, we conduct a numerical
study (with Poisson arrivals) for a single link packet switched network, in which the
links handle three populations of packets (with constant packet lengths). Between
these populations, packet lengths are very different, proving the strong impact of the
longest packets on buffer overload and buffer rejection rate.

2. Notation and Assumptions

We assume the system is in the stationary regime.

2.1 The Local Queue

The total arrival process at a local queue (considered at the entry to the network) is

assumed to be renewal, with Fy(t) denoting the distribution function of the interarri-
val intervals. Local service times are mutually independent and independent of the
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arrival process. The local queueing delay is usually assimilated to the queueing delay

W, of a GI/G/1 queue, with the following data for an arbitrary customer:

arrival rate A;

local service time T;

Prob(T < t) = F,(t);

local sojourn time S = W+ T}

overall upstream service time T";

load ( = traffic intensity) = p=A-T. (1)
Note that the upstream service times are not necessarily independent of the

downstream service times. We set for Re(z) > 0:

* po(z) = [&e™ - dFy(t);

o B T =p(2)= [Fem " dF (1)
° Ee” Wo = Wy(2);
J Ee™ %% = ®,(z) = Wo(2) - ¢4 (2). (2)

To present the following expressions, we will use Cauchy contour integrals along
the imaginary axis in the complex plane u. If the contour (followed from the bottom
to the top) is to be right of the imaginary axis (the contour being closed at infinity to
the right), we write [ 4+o- If the contour is to the left of the imaginary axis, we
write [ _,. Pollaczek [6] gave the expressions:

Wo(2) = Ep{;—l [t ol = o~ ) ()] du},
o

3)
Prob(W,=0) = Q, = Exp{{—ri / log[1 — po( —u) - ¢y (u)] %—“}
Zo

For tandem queues, it will be useful to introduce these other expressions, related to

the case where T < t:
t

pra0)= [ e*dr ), 0
0

Q) = Ep{;—l [ 10811 o =) 4w )] ‘—i—}
o

Consequently, we have:

Ql = Q1(00) (5)

2.2 The Queueing Network

In Figure 1, representing a full network, a number n of identical incoming paths of m
successive servers are distributed [at stage (m + 1)] upon a number n of final servers,
defining the final stage. The traffic stream A;(j) is carried by the ith incoming path,
and then by the jth final server.
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Figure 1: The Full Network

In Le Gall [1], we observe that traffic streams crossing upstream have no signifi-
cant influence on the queueing delay at the final stage (due to our assumption that
the busy periods are not broken up for m large), an important case in which a local
arrival initiating a local busy period made the same upstream. We therefore may eli-
minate these streams. This also holds for intermediate arrivals along incoming paths,
since their influence is not changed (at the final stage) by assuming that these custom-
ers arrive at the entry to the network, and correspond to the service times equal to
zero in the first stages.

Our study may be simplified by introducing the truncated network shown in
Figure 2. At the final stage, we consider only a single server. This server handles the
traffic stream A; coming from the ith incoming path (i = 1...n). In this incoming
path, the traffic stream interferes with a traffic stream B;, which is not offered to the
final server. Its customers may be considered as “premature departures” affecting the
final local queue, a phenomenon usually neglected.
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Figure 2: The Truncated Network

In the general case, we have no symmetry. The number m; of successive servers in
the #th incoming path is different in each path, and successive servers may generate
different service times (with different distributions). In fact, it will be possible to
define a hypothetical network of Figure 2 due to some following properties.

First, we will not consider the special impact of “premature departures”, related to
a reduction factor (due to the concept of “apparent” upstream delays), to define an
equivalent tandem queue with a number m of upstream stages (as defined by a certain
relation depending on the number m; and the overall upstream service time T") on
the condition that the busy periods are not broken up. Moreover, if successive service
times of the same customer are not too widely varying compared with the local queue-
ing delays, this equivalent tandem queue may be assimilated to a theoretical packet
switched tandem queue in which successive service times are identical. This simplifies
the calculations on the condition that the number m of identical successive servers is
defined correctly. In that condition, we define a wirtual local queueing delay, indepen-
dent of the considered incoming path. This great simplification cannot exist (for m
small) when the busy periods are broken up.

Secondly, we will consider the special impact of “premature departures” (due to
the concept of “apparent” upstream delays) to define the actual local queueing delay.
Consequently, a reduction factor will appear to lead (in part) towards the GI/G/1
queue. This reduction factor (as a function of B, and the considered incoming path)
may generate the same influence as a hypothetical number of identical incoming
paths in Figure 2 truncated network to replace the actual number n. Consequently,
Figure 2 will be a reference figure in our paper.

3. Preliminary Theory

3.1 The Equivalent Tandem Queue and the Virtual Local Queueing Delay

Consider the case of a concentration tree (Figure 2) with traffic streams A; and B,,
with an identical traffic intensity at each stage, without taking into account a certain
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reduction factor due to the concept of “apparent” upstream delays (to be considered
in Subsection 3.3). Consequently, we define a wirtual local queueing delay as
considered in Le Gall [1].

Each incoming path is a tandem queue, with the following notations for the hth
customer at stage k = 1...m:

° local queueing delay wﬁ;

° local service time Tﬁ;

. local sojourn time sﬁ = wﬁ + Tk;

. interarrival interval [between customers (h — 1) and h] Yﬁ__l;
. occasional idle period [during Yﬁ —1) eﬁ.

In other words, we may write:
k k-1 k-1
Yho1=Th " +ep (6)

Moreover, we let for k = 2...m:
L TR =T (k)

(7)

s%+...+sﬁ=52_1.

In Le Gall [2], we recall that this concentration tree (with the same traffic
intensity at each stage) gives the same local queueing delay distribution (at the final
stage) as does an equivalent tandem gqueue, concerning an arbitrary customer (coming
from an arbitrary incoming path) with the same local service time T, and the same
upstream overall service time T” [notation (1)]. To simplify the calculations, when
the busy periods are not broken up (during the upstream busy periods), we defined an
equivalent tandem queue with (mg+1) successive identical single servers (as in
packet switching), where m is given by the relation:

Var(my-T) = VarT", (8)
if T and T” are not constant. We deduce:

m

2 _ VarT'
0~ VarT" (9)

When T and T' are highly varying, we have: Var(my-T) = mg -ET?, VarT' £ ET",
and consequently,

12
mg = ﬂ;’—jfﬂ (10)
In queueing formulae, when mg is between two successive integers, we will use an
interpolation between delays related to these integers, or directly the possible
fractional my in formulae. In Le Gall [2], relation (3), and in Le Gall [3], relation
(7), we gave the following condition for busy periods not broken up:

Hypothesis 1: (Busy periods not broken up) We assume that the following rela-
tion is satisfied:
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TE-1<sk | k=2.(m+1). (11)

This is the case when:
(a)  All successive service times of the same customer are identical (because in
this case: TE "1 = TF < sk = sk _); and
(b) In heavy load, congestion becomes high enough to increase sﬁ -1
This hypothesis is not very restrictive. To simplify in the sequel, we shall replace
mg by m. In that case, we recall in Le Gall [2] that we get th following relation at
stage (m + 1):

(Th+w) + ...+ (TP +w T = Max[T),(m), SP_ | —e} ). (12)
The left-hand side may be written:
Spt+(Th=TR ™.
To simplify calculations, we introduce a second hypothesis (see Le Gall [2]), which is
usually satisfied:

Hypothesis 2: (Limitation to successive service time variations) If € is an arbi-
trary small positive number, we suppose that the following condition

Tl Tm+1
Th+ +Tm+1

Lim Prob(
m—o0

< E)—»l, (13)

is satisfied for any h > 0.
In that case, recurrence relation (12) is equivalent (in probability for m large
enough) to the stochastic recurrence [notation (7)]:

S = Max| T},(m), S_ | —eh | (14)

Note that this equivalence could be also vahd (for m large) in the case of mutual
independence for successive service tlmes, if Th (k=2,...,m+1) is replaced by Sh in
the denominator of (13), at heave load (sh being high).

Finally, Hypotheses 1 and 2 allow handling of the (almost) general case by the
simple packet switched case. In Le Gall [5], we gave the virtual local sojourn time
distribution (at the final stage). We let, from notations (1) and (4)

C1—F
- 1(") d

Fi(t), v(t,u)=Exp{ —u- RO

”o(t) Q (t)

um(t,u) = vo(t) ’ [v(t,u)]m, (15)

t

d . (t,u) = /v(tim— ) dwum_l(Ll,u>.

0
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Finally, a distribution function of the wirtual local sojourn time U(m), at final
stage (m + 1), and for an arbitrary customer, is from notations (2) and (3):
(a)  Case of renewal input:

po —u) - Py(u)

.du
g dm(t) (16)

1
U(t,m):%-
Yo

(b)  Case of Poisson input:

Ut,m) = d,(t,)) = vy(2) -[v(%,/\)]m (17)

In Le Gall [5], we also gave an approximated expression for relation (17), for the
situation when m increases. Consider the longest service time T'p;, and the service
times almost so long (total arrival rate: Ay; total load: ppy). Since (Ay/X) is low,
the approximation for U(t,m), independent of any segmentation of service time with
medium lengths, is:

for 0 <t < Ty

nem ~(1-3) b oo () 09

for t > T

Ul(t’ m) — 1.

The impact of the longest service times comes from the “agglutination phenomen-
on”. During any busy period, relation (14) gives, when e = 0: S =SP_, =...=
Sy, where hy corresponds to the customer initiating the busy period. The sojourn
tinte is the same for any customer of the same busy period. A busy period initiated
by a long service time, leading to long sojourn times inside this busy period, tends to
amalgamate with subsequent busy periods. From stage to stage, the phenomenon is
amplified, leading to a strong impact of the longest service times. This agglutination
phenomenon leads to a local sojourn time independent of the considered incoming
path. This also follows for the virtual local queueing delay.

Note: In the case of infinite support for the service time distribution function
F,(t), we have seen in Le Gall [1], Subsection 3.3, that a stationary condition exists
when [1— F,(t)] decreases asymptotically as a negative exponential distribution.
This is not the case for a Pareto distribution (corresponding to “Fractal processes),
which decreases asymptotically as (at) =%, (« > 2). Consequently, it will be the same
in a queueing network, in which a “Pareto” distribution cannot be handled (on the
contrary of a single GI/G/1 server). Practically, we will restrict this paper to the
case of finite support, in which T'p; is the longest service time.

3.2 The Jitter Effect

The equivalent tandem queue keeps the same order of arrivals at the entry to the net-
work, and at final stage (m+1). The actual arrival process at this final stage is
different, since the incoming traffic streams are mutually independent. This differ-
ence generates a local jilter effect. independent of the above queueing delay, which
was evaluated approximately in Le Gall [2], Subsection 3.1, for large n ( >5). The
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distribution function of this local jitter delay is:

for0<t<T"-T:

I_PH . " T " 1
J(t):l———,—l——ﬂ_—T, with T :1_—pmp =(l-5)-p
_p . T”
fort>T"-T:
J(t)=1. (19)

The accuracy is better when the load of long service times is lower than 0.3p.
This jitter effect is only significant for heavily loaded networks.

3.3 The Impact of Premature Departures and the Actual Local Queueing Delay

We now consider the special impact of “premature departures” at the final stage
(m+1) to define the actual local queueing delay. Without considering this special
impact, and excluding the jitter effect, the virtual local sojourn time at stage (m + 1),
as perceived at the entry to the network, is:

U(m)=(Wy+T)+ S(m), (20)

where S(m) is due to the m supplementary (upstream) stages. In Le Gall [2, 3], we
noted that the overall delays observed upstream are defined without distinguishing cus-
tomers in the upstream busy periods. In the case of “premature departures”, the final
queue only perceives apparent delays. In the ith incoming path (at the upstream
stage), we introduce:

. total load a; (excluding the load of cross-traffic streams);

° part of this total load offered to the final queue a.

For an aerbitrary customer (coming from the ith and from any incoming path, res-
pectively), we introduce the following ratios (defining the numbers n} and n,, respec-
tively), replacing the number n in Figure 2:

a’ a: [al
nli-:E:—‘; ﬁl-iZ Zﬁ(a—:), with a = ;a;. (21)

Finally, from the ith incoming path, the final queue perceives the apparent delay

h;-S(m), where h; is a random number =1, with probability (L,), and =0 with

n
3
probability (1 —5;) Stochastic expression (20) becomes, for the actual local sojourn

]
time S; including the jitter delay J, with D(m) = U(m) + J:
Si=h;- D(m)+(1-h,)- (Wo+T),

Ee_zsi:(#)-Ee_ZD(m)-f-(l~——’%7)~Ee_z(W0+T)~ (22)

(]

Finally, in Le Gall [2, 3], we gave the following expression defining the actual local
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sojourn time S at final stage (m + 1), for Re(z) > 0, and from any incoming path:

with

and

Ee-zS:(,,Ll)Ee"D('"M(l—,,il)-Ee“z(WOJ’T), (23)

D(m) =U(m) +J, (24)

W, = queueing delay of the GI/G/1 queue; J = Jitter delay,

U(m) = virtual local sojourn time of the equivalent tandem queue (identical for each

customer of the same busy period).

Conclusions:

(a)

(6)

(¢)

Note:

In case of a heavily loaded environment (a; = 0—»(%1)% 0), (i.e., in case of
traffic streams diverging, and consequently generating a lot of “premature
departures”), we have for the actual local queueing delay

w:Ee™*® = Ee~ ™0, This is a classical result.
In case of a slightly loaded environment (aj = ai—>(n—1) = 1), (i.e., in case of

no “premature departures”), the tandem queue effect appears with the

agglutination phenomenon, increasing buffer overloads, but the value of

U(m) is different since the upstream traffic intensities become lower.

In the general case (in stationary regime), and due to the concept of appar-

ent queueing delay used above, we can state the basic following properties:

(a)  An arbitrary local customer can see the tandem queue effect (with
the agglutination phenomenon and the buffer overload) with a
probability (1/n,), and the classical GI/G/1 queue in the other cases.
This probability corresponds to the case of successive local customers
coming from the same incoming path.

(B) Despite the breaking up of the traffic streams at each stage, the
aggregation of small parts of upstream busy periods gives rise to a
new local busy period corresponding to the mazimum wupstream
sojourn times (see our comment on the agglutination phenomenon at
the end of Subsection 3.1). Consequently, the agglutination
phenomenon is amplified from stage to stage. In fact, inside a local
busy period, any customer appears to be indistinguishable, and it
follows that the concentration tree may be assimilated to a single
equivalent tandem queue. This explains why the tandem queue effect
increases from stage to stage, for a given probability (1/n,) to
perceive this effect.

This tandem queue effect is generated by the equivalent tandem queue,

which has to satisfy Hypothesis 1 (busy periods not broke up) and 2 (limitation to
successive service time variations). Consequently, the upstream loads considered are
equal to the final local load, since successive equivalent servers are identical to the
final server, in case of a normally loaded environment.

(d)

When we may approximately use Hypothesis 2, in the case of mutual



Single Server Queueing Networks 439

independent successive service times, the tandem queue effect exists for m
large, since the upstream service time (in case of congestion) is also the
downstream interarrival time (for two successive arrivals from the same
incoming path). This property is not consistent with Jackson’s theory (due
to the indistinguishability of customers inside any local busy period).

(¢)  Expression (22) proves the need to monitor the partial traffic streams loads,
and not just the server load (i.e., traffic intensity). This is the same for
traffic simulation methods. A direct observation of the local queueing delay
cannot detect the possible correlation of the local interarrival time with the
upstream service time (i.e, tandem queue effect). Finally, a classical
GI/G/1 queue may be observed instead of the tandem queue effect. To
avoid this difficulty, it is necessary to directly observe the difference
between the two successive (upstream and local) overall sojourn times for a
given traffic stream.

After having outlined our earlier papers, we now can define and evaluate the local
queueing delay in a single server queueing network with varying service times, as well
as for a renewal input (at the entry to the network) related to the local queueing pro-
cess.

4. The Local Queue in the Network

We will evaluate the local queue distribution, the buffer overload, and the rejection
rate in the local buffer.

4.1 The Local Queue Distribution

The actual local sojourn time S is defined by expression (23), referring to the classical
queueing delay W, of the local GI/G/1 queue, and to the wirtual local sojourn time
D(m), sum of the jitter delayJ and the wirtual local sojourn time U(m) of the
equivalent tandem queue [J and U(m) being mutually independent]. The distribution
of U(m) is defined by expressions (15) and (16). When m increases, we may simplify
the expression d,,(t,u), by introducing the following approximations:

t4+w ~ (1 ~
'(T’u>: ’(m»“); um—l(;n_w_—f’u): um—l(%’u)'
For vg(t) relating to the case m =1 only, we may write, finally from expression (16):
m
d, (tu) = vo(t)~[u(%,u)] . (25)

In the case of Poisson arrivals, we have only one pole [for Re(u) > 0] in the inte-
grand of expression (16): uw = A. Expression (25) above leads to the approximations
in expressions (17) and (18).

4.2 The Approximated Expression of the Distribution
Expressions (1) define the data, related to an arbitrary local customer, defining the

local GI/G/1 queue. As for expression (18), we suppose that T'p; corresponds to the
longest service times (in case of finite support), and we define the total arrival rate
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Ay (and the total load: pp) for the local arbitrary customers corresponding to a
service time closed to T ). We want to evaluate expression (25) for ¢ closed to T'y.
We introduce ¢j(z) and QF, when the customers corresponding to the set (An, T n)
are ezcluded. From expression (4), we have:

Nil}‘
Fy(t) = JEI - "'ij‘Mv
55
71=1
NZ—:IA
. J
oz, t) = ;1 ~¢I(z):< —-:\—/\Il)-gof(z). (26)

Usually, Ty is much longer than E(T). Consequently, (Ap/A) may be neglected, and
we may write:

p1(2,1) Z 01(2), Q1) = Q7. (27)
Finally, expression (25) becomes:
(1 2N} @ u M PN t
dm(t,u)_(l——x—)a-f'exp{—x- o -[1—m.TN}}. (28)

For u = ), in the case of Poisson arrivals, expression (28) leads to approximation
(18) and, in Le Gall [5], we have seen that this approximation (18) is practically
valid for any time t. Consequently, ezpressions (16) and (28) are useful approzima-
tions to evaluate the distribution of the virtual local sojourn time U(m) for any time
t.

4.3 The Buffer Load
First, we want to evaluate the mean U(m). We let:

Au) = ’é—f}’. 3 (29)

In expression (16), if we replace d, (¢,u) by one, U(t,m) becomes equal to one.
Consequently,

- U(tm) = 5L @t’gl‘_qﬁ(ﬂ.[l_dm(t,u)]-%@. (30)
Yo
We let:
Ty
m:/ [1-U(t,m)]-dt,
0

(31)
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Tn
D(m,u) = / (1—d,,(t,u)]- dt.
0
From expressions (16), (28) and (29), we deduce:
U(m) = % p(—u)- 9, uc)z'l(bl_("_) . D, (u)- %,
Yo
with (32)
D, ()= TN.{1 (1-4) & Bl Aol A(uﬂ},

Finally, taking definitions (1) and relations (23) into account, we deduce the mean
actual local sojourn time [at stage (m + 1)] of an arbitrary customer, corresponding to
his occupancy in the local buffer:

sl(m+1):,—%-[f](—m)-+7]+[l—ﬁl—l-]-[m_+f], (33)

with U(m) being given by expression (32). In the same way, we could evaluate the
second moment.

4.4 The Buffer Rejection Rate

If K is the buffer capacity, a customer is rejected on his local arrival if the number of
customers j waiting is such as: j > K —1. If j denotes the number of customers in
the local system (waiting or with service in progress), the rejection condition
becomes: j > K. We suppose that a rejected customer repeats his arrival at the entry
to the network. It follows that traffic handled locally is not decreasing, with the
queue length distribution giving a good approximation of the rejection rate, when its
value is low.

In conclusion (c) of Subsection 3.3, we noted that an arbitrary local customer can
see the tandem queue effect (with its rejection rate) with a probability (1/n,), includ-
ing the jitter effect, and the classical GI/G/1 queue (with its rejection rate) in the
other cases. We introduce the following notation for an arbitrary local customer (in
stationary regime):

. Ry(K) rejection rate due to the GI/G/1 queue;

° R,(K) rejection rate due to the tandem queue;

o R(K) the total rejection rate.

Note that the rejection rate due to the jitter effect may be neglected. Due to our
comment above, and using relation (23), we may write:

R(K) = () By(K) + (1 7, ) Ro(K). (34)

(a)  Evaluation of Ry(K). For the classical, local GI/G/1 queue, we recall our
notation (2). Fy(t) is the distribution function of the interarrival intervals
(at the entry to the network). Wy(t) is the distribution function of the
local queueing delay. Expression (35) in Le Gall [4] gives:
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o8}

Ro(K) = [ [1=Wo(0)- dlPo()F V), (35)
0

where [Fo(t)](K) denotes the K-fold convolution of F(t).

(b)  FEvaluation of R,(K). Following our comment after expression (18), related
to the agglutination phenomenon of short service times behind a long service
time initiating a local busy period, the interarrival times T™, during this
busy period, correspond to the service times (excluding the longest service
times T'p;). Due to notations (26) and (27), we denote by Fj(t) the service
time distribution function, excluding the set (Ay,T5). From notation (6),
the rejection condition, at stage (m + 1), becomes:

sprl—(Yptl+  +YRFK ) >0,

(36)
(e, spt1—K.-T*>0),
which leads to expression:
TN -
R(K)= [ [-U(m)]-diF)K, i K <2
0 T ! (37)
=0, if K>+

T’

where [F{(t)]K denotes the K-fold convolution of Fj(t)-T; corresponds to
the shortest service times. U(t,m) is defined by expressions (16) and (15),
or more simply by approximation (25). In case of Poisson input, U(t,m) is
defined by simple expression (17).

4.5 Conclusion

Due to expressions (32) and (37), introducing a limitation to (T, /T,) for the
impacts of tandem queue load and length, respectively, an important property follows
from relation (23), from combining the tandem queue and GI/G/1 queue models:

° “For a queue length longer and a buffer capacity larger than (T 5 /Ty), the

G/G/1 queue model alone exists.”

If this property, typical for single server queueing networks with varying service
times (without breaking up the busy periods), is not perceived, it may be a real
danger to use only the GI/G/1 queue model for the design, dimensioning, and
management of the network, due to significant buffer overloads not being perceived.
Buffer congestion leads to servers’ inaccessibility, and the agglutination phenomenon
is transmitted downstream (and upstream by reattempts) immediately, generating
the blocking of a large area in the network.

The usual concept of local traffic source should be revised in some network queue-
ing theories (e.g., product form theory), due to the existence of the underlying tan-
dem queue effect. In Markovian queueing networks, particularly, the concept of a
local transition coefficient is not consistent with the tandem queue model above. And
finally, some standards could be very useful for introducing a limitation to the ratio
(T'n/T,), a typical constraint when service times are varying and not perceived up to
now.



Single Server Queueing Networks 443

5. Case of a Packet Switch Network
5.1 The Packet Traffic Streams

The truncated network of Figure 2 is our reference figure, with traffic streams A; and
B;. Even though traffic streams are not identical, to define the equivalent tandem
queue (of Subsection 3.1) with the same local queue at the final stage (for an arbi-
trary packet), we may consider identical traffic streams in each incoming path.

The total traffic stream (at final stage) handles a mixture of N packet
populations, each labeled j (j = 1...N). Each population corresponds to a partial
Pozsson traffic stream j with constant (i.e., deterministic) packet length T'; (T < T2

. <Ty), a partial arrival rate A}, and a partial load (in stationary regzme) P
/\ T For the total traffic stream, the total arrival rate (for an arbitrary packetg is:

A= E Aj, and the total load is: p = Z pj. With notation (2), we compute for the

transform of the sending (i.e., serv1ces time distribution function of any packet, and
for Re(z) > 0:

N ).
p1(2) = Z"/\i (38)

5.2 The Distribution of the Local Queue

Relation (23) defines the distribution of the actual local sojourn time S with two
components:

. the case of the M/G/1 queue (well known);

° the case of the equivalent tandem queue.

The distribution function U(¢,m) of the virtual local sojourn time U(m), at the
final stage of the equivalent tandem queue, as defined by expressions (15) and (17),
has been given in Le Gall [5], formula (36):

fort <Ty:

Uy(t,m) = 0;
for T <t <Ty 4y

Ui(t,m) = vy(1) -[v(%, /\)]m;

with (39)
A+ +A 1—p
=21 k.
ot X T=(t. )
Mgt Ay
v(t,/\):Exp{—( J(fplﬁmﬂ) (Teypr—t)+...
AN
+ (Tn—=Tn_1) |
I—(py+...+pn_1) (Tn N 1))}
fort>TN:

UN(t,m) =1.
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In fact, when m increases, a good approximation U,(%,m) is given by expression
(18), depending only on the set (An, T z)-

5.3 The Buffer Load

The mean actual local sojourn time [at stage (m +1)] of an arbitrary packet (from
any incoming path), corresponding to its occupancy in the local buffer, may be
written from definitions (1) and relation (23):

§=s(m+1)=%-[W+7}+[1—%]-[WO+T]. (40)

In expression (33), U(m) is given by approximated expression (32), but here U(m)
has to be deduced from expressions (39).
(a)  FEzact ezpression s(m+1):
()  Calculation of U(m)

From expressions (39), we may write:
T
N—1 K+1
Um)= ) / [1—U,(t,m)]-dt. (41)
k=0 T
k
(8)  Calculation of J
In Figure 2, we have n incoming paths. Expression (19) gives:
T" -T
7= / [1-J(1)]-dt. (42)
0

(v)  Calculation of (Wy+T)
From expression (38), we deduce that for the service time distri-
bution of an arbitrary packet:

— N A N ).
T=B(1)= % 3Ty my= BT =3 (% (49

The classical Pollaczek formula gives:
Wy=1..2 .72 (44)

Depending on the actual incoming paths, expression (21) defines n,
and, finally, we may evaluate the buffer occupancy s(m+ 1), at stage
(m+1), as defined by expression (40).

(b) Approzimated ezpression s;(m+1): A general approximated expression
5;(m + 1) of the buffer occupancy (for an arbitrary packet) is given by (33),
using (32) for u = A in case of Poisson arrivals, with Q7 = (1 —(p — py):

m:Dmm:TN-{l_(l_ATN).I_;p—_ppN).Epom—1>jl—Exp[—mA]},
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ith 45
wi | PN (45)

IR

Note: It follows that the wirtual sojourn time distribution is not practically
changed when we segment packets of medium lengths.

A Numerical Example: It may be interesting to consider the case of Figure 2, with
a load p in each incoming path i (i = 1...n), and in the considered terminal link j.
But we introduce some dissymmetry in the distribution of this load by introducing
the following distribution p;(j), related to the load of the partial traffic stream A;(7)
with j being given:

pi)=pe P =50 (i), (46)
We let:
po=h-b (h=1.n) (47)

In relations (33) and (40), n, is defined by expression (21), which gives:

1 _Po (Po\,P—Po (P—Po 1\_(PoV, 1 (PP}

= (P (R 0) = () it (52 (48)
In fact, the buffer load increases with p, the load of the partial traffic stream Aj( 7),
which is its contribution to the total load p of the terminal link j [at stage (m + 1)].
This contribution may be much higher than the other contributions p;(j). The case
h =1 is the pure symmetrical case: p;(j) = pj(j) =2 On the contrary, the case
h=10 (=n) corresponds to A;(j) becoming a pure tandem queue. For the
intermediate case h =5, p, = %, half of the total load (at the final stage) comes from
a single incoming path (N"j); the tandem queue effect begins to appear.

In Table 1, we consider the case of an “IP” (Internet Protocol) traffic: n = 10,

m =6, p = 0.6, and a total packet traffic stream with three partial traffic streams:

T,=1, Ty=5, T3=230; and p; = p, = p3 =0.2.

exact approximated
h ny po | s(m+1) C sy(m+1) C,
1 10 0.06 13.08 1.14 13.04 1.14
5 3.6 | 0.30 16.01 1.40 15.90 1.39
10 1 0.60 27.91 2.44 27.52 2.41
M/G/1 queue: Wo+T| 11.43

Table 1: Mean Actual Local Sojourn Time ( = Occupancy in the Local Buffer)

1
s(m+ 1), Formula (40), and Overload Coefficient C = SI/(V_m——I-}-T)’ in Figure 2
0
as a Function of the Contribution of A;(j), load py,

to the Total Terminal Link’s Load p (N© j).
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+1
Approximated Values: s,(m + 1), formulae (33) and (45), and C; = 8_1VVE—2+_T)
0
Data: n =10, m =6, p=0.6, pj(j) =po= h-£.

Traffic stream (3 components): T, =1,T, =5,T3 =30; p; = py, = p3 =0.2.
We give the overload coefficients:

_s(m+1) C. — sy(m+1)
“Wer T T WrT

For the usual case (h = 1), the buffer load is just 14% higher than the buffer load
given by the M/G/1 queue model. For h =5, the buffer load is already 40% more
higher. Moreover, following expression (22), the buffer occupancy related to the
traffic stream A;(j) is even 80% higher than the buffer load given by the M/G/1
queue model. For h =10, the buffer load becomes 144% higher (i.e., case of the
tandem queue model). Finally, the tandem queue effect becomes significant when half
of the local load comes from a single incoming path only (case h = 5). An example of
this is the case of a virtual circuil, or of a traffic stream concentration through a
supplementary upstream node.

The approximation s;(m+1) is a good approximation, proving that the set
(An» T py) of the longest service times is sufficient to generate the agglutination pheno-
menon.

c (49)

5.4 The Buffer Rejection Rate

To evaluate the buffer rejection rate R(K) in a stationary regime, we use expression
(34), which causes us to evaluate the rejection rate Ry(K) due to the M/G/1 queue
model, as well as the rejection rate R,(K) due to the tandem queue model, where K
is the buffer capacity.
(a)  Ezpression of Ry(K): Ry(K) is given by expression (35) for the GI/G/1
queue model. In Le Gall [4], formula (28), the expression has been given for
the M/G/1 queue model:

[eo)

Ry(K) & / [1-W,(t)]- H(t, K —2)- \dt, (50
. Ty
with '
H(t,j)=e~ M BUUM (51)

J!
W () corresponds to the asymptotic expression of the queueing delay distri-

bution W(t) for the M/G/1 queue model. In Le Gall [4], expression (32)
gives:

~ l-p - Byt
W) =1- e 0 (52)
pl-eB0T1+...+pN-eﬂ0TN-—1

where ¢ = B, ( > 0) is the real (positive) root, closest to the origin, of the
equation:

Ty

N B A} (53)
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Expressions (50) and (522 may be used, as a useful approximation, for
p<0.8and Ry(K) <10~

Ezpression of R(K): R,(K) is given by expression (37), where U(tkm) is
given by the approximated expression (18). To evaluate [F7(t)]", we
consider the Laplace transform, excluding the set (Ay, T 5 ):

( + )J ( ? )K B

K A A . A+ A :

* K 1 2 — 32T 1 2 - (K —7)zT

z o= Kl~—kFx-7.¢ 1. ——~7 '€ 2,
[p1(2)] j2=:0 5 (K =)

with the condition (for a single busy period): jT'; + (K —j)T, < T3 Ex-
pression (37) gives:

( PN X K-J
K, A1+A2> (A1+A2>
R,(K)= K! - . —=L -N1=-U(T,+ (K - j)T,,m)],
1( ) jgo ]! (IX—-—])! [ (-7 1 ( ]) 2 )]
(54)
with j such as: jT, + (K — j)T, < Tj.

Practically, this last condition leads only to the case j = K; the rejections
are generated by the shortest packets.

A Numerical Example: We consider the same example as in Subsection
5.3.c and in Table 1. The expression of n; is defined by expression (48).
Table 2 gives the numerical results for Ry(K) = 10" 2,107 3 and 10 ~*, cor-
responding to the buffer capacity K = 19, 28 and 40, respectively.

K 19 28 40
Ry(K) 102 10-3 104
h ™ Po C(K)
1 10 | 0.06 3.9 26 0.90
5 3.6 | 0.30 8.9 70 0.72
10 1 1060 30 250 0

Table 2: Local Rejection Rate R(K) = C(K)- Ry(K), for a Buffer Capacity K,

Formulae (34) and (54). (Examples of Table 1)
[Rejection rate in the M/G/1 queue model: Ry(K), formula (50)]

For K =19 and 28, a strong influence of the agglutination phenomenon
appears: R(K)=C(K):Ry(K), with a high value for C(K). For K > 30,
this phenomenon has disappeared: C(K) < 1.

Due to the impact of the shortest packets, we may avoid the reject-
tons due to the agglutination phenomenon if the buffer capacity K is such
as:

Ty

K > T, (55)
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where Ty and T are the longest and shortest packet lengths, respectively.
And this conclusion to dimension the buffer is the same as for the M/G/1
queue alone: See Le Gall [4], Subsection 4.3. Moreover, we may note that
this condition (55) does not change if we segment the medium packet
lengths into the shortest packet lengths. In that case, we can say that condi-
tion (55) states that the buffer capacity should be higher than the agglutina-
tion size (after segmentation).

6. Conclusion

(a) We have studied the single server queueing networks (excluding ring networks),
when successive service times are different (or not) without breaking up the busy
periods from stage-to-stage, leading to a great approximate simplification: the
existence of an equivalent tandem queue effect. At the end of Subsection 3.1, and in
case of infinite support for the service time distribution function Fy(t), we stressed
the need that [1 — F';(t)] decreases exponentially at infinity. In particular, in case of
a “Pareto” distribution (for “Fractal” processes) decreasing as (at) ™%, (a > 2), this
kind of traffic cannot be carried in queueing networks (on the contrary of a single
GI/G/1 server) because of the tandem queue effect: in this case link overload
generates more successive local arrivals from the same incoming path. Practically, we
restricted this paper to the realistic case of finite support.

(b) Due to the possible correlation between two successive local arrivals from the
same incoming path, a curious “double faced” traffic model appears, as for the Janus
divinity: An agglutination phenomenon (of short service times 7', behind a long
service time T ) results for queue lengths and buffer capacities lower than (T /T'),
and the classical GI/G/1 queue for queue lengths and buffer capacities higher than
(T'n/Ty). This property (amplifying from stage-to-stage) has not yet been detected
with classical network queueing theories, (e.g., Markovian queues, product form
theory), due to an incorrect concept of local traffic source (i.e., eliminating the occur-
rence of some agglutination and the concept of upstream apparent delay). These
theories assumed the local combination of distinguishable customers (with distinguish-
able queueing delay), instead of parts of upstream busy periods with indistinguishable
customers (and indistinguishable queueing delay depending on the maximum sojourn
time initiating the new downstream busy period). These theories cannot be
consistent with the concept of the equivalent tandem queue.

(¢) Some significant consequences appear, since any link overload comes from a
given incoming path which generates the tandem queue effect (i.e., correlation
between local interarrival time and upstream service time). The usual queueing
standards (related to long queues) cannot protect against subsequent, significant
overloads in the buffers due to some possible “agglutination phenomenon” (related to
short queues). Usual network management methods should be revised, and should
monitor the partial traffic streams loads (and not only the server load). Moreover,
when we connect two networks (or a network and a user), as in circuit switching
(with buffer associated), it follows that n; =1 in expression (23), and the inlet
(downstream) works with a sojourn time ( = local transfer delay) practically equal to
T, instead of (W +T), leading to a supplementary mean transfer delay
[Tn—(Wy+T)]. This is the same in the case of a traffic stream concentration
through a supplementary upstream node. In that case, leading to some packet re-
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jections in connectionless IP-based telecommunication networks, some moving
pictures on the screen may be stopped a long time before continuing.

(d) This longest packet length, T'5;, may be bounded in a “virtual circuit mode”
(depending on the considered link). On the contrary, in a “connectionless mode”, the
usual routing (or flow control) methods cannot be efficient to bound T for a given
link with its buffer. Finally, buffer dimensioning [see condition (55)] depends on the
limitation needed by the network itself. Any change on this general limitation may
disturb all the buffers of the network.

This disturbance may become considerable when the network tries to handle
bursty traffics with non-transparent bursts (i.e., with no possibility that other packets
cross the burst inside the intervals between packets of the considered burst). If L is
the mazimum burst duration, T p; now has to be replaced by L in condition (55), lead-
ing to a ratio (L/T,) much greater than (T »;/T;) and, consequently, to an agglutina-
tion phenomenon much higher in the buffers (and not detected by flow control). Due
to congestion in buffers, a large area of the network may rapidly become inaccessible.
The classical traffic modeling, with local Poisson arrivals and no correlation with up-
stream service times, could not lead to this important consequence (even when success-
ive service times are mutually independent, due to Hypothesis 2).

(e) The traffic modeling for this case of correlated, and different successive service
times is more general than the case of constant service times. The occurrence of
agglutinations generates the concept of indistinguishability as in nuclear physics,
which may affect the concept of a local transition coefficient in Markovian queues,
and the concept of product form. Moreover, this concept of upstream indistinguishabi-
lity introduces some strong interferences with “premature departures”, leading to the
new concepts of virtual and actual local queueing delays, respectively.

(f) Finally, we stress our conclusion (e) in Subsection 3.3. To be sure that the
tandem queue effect may be detected by traffic simulation methods, it is necessary to
directly observe the two successive (upstream and local) overall sojourn times for a
local arrival in a given traffic stream, instead of directly observing the local queueing
delay for an arbitrary arrival. In this latter case, a simple, local Poisson arrival pro-
cess without any correlation with the upstream stage could appear, leading to the
evaluation of a simple, apparent M/G/1 local server. The whole observation of the
network could be altered, and in case of rejected packets repeated, it could be imposs-
ible to understand some high rejection rates observed, even in the case of local and
total load at a medium level (e.g., 0.5 erlang), when condition (55) is not satisfied.

References

[1] Le Gall, P., Bursty traffic in packet switched networks, Proc. ITC-14 (Antibes,
France, June 1994), The Fund. Role of Teletraffic in the Evolution of Telecom.
Networks, Elsevier Science B.V., 1a (1994), 535-549.

[2] Le Gall, P., The theory of networks of single server queues and the tandem
queue model, J. of Appl. Math and Stoch. Anal. 10:4 (1997), 363-381.

[3] Le Gall, P., Multiserver queueing networks and the tandem queue model, J. of
Appl. Math. and Stoch. Anal. 11:3 (1998), 377-390.

[4] Le Gall, P., The queue-length in GI/G/s queues, Math. Prob. in Eng. 6:1
(2000), 1-11.

[6] Le Gall, P., The stationary local sojourn time in single server tandem queues



450

[6]

PIERRE LE GALL

with renewal input, J. of Appl. Math. and Stoch. Anal. 12:4 (1999), 417-428.
Pollaczek, F., Problémes stochastiques posés par le phénomeéne de formation
d’une queue d’attente a un guichet et par des phénomeénes apparentés, Mémorial
des Sciences Mathématiques, Gauthier-Villars, Paris CXXXVI (1957).
( = GI/G/1 queue; in French).



