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Palm distributions are basic tools when studying stationarity in the con-
text of point processes, queueing systems, fluid queues or random mea-
sures. The framework varies with the random phenomenon of interest, but
usually a one-dimensional group of measure-preserving shifts is the start-
ing point. In the present paper, by alternatively using a framework involv-
ing random time changes (RTCs) and a two-dimensional family of shifts,
we are able to characterize all of the above systems in a single framework.
Moreover, this leads to what we call the detailed Palm distribution (DPD)
which is stationary with respect to a certain group of shifts. The DPD has
a very natural interpretation as the distribution seen at a randomly chosen
position on the extended graph of the RTC, and satisfies a general duality
criterion" the DPD of the DPD gives the underlying probability P in re-

turn.
To illustrate the generality of our approach, we show that classical

Palm theory for random measures is included in our RTC framework. We
also consider the important special case of marked point processes with
batches. We illustrate how our approach naturally allows one to distin-
guish between the marks within a batch while retaining nice stationarity
properties.
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1. Introduction

Palm theory is especially known for its applicability to stationary queueing systems
in which there is an underlying point process of arriving customers over time; see,
e.g., Franken et al. [3], Brandt et al. [2], Baccelli and Brmaud [1], and Sigman [11].
The theory considers the relationship between two distributions: a time-stationary
distribution and a Palm distribution (PD). Both describe the stochastic behavior of
the system, but whereas the first does so as seen from a randomly chosen time point,
the second does so from a randomly chosen arrival epoch. On the one hand, point
processes can be viewed as integer-valued measures (counting the number of arrivals
in subsets of the time line), and it is this view that is widely used and accepted in the
literature (see in particular [3] which is a classic text in this regard, and Mecke [6]).
An advantage of this "counting measure approach" is that it naturally extends to
real-valued measures thus leading to a Palm theory for modern fluid queues and ran-
dom measures; see, e.g., Schmidt and Serfozo [10], and Miyazawa [7]. Since a mea-
sure g*(. on the real line can be identified with a non-decreasing and right contin-
uous functional g(t)= g*((0, t]), g(0)= 0, one can also equivalently express this mea-
sure approach in a functional framework (see Geman and Horowitz [4]).
On the other hand, as presented in [2] and [11], one can alternatively view a one-di-

mensional point process as a sequence of non-decreasing arrival times. When the
point process is simple then (meaning that only one arrival is allowed to occur at a

time; no batches allowed), the two approaches are equivalent, but when batches are
allowed they are not equivalent (see Section 1.4 and Appendix D in [11] for such
details). As a result, different Palm type distributions are obtained depending on the
approach taken, and they have different interpretations and different stationarity
properties (see also KSnig and Schmidt [5], page 87). It is the sequence approach
which leads to the interpretation of the distribution as seen from the point of view of
a "randomly selected arrival" (not arrival epoch) and is thus more appealing in
applications. (The point here is that each customer within a batch has the same
arrival epoch, and this sequence approach distinguishes between them, whereas the
measure approach does not.)

Motivated by this "randomly selected arrival" point of view, we proceed in the pre-
sent paper to make sense of it and generalize it to random measures. By generalizing
the functional framework introduced in [4] to that of a random time change (RTC),
and by introducing a two-dimensional family of shifts along an extended graph, we
define a detailed Palm distribution. This DPD not only has the desired stationarity
property but also a new and fundamental duality property: The DPD of the DPD
yields the original probability P back again. As we show, all well-known distribu-
tions of Palm type follow immediately from the DPD in a natural and very intuitive
way. Classical Palm theory for random measures, for example, is contained in our
RTC framework. In a modified form a DPD was first mentioned in [7], on a smaller
a-field and from a more applied point of view.

In Section 2 we first introduce the framework and give the definition of a random
time change A. In Section 3 we start with a stationary probability measure P and
then introduce the DPD denoted by PA" We also consider the more standard type of
Palm distribution p0 (as found in most of the literature) and relate it to PA" Things
are then generalized further by letting the random time change A be accompanied by
a stochastic process 5’ defined on its extended graph. The pair (A,S) is called a
marked time change and its stationarity properties are revealed. Section 4 is about
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duality. Using the generalized inverse of the RTC, it is proved that the DPD of the
DPD is well defined and yields back P. This duality principle can be used to derive
results for PA from similar results for P (and vice versa). The duality between P and
PA and the simple relationship between PA and p0 are used to obtain a general inver-
sion formula to express P in terms of p0.

In Section 5 we show that Palm theory for random measures is included in our
approach. Section 6 then illustrates our approach in the context of (marked) point
processes with batches. In the appendix, proofs are given for some technical results.

2. Framework

Let G denote the set of functions g’N---R such that gis non-decreasing, continuous
from the right, and lim g(t)= -t-oe. SetG: ={geG:g(O-)<_O<_g(O)}. Endow

t- 4- oo

G with the smallest -field~ making all the projection mappings t9(), 9 G, mea-

surable; denote this by and set : - G. We view N as the time line, and call
9 G a ime change. ForgG, theset

is called the extended graph of g, and the function g’ with

g’(x): =sup{sCN:g(s)<_x}, xCN,

the (generalized) inverse of g. By entifying g e G with its extended graph F(g), we
obtain measurable spaces (F(G),F()) and (r(a),r()). For a proof of the following
lemma, we refer to the appendix.
Lemma 2.1: For all g G we have:
(a) g’eG,
() (’)’= ,
(c) (t,x) F(g) iff (x, t)C F(g’),
(d) (’(), ) z r() fo a .
Let (,) be a measurable space. A random time change (RTC) A is a measur-

able mapping G. For w 2 we will write A(.,w) for the corresponding function
in G and A(t,w) for its value in t . The generalized inverse of A(. ,w)is denoted
by A’(. ,w). So A’ is another random time change. The extended graphs of A(.,w)
and A’(.,w) are denoted by F(w) and F’(w), respectively. In this context we will
usually use s and t to denote elements of the horizontal axis of F(w), and x and y for
elements of the vertical axis.

Lt (,) be a measurable space such that and -. We call
(, a%extension of (, ). Let O {O(t,x): (t, x) 2} be a family of transforma-
tions 2n , not necessarily a group. I.e., O(t,x)(W) is a measurable mapping from

2(2x,( )x @) to (,@). The assumption below expresses that the (random)
extended graph F of A is consistent with O, and that the family O behaves itself on F
as a group. Assume:

(i) For all w , (t, x) F(w) and (s, y) F(O(t,x)W we have:
(a) A(.,O.(,x) = h(t + .,)-,
(b) O(, u)(O(t, x)U O( + t,x + ).
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(Note that with (t,x) E F(w) and (s, y) F(O(t,x)w), indeed (s + t, x + y) G F(w).)
Assumption (i) is motivated by canonical settifigs "(useful in applications) as in the
following example.

Example 2.1: In the canonical case, we take (f, F (G, and (, 5) (G, ).
The RTC A is the identity mapping on G. In thiscase, a natural family (R) is defined
by O_(tx)g: g(t + .)- x, (t,x) 2 and g G. Assumption (i) is trivially
satisfied.
A more general canonical case (see also the marked time change in Section 3) a-

rises as follows. Let be the set of pairs(g, p) with g G and p a measurable func-
tion on F(g). Let be the~ restriction of tong E G. a-fields 5 and 5 are constitut-
ed by the sets {(g,p)f’gB} with BO and BO, respectively. A natural
family O is defined by

O(t,x)(g,p): -(g(t+.)-x,p(t+.,x+.)), (t,x) Enand(g,p)5,

and an RTC A by
h(.,(a,)): g(.), (g,p) E.

It is an easy exercise to prove that the consistency in (a) and the group-structure in
(b) are indeed satisfied. VI

Define, for w f, t , and x E ,

Lemma 2.2:
w we have:

tW: O(t,A(t,w))w and ]xw" O(A,(x,),x)w, (2.1)

and put tO: {Or: t } and r]: {fix.: x } for the corresponding families of trans-
formations (shifts) on ft. The results in the following lemma can be proved easily.

Under Assumption (i), 0 and are groups. For all s,t,x,y and

h(t,) h(t + , ) (, ),

’(,) ’( + ,) ,(, ),
A’(x, Otw A’(x + A(t, w), w) t,

(t, x) (t + ’(, ), ) x,

x(0tw) x + A(t,w)w and 0t(xw) 0t + A’(x,w)w"

Note that 00w and 0w are not necessarily equal to w. In the canonical setting of
Example 2.1, 0t is the shift operator which moves the origin to the position (on the
graph) belonging to t on the horizontal axis, while x moves the origin to the
position (on the extended graph) which belongs to x on the vertical axis. Note also
that h(0, Osw is always zero, while A(0, x)need not.
We next introduce shift-invariant sets. Define

(0). {A E 5:0t- A A for all ),

:](n): {A : r/- 1A A for all x ).

The next lemma is an extension of Lemma 2 of Nieuwenhuis [8].
for a proof.

See the appendix
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Lemma 2.3: Under Assumption (i), the above invariant (r-fields coincide.
In view of this lemma, we denote’I() and ](’) by a single notation ]. Note that,

as an immediate consequence of the lemma,

f o Ot-f and fOr/x--f (2.2)
for all ]-measurable functions f" -- and all t, x .

In the next sections we will occasionally use the left-continuous inverse g-1 ofg, defined by g-l(x)-inf{s:g(s)>_x}, xR. Let g* be the measure
generated by g, i.e.,

t]). < t.

The following lemma enables us to transform integrals with respect to g*, on the
horizontal axis, into Lebesgue-integrals on the vertical axis. It will be proved in the
appendix.
Lemma 2.4: Let g E G and let f:N--,R be g*-integrable. Then we have, for all

a, b E R with a < b,

g(b) g(b)

/ f(g’(x))dx-j" f(g-l(x))dx- / f(s)g*(ds).
a(a) a(a) (a,b]

3. Detailed Palm Distribution

In this section we presume a stationary setting in which the RTC A has stationary in-
crements, and then define the detailed Palm distribution. It has the nice property
that the group r/ is stationary with respect to it. Intuitively it can be derived by
choosing at random an x on the positive vertical axis and shifting the origin to the
corresponding position (A’(x),x) on the extended graph of A. Next, the ordinary
Palm distribution- the one that is analogous to the well-known PD for random mea-

sures is also defined and the relationships between the two are considered. Finally,
a generalization is given to marked time changes: RTCs accompanied by a stochastic
process on their extended graphs.

The Stationary Framework

In addition to Assumption (i) we now assume a probability measure P on

under which the family 0 is stationary, i.e.,
(ii) P(O- 1A) P(A) for all t G and A G

and assume further that the (possibly non-degenerate)limit A"-limA(t)/t-
E(A(1) ]) satisfies

(iii) P(O < A < ec)- l.
Assumptions (i) and (ii) imply that the RTC A has stationary increments.

Detailed Palm Distribution

Definition 3.1" Under Assumptions (i)-(iii), the probability measure PA on

the detailed Palm distribution (DPD) of P with respect to A, is defined by



60 M. MIYAZAWA, G. NIEUWENHUIS and K. SIGMAN

1 1 rlxdxPA(A)" -E -- A
0

A E 3. (3.1)

In [7], a slightly modified version of (3.1) is presented. It is defined from a more
applied point of view, on a smaller (r-field.

Theorem 3.1: Assume (i)-(iii). Then P PA on 3, and the group of transform-
ations on is stationary with respect to PA:

PA(r/- 1A) PA(A) for all y and A 3. (3.2)

Proof: By (2.2) it is obvious that P I] PAIl" Let y and A

PA(rI IA) E -- 1A O rlxdx
y

Then

1 1 ]xdx1 1AOrlxdx -E - A oPA(A) + E A(1) 0

which equals PA(A) by Lemma 2.2 and stationarity of 0.
Expectations under PA are denoted by Ei. With A G, we also have A E G. As

an immediate consequence of Theorem 3.1 it follows:

A--V %lLmlA’(x)- EA(A’(1) 3) PA- and P-a.s. (3.3)

(Note that A’(0)= 0 PA-a.s.)
and >0,

By part (d) of Lemma 2.1 we obtain that for all w G fl

A’(x) A’(x) A’(x)
A(A’(x)) <- ---Y-- < A(A’(x)- c)

if x is sufficiently large.
3.1, we have:

Hence, by Assumption (iii) and the first part of Theorem

A--7 1_ PA- and P-a.s. (3.4)
A

The following theorem gives (at least in the canonical case) the intuitive meaning
for PA via "choosing at random" an x on the positive half-line of the vertical axis
and shifting the origin to the corresponding position (h’(x),x) on the extended graph
of A. "Choosing at random" is made precise by taking long-run averages.

Theorem 3.2: Assume (i)-(iii). Then, for A

A(t)

tli_,m(t) J 1A xdx PA(A ])
0
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/A(1)1E 1 o lzdxA A
0

P- and PA-a.s.,

y

Jrnj P(:lA)dx
0

PA(A).

Proof: Set (t)" f0A(t)ln o lydy, E . By Lemma 2.2,
(t) o 0s (t + s) (s) for all s, t E . Note that the limits

h(t)

vlInj 1A O xdx and tl--{II(t) / 1A xdx
0 0

it follows that

exist and are equal (for all w ). Under PA, the left-hand limit equals
a.s., while under P the right-hand limit equals

li n 1 (1) o0i_ 1
n_Inn(n) n 1

i=1 0

1A o rlxdx a.S.

Since P PA on , the first part of the theorem follows immediately. The second
part follows by taking P-expectation in the left-hand part of (3.5) and by noting that
E(PA(A )) PA(A). Vl

On many occasions, the horizontal axis represents time. The meaning of the
vertical axis depends on the system studied. If the vertical axis represents the level of
a fluid coming into a reservoir, then it follows from Theorem 3.2 that the DPD
describes the stochastic behavior of this system as seen from an arbitrarily chosen
level onwards. (Note that this level could be located within a jump of A, if the
system allows this.) If A(t) measures the cumulative time that a service system is
busy (i.e., not idle), then the time-stationary distribution considers the system from
an arbitrarily chosen time point while its DPD does so from an arbitrarily chosen
"busy" time point. In this case, the vertical axis represents time when the system is
busy. If A(t) is the cumulative traded volume of a certain share on a stock exchange,
then the DPD considers the behavior of this share as seen from an arbitrarily chosen
transaction of size one; see also Section 6.

Set A{t): h(t)- h(t- ), G R. A proof of the following corollary is given in the
appendix.

Corollary 3.1: Assume (i)-(iii). Then, under PA, the conditional distribution of
h(0) given h{0} is the uniform [0, h{0}] dislribution.

In Section 5 we will include Palm theory for random measures as part of Palm
theory for RTCs. In advance, note that two RTCs A and A2 on (,Y,P) which
generate the same random measure A*, i.e.,

A*((s, t]) Al(t Al(S A2(t A2(s (3.6)

for all s _< t, have the same DPD provided that the respective families (1) and 1(2)
coincide P-a.s. This is because A2(0 AI(0 0, P-a.s.
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Ordinary Palm Distribution

Whereas the DPD is derived intuitively by randomly moving along an extended
graph in a way that keeps track of where within a jump (if any) one is, the tradition-
al Palm distribution does not. In the present time change setting, we will refer to
this traditional case as the ordinary Palm distribution (OPD); if A is continuous, the
group of transformations {0A,(.x) } is stationary under it. In the canonical setting this
OPD is intuitively obtained (recall (2.1) and see Remark 3.1 below) by randomly
choosing an x on the positive vertical axis and shifting the origin to (A’(z),A o A’(z))
along the graph (not extended graph) of A. The point here is that whenever a jump
occurs for A, the OPD measures the magnitude of the jump size and then looks ahead
after the jump (see Remark 3.2), while the DPD continues measuring continuously
along the jump (vertical axis of the extended graph).
A random time change A generates a random measure A* (recall (2.3) and (3.6)).

By Assumptions (i) and (ii), A* is stationary under P. In accordance with Palm
theory for random measures we define the OPD of P with respect to A as the well-
known PD of P w.r.t. A*, and call it p0:

P(A)" E
-0, 1A0tA*(dt A e 4. (3.7)

1]

This definition corresponds to (2) in [10], modified along the lines of [11] and
Nieuwenhuis [9] so as to encompass the non-ergodic case. (As discussed in the last
two references, it is more natural to use the random intensity A (instead of its P-
expectation) in the definition of non-ergodic OPD.) As presented in [4], the family of
shifts {0.,, ,} is a group being stationary under pu provided that A is continuous.

Atx)
In order o relate OPD and DPD, we first express the OPD in terms of an integral

on the other (vertical) axis. The following result is an immediate consequence of
Lemma 2.4:

1 )dx Ae (3.8)P(A) E - 1A o OA,(x
o

llationship Between DPD and OPD

We will write E for expectations under p0. In the next theorem, the relationship
between OPD and DPD is studied. It is proven in the appendix.

Theorem 3.3: Let A be an RTC on (a,,P) which satisfies (i)-(iii). Then the
relationship between pO and PA is as follows:

(a) pO PAOd- 1,
0_ 1 0_ A{0} 1A o rlxdx), A E 4.(b) PA(A) E (i---{- f

The averaged integral in (b)is interpreted as 1A(W if A({0},co)= 0.
Part (a) expresses the fact that the OPD looks ahead from the top of a jump (if

any); the shift 00 does the required re-positioning. Part (b) expresses the fact that
DPD looks ahead from a position uniformly within a jump.

Remark 3.1: Note that OPD and the DPD coincide in the case that A is contin-
uous. Analogous to Theorem 3.2, there is an analogue for p0 using the family of
shifts {0h,()} (see also Nieuwenhuis [8] for the point process case). Since 0h,(x
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00 o /x, we obtain by Theorem 3.2 that

A(t)

1A o OA,(x)dx PA(Od-1AI P(A

0
1nOM(x)dx p_, pO_ PA_a.s

y

0

P(A), A 5. (3.9)

Pmark 3.2: Observe that if A is a pure jump process with jump-times T and
jump-sizes X (under the convention that < T_ 1 < To -< 0 < T1 <...), relation

(3.9) becomes
o )1V" E("" il -+ P(A) A e 3; (3.10)

ni=l \J(, AOTi
here X is the long-run average of {X,X2,...}. Note also that the sequence8

{Ti- Ti_1} and {Xi} are usually not stationary under p0, since they are not
necessarily stationary under PA (because of length-biased sampling) and their distri-
butions do not change by shifting the origin up by applying 00. But these sequences
will be stationary under the distribution Q0 with

Q(A): --nlirn lgE P(OIA)- E(IAY(IXo), A e 5,

that arises from P by shifting the origin to an arbitrarily chosen jump-time. In the
simple point process case, pO and QO coincide.

Marked Time Change

For completeness, we include here the more general situation in which the RTC is
accompanied by a stochastic process on its extended graph. A marked time change is
a pair (A,S) consisting of a random time change A and a stochastic process S, on a

common probability space (f,J,P), such that S((., .),w)is a measurable function
on F(w) for all w E f. It is assumed that a family O of transformations exists such
that A satisfies Assumptions (i)-(iii). Furthermore, we assume that for all w E f and

(iv) S((s, y), O(t x)W) S((s + t, y + x), w) for all (s, y)
(See Example 2.1 for a canonical version.) Set Sl(t):- S((t,h(t)) and S2(x):-
S((A’(x), x)); t, x N. It is an easy exercise to prove that the stochastic processes S1
and S2 satisfy

Sl(t o 0s Sl(t + s) and S2(x o r/y S2(x + y),
(3.11)

Sl(t o qy Sl(t + A’(y)) and oe2(x)o 0 S2(x q- A(t)),
for all s,t,x,y . Consequently, S is stationary under P w.r.t. 0, while S2 is

stationary under PA w.r.t, r/.
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4. Inversion by Duality

Starting with Assumptions (i)-(iii) for the pair (A,P) we defined PA, the DPD w.r.t.
A. A similar approach for the pair (A’,Ph) leads to a duality criterion. This criter-
ion is used to derive an inversion formula for the OPD.

Assume (i)-(iii). We next consider A’ instead of A; we will give corresponding
quantities a ]rime. Define the family O’ of transformations Ox,t by (R)z,t)w:-
O(t,x_)W, W and (x, t G 2. By Lemma 2.1 it is an easy exer4iseto proe that O’
satisfies Assumption (i) which arises from (i) by replacing A by A’ and F(w) by
F’(w). From O’ we define 0 and ;; t,z . Part (b) of Lemma 2.1 ensures that

0’=and’=0. So, wehave
(ii)’ 0’ is stationary w.r.t. PA,
(iii)’ PA(O < A’ < )= I.

(The last assertion is a consequence of (3.4).) Consequently, the DPD of PA with
respect to A’, notation (PA)A’, is well-defined:

1 1A Osdso

0

Po
Theorem 4.1: The detailed Palm distribution of PA with respect to A’ is equal to
Especially, for A E ,

1 1 A o OsdsP(A)-E
0

l__/t PA(Os-
0

1A)ds--P(A).

Proofi Since (i)’-(iii)’ are satisfied, we can apply Theorem 3.2 replacing A by A’,
P by PA, and PA by (PA)A" This yields, for an equivalent version of the first part
of Theorem 3.2,

rn/1AOO ds-- 1-1-E 1 oOsds PA-a.s.s A A A
00

Since P- PA on l, we obtain:

0

A)ds-(PA)A,(A),

which gives the first assertion of the present theorem. The second is an immediate
consequence. VI

ttemark 4.1: By the above approach it follows that duality holds between P and
its DPD w.r.t. A, a property which in general does not hold for classical PDs. See
also [4]. Properties for P can immediately be translated into dual properties for PA,
and vice versa. For instance, from Theorem 3.2 and Corollary 3.1 we immediately
obtain the following dual assertions:



Palm Theory for Random Time Changes 65

1A o Osds PA- and P-a.s.,

and under P, the conditional distribution of A’(0) given A’{0} is the uniform
[0, A’{0}] distribution.

The last result is well known in the case that A characterizes a simple point
process (see Section 6), and obviously holds more generally, for instance for a pure
jump process: with A’(0) =: T1 the first jump-time on (0, oo) and A’(0- =: To the
last jump-time on (- cxz, 0], the conditional distribution of T1 given T1 -TO is the
uniform [0, T1 -To] distribution. Note also that the convergence result of Theorem
4.1 means that intuitively P arises from Pa by choosing at random an s on the
positive half-line of the horizontal axis and shifting the origin to the corresponding
position (s,A(s))on the graph of A.

Relations (3.7) and (3.8) express how P can be transformed into p0. An
expression which works the other way round, is historically called an inversion

formula. See also [10], Corollary 1 in Section 2. We use inversion of PA to P,
managed in Theorem 4.1 by using the duality approach, to accomplish inversion of
p0 to P. The proof of the following theorem is included in the appendix. Recall
that A’- EA(A’(1) ).

Theorem 4.2: Let pO be the OPD of P with respect to A. Then

/ fA’(1)( ) /1- A(t)P(A) E 1 1A 1A oOtdt A E- A{0}
0

Here the minimum in the integrand is interpreted as 1 if A({O},w)= O.

5. Stationary Random Measures and PDs

In this section, we include Palm theory for random measures in Palm theory for
RTCs. Starting with a random measure and the well known PD in a common

stationary setting, we construct an RTC which generates the random measure and
which satisfies (i)-(iii). No additional assumptions are needed. In a sense, the OPD
of this RTC is equal to the PD of the random measure we started with. The DPD of
the random measure is defined as the DPD of this RTC.

Let i be the set of all measures # on %(R) for which #(B) < oo for all bounded
B E %(R). M is endowed with the a-field atg generated by the sets {# G M:#(B)
k}, k NO and B %(). i random measure on is a measurable mapping A from
a measurable space (no,Yo) to (M, all,). Let Q be a probability measure on

We write E for expectations under Q. We assume that a group r: {rt:t G N} of
transformations on o exists such that A) is consistent with 7, and r is stationary
with respect to Q; i.e.,

(ia)
(iia)

A(B) o r A(B + t) for all B e %() and G ,
Qv- Q for all t G .

Hence, A is stationary under Q.
change A0 defined by

It can be characterized by the random time
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A;((O,t])
Ao(t)"

A;((t,O])

ift>O

ift <0.
(5.1)

Note that Ao(0 --0 and that A0 generates A; see (2.3). In case A is an integer-
valued random measure, the RTC A0 is also integer-valued and can never satisfy part
(a) of Assumption (i), notwithstanding the choice of the family (R). So, we must
choose the RTC generating A0 in a more clever way.

Furthermore, we assume that
(iiia) Q(0<Ao<)-1.
Here Ao is the long-run average E(Ao(1)I o)-tli_,mAo(t)/t with o the invariant

a-field of r. Similar to [10], we define the Palm distribution QO of Q with respect to

A) by
Q(A)" E 0,1 1A o r

As in (3.7), we use the random intensity; see also [11] and [9]. For a fixed A), this
PD does not really depend on the choice made for the RTC which generates A). So
Ao may be replaced by another RTC which generates A). By Lemma 2.4 we can also
consider Q(A) along the vertical axis"

1 1A o rMo(x)dXQ(A)- E oo o

A E 5o. (5.3)

Since, for fixed wo E no, A(x) and. A(x- can be unequal for at most countably
many x R, we may equivalently use Ao- l(x)" A(x-)in (5.3)instead of A(x),
i.e., we may also use the left-continuous version A0-1 of Ao.

As mentioned above, a family O of transformations not necessarily satisfies
Assumption (i), not even if (ia) holds. We have to make the measurable space
(o,o) richer. Assume that (ia), (iia) and (iiia) are satisfied, and define

" flo and " z5o x %(),

z) e n.0 < z <

Let w (Wo, z) be an element of . For s, t, x R we define:

(R)(t,x)w" (rtWo, Ao(t Wo) + z- x)

A(t, w) Ao(t Wo) -t- z, (5.4)

A*((s, t], w) A(t, w) A(s, w) for s < t.

Next, we identify 12o and f0 x {0}. With this identification, A and A* are
extensions of A0 and A). Note, however, that f- fo if Ao(. ,co) is continuous on N
for all co G f0" Note also that the last definition above implies a measure A*(., co) on
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%() with A*(B,w)- A(B, w0)for all B e %(), and that the random function A,
defined on (f,ff)is indeed a random time change since A(.,w)E G for all co E f.
The family (R) of transformations on (f, f) satisfies part (b) of Assumption (i), even
for all co (w0, z) in f and for all t, x, s, y G :

(R)(s, y)(@(t, x)co) (R)(s, y)(rtcoo, A0(t, coo) + z x)

(rs(’tWo), Ao(s, vtcoo)+ Ao(t, coo)+ z x y)

+ t o, Ao( + t, + z +

which equals (R)(s + )co. (In the last equality, we used (ia) and the group proper-
ty of the family r

+ t,x
on (fo, fro)’) Again with (ia), it is an easy exercise to prove that

part (a) of (i) also holds. Hence, we can define groups 0 and r] of transformations on

f as in Section 2. Note that, with the identification coo (coo, 0), we have for
z):

o)= ao. (5.5)

Especially, r is just the restriction of 0 to f0 (as it should be).
(a0, 0, Q) to (a, , P) by the definition:

We can extend

P(A)" Q(A N ao), A .
The pair (O,P) also satisfies (ii). So, 0 is stationary with respect to P. concerning
the invariant r-fields ]0 and ] of v and 0, respectively, we note that: A r’! f0 ]0 if
A t. Hence, Assumption (iiia), with E denoting expectation under Q, implies
Assumption (iii), with E denoting expectation under P.
We conclude that a random measure A satisfying (ia), (iia) and (iiia) can in a

natural way) be extended to a random measure A* and a corresponding random time
change A which satisfies Assumptions (i)-(iii); without additional assumptions.
Conversely, a random time change A satisfying (i)-(iii)implies a random time

change A0: A o 00 which satisfies (ia), (iia), and (iiia).
Having extended (f0, 0, Q, r, A, A0) to (f, f, P, 0, A*, A), the definition of Q0 in

(5.2) transforms into the definition of p0_ the OPD of P w.r.t. A- in (3.7). Note
that P(A)- Q(A fl f0)" We will interpret p0 as the PD of Q w.r.t, the random
measure A. Similarly, we will call PA the DPD of Q w.r.t. A. The relationship
between these two distributions of Palm type is described in Theorem 3.3.

6. PDs in the Point Process Case

In the context of point processes, the corresponding random time change is a stepfunc-
tion with integer-valued stepsizes. The jumps occur precisely at the arrival times.
The DPD treats the vertical jumps in a continuous fashion (recall Corollary 3.1)
while only discrete positions are of interest (customers for example). For applica-
tions, a modification of the DPD is thus desirable. For example, in a batch point pro-
cess representing customers arriving in busloads to a queue, we should modify our

DPD to account for individuals within a bus. This distinction is characterized by
Theorem 6.1(d) and (e) below. The Palm type distribution that we will obtain is

equivalent to the PD in [2] for the sequence approach. Several distributions of Palm
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type are then compared.
Recalling (5.1) (with discussion right after) and (5.4), we can start with any time

stationary point process as defined by a stationary random counting measure and con-
struct from it (via an extension) a special random time change A (I) on R satisfying
(i)-(iii). That is, (I) is an RTC with (I)(t)- (I)(s) E 7/for all w E and s, t G R. Note
that whereas there are sample paths of (I) such that (I)(0) can be non-zero and non-inte-
ger valued, under time stationary P this occurs with probability zero (but under
DPD PO this probability is one). Motivated by this RTC construction, we shall refer
to any RTC with integer-valued increments as a random point process and denote it
by .

Recall that Po and p0, the DPD and the OPD of P w.r.t. (I), are defined by

P,(A) E --1 1A O xdx P(A) E -- 1AoOo,(x)dx A e
0 0

(cf. (3.1)and (3.8)), and that

y

0 i-1

(cf. Theorem 3.2 and (3.9)). Here - E(O(1) I), and T is the time
occurrence (arrival) defined by T I,’(i- 1 + (0)) O’(i- 1) o 0o. So,

of ith

<_ T_2 <- T_ < TO < 0 < T _< T2 < (6.3)
Recall, for the canonical settings, the intuitive interpretations of P and p0 following
(3.4) and (3.6), respectively. Obviously, p0 cannot discriminate at all between two
simultaneous occurrences within one batch. On the other hand, while the DPD does
distinguish among positions within a batch, it does so continuously. A modified ver-

sion of the DPD overcomes these difficulties. Let m denote the lattice-measure con-
centrated on the set 7/ of integers. We will use m (instead of Lebesgue-measure) to
force selection along the vertical axis to be restricted to the integers. Define the
distribution P by

1 1Aorlzm(dxP(A) E
o

=E

(6.4)

Here o:- E(() Ioo) with 300 the invariant r-field of the group {rli’i G 7/} of
transformations on O. Note that 3 C 3oo by Lemma 2.3, that 3 #-3oo since the w-set
((0) N) does not belong to 3, and that

P((r//-1A) Pc(A), A E ff and G 7/. (6.5)
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So, {i} is stationary w.r.t. P, and

In o  oo) Re-
i=1

since P PO on ]oo" Hence,
n

-1AinE P(qi )--,P(A), A e J. (6.6)

In the canonical setting, we can interpret P as arising from P by randomly choosing
a positive integer on the vertical axis and shifting the origin to ((’(i), i) (T + , i)
on the eztended graph of (I). In case of a non-simple PP, relation (6.6) makes clear
that P gives the opportunity to discriminate between the arrivals within a batch
and that it is equivalent to the distribution P on page 82 of [2].

Let /3i: T + -Ti, 7], be the sequence of interval lengths (interarrivals) of
the PP. It can easily be proved that

/j o 0 /j + (I)(t) (I)(0)’ J and t , (6.7)
and that in general, /j o r]l is not equal to/j + 1" However, by renumbering the inter-
arrivals by making use of the special character of our framework, we can regain this
property. Set

a: max{(I)(0)- i: E N0 and (I)(0)-

_
0}. (6.8)

The magnitude of a represents the minimal amount required to add to (I)(0) to make
it integer-valued. In a canonical setting, (R)(o.a())w moves the origin (0,0)of
downwards to the first position on this exehdecl graph which is integer-distanced
from (0, (I)(0, w)). (If (I)(0, w) 0, nothing happens.) With (I)a: (I)- a, we define

Tj: 4p’(j + a) Tj + (I)a(O) and/j: Tj + 1 Tj, j _. (6.9)

It is obvious that a o rl-c since (6.8) does not change by adding an integer to the
q(0)- i. Consequently,

flj o r]l flj T 1, J ;. (6.10)
Hence, (j) is stationary under PO"
We next compare the distributions P, p0, p and PO" At first, note that

P((I)(0) 0)= 1 and P((I)(0)= 0)= 1,

P(((I)(0) e No) 0 and P(((I)(0) e N) 1, (6.11)

P((I)(0- 0) 1 and P((I)(0- < 0) 1,

P(((I)(0- )= 0) 0 and P((I)(0- 0) > 0.

(Here N does not contain 0, but NO does.) In the following theorem, we write E, EO
and EO for expectations under p0, po and PO, respectively.

Theorem 6.1: Let ( be a PP on (f,,P) which satisfies Assumptions (i)-(iii).
Then, for A 3,

(a) Pc(A) E,( f olA o rlxdx),



70 M. MIYAZAWA, G. NIEUWENHUIS and K. SIGMAN

(,)

(c)

(d)

()

Po(A) PO(j 1A),
P(A) P(00-1A) P(00-1A),
Po(A) 0 1 0 1 rxdxE (-f (0}

Po(A) o 1 1 1-E({0=_{0}
Proof: Note that, for n E N and A E 3,

1

_/n 11/1 1n o 7dyn gi
o o

1A O rx O rli_ ldX. (6.12)

As n-+oo, the LHS tends to Po(AI), both Po-a.s. and P-a.s. The RHS of (6.12)
tends to E, (flAorlxdx I]00), both Po-a.s. and B-a.s. Since P-Po on ] and

1 nP- Po on ]00, we obtain both sides of (a) as limits of foP(r 1A)dy as noo.
So, the two sides have to be equal. For part (b), note that under - we have by
(6.11) that O’(x)= 0 for all x e (0,1). Hence, Po-a.s., the composition a o r/x equals
c- x for all x e (0, 1). With this result, (b) follows from (a). Part (d) and the first
equality in (c) follow from Theorem 3.3. The second equality in (c) is a consequence
of (a) and the RHS of (6.11). Part (e) follows from (b) and (d). E!

Marked Point Processes

Formally, to distinguish among customers within a batch, they need to be labeled or
marked. This motivates considering the more general case of marked point processes
in which to each arrival time Tj is attached a mark j. As we will see, under the
new labeling used above, the relabeled sequence {(/j, mj)}, of interarrival times and
marks, is stationary.

Let K be a metric space, assumed to be complete and separable. %(K) denotes
the Borel-er-field on K. A marked point process (MPP) on , with mark space K is a
random pair" (O, (,)i=_m’-’-7]) where is a point process and (mi)ie7] is a random
sequence in K. The two elements of the pair are defined on a common probability
space (f,,P). We interpret m as the mark of Ti, 71, and assume that
satisfies Assumptions (i)-(iii). Furthermore, we assume that

(iva)

m(O(t x)O) m + ,(t,,,,) ,(o,.,)(), e ’, e , (t, :) e r(). (6.13)

An MPP is indeed a marked time change (cf. Section 3) since the stochastic process S
with

rni(w if y ’:I:,(0, w)+ i- 1
S((s, Y), )"

0 otherwise,

w e f and (s, y) e F(w), is defined on P and satisfies Assumption (iv) by (6.13). Note
that S is constant on horizontal parts of P and that m is just the value of S at the
position (Ti, (I)(0) + i- 1) on F. As in (3.11), we could create a stochastic process S2
which is stationary under P. In view of (6.9), a renumbering of the sequence

(mi)i e 7] seems to be of more importance. Set
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tj: mj + 1 Oct(0) (Tj’ J + c), j E 7/.

Hence, zj is the mark of Tj. Since c o rl c, it is an easy exercise to prove that

tj o r]l tj + 1, J E ’’
So, the sequence (x).
tmtvely clear (and can

e 7/ is stationary under Po. In view of (6.6) this result is in-
also be proved from it), at least in the canonical setting.

Appendix 1

Proof of Lemma 2.1: Let g G G.
(a) Only the fact that g’(0-) < 0 < g’(0) needs an argument. For y < 0 we

have: g(0) > 0 > y and hence g’(y) < O. By letting y tend to 0 from below,
we obtain that g’(0-)<0. For s<0 we have: g(s)<g(O-)<O. So,
’(0) > 0.

(b) Let tNand>0. Then:

’((t + )) = sup{ e : () < (t + )} > t + > t.

So, 9(t + ) { e a: 9’() < t}, d

(t + ) > sup{ e : ’() _< t} (’)’(t). (A.1)

(c)

By letting e tend to O, we obtain g(t) >_ (g’)’(t). Suppose that g(t) is strictly
larger than (g’)’(t). Then y e N would exist such that y > (g’)’(t) and
y < g(t). On one hand, g’(y) would be larger than t because of (A.1). On
the other hand, we could choose a positive e such that y < g(t)-e, and
hence g’(y) _< g’(g(t)- e) <_ t. We conclude that g(t) (g’)’(t) for all t e N.
Suppose that (t, x) e F(g), i.e., g(t- <_ z <_ g(t). Then

’() > ’((t- )) sup{ e : () < (t- )} > t.

_1For e>0 we have: x-e<g(t)-1/2e and g’(x-e)<_g’(g(t) e)<_t.
Hence, g’(x-) < t < g’(x) and (x,t) F(g’). The reversed implication
follows from (b).

(d) Follows from (c).
Proof of Lemma 2.3: We prove that (r)C ](0) for a family O-{O(t,x):

(t,x) :} of transformations (on ) which satisfy Assumption (i). The reversed

inclusion follows by similar arguments.
Let A :t(r) i.e.

for allw’fandxEN: w’A iff rxw’A. (A.2)
We prove that wAiff0swA, for all aEfand s. Let wAand s. For
x: -A(s,w) we obtain by Lemma 2.2 that

rx(O rx + A(, ) r0
which belongs to A by (A.2). Again by (A.2), with w’= 0sw we conclude that
OswA. Let weft be such that OswA. Note that 00o=0_s(0sW) belongs to A
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because of the above arguments. By (A.2), with x--A(0, w), we obtain that

row- rx(foW belongs to A. Again by (A.2), with w’-w and x- 0, we conclude
that w

Proof of Lemma 2.4: It is an easy exercise to prove that, for all s, t G R with

s<t
g(s) x iff s g-(x). (A.3)

Hence, the integral in the middle is equal to

l(a,b](g- l(x))f(g- l(x))dx" (A.4)

Note that g- 1 induces on R the measure # defined by

#((s, t]) Leb{x E H: s < g- l(x)
_

t}, s < t.

Here Leb represents Lebesgue measure. Again by (A.3), it follows that # g*. This
-1proves the right-hand equality. The left-hand equality follows immediately since g

and g’ can only differ in countably many points.
Proof of Corollary 3.1: It must be shown that PA(A(0)G BIA{0})is PA-a.s.

equal to
A{0}

1 ]- 1B(S)dsl o) + 1B(0 B %([0 o))h{0} (h{o) > )l(h{o} o),
0

(The second piece handles the special case when a sample path does not have a jump
at 0.)

To this end, let ri, >_ 1, be the subsequent times (if any) in (0, c) where A is dis-
continuous. Set Di: A(T and Si: A(Ti), >_ 1, and note that for y [Di, Si)
we have: A{0}ory=Si-Dland A(0) ory-Si-y. For y[Dl,O) but youtside
the intervals [Di, Si) we have: h{0} o V-0

Let B, C E N([0, c)). By Theorem 3.2 we obtain on one hand, that

PA(A{0} e (C N (0, o)) and A(0)e B)
S

=nlirnE (l(h{o} e c) o ry. l(h(o e B) o ry)dy
D

lim E -n I(Si- D e C)" 1B(S)ds
0

while on the other hand,

I /{o}1EA l(h(o} (c n (0,)))"A{i)}
0

1B(S)dsI
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S Si-D

--nlimE -n" 1(S D e C) i Di
D 0

1B(S)dsdy

1 1 c) 1 (s)ds=limE (Si- Di e B
0

The corollary follows immediately. [-I

Proof of Theorem 3.3: By (3.1) and the last equality in Lemma 2.2, part (a)
follows immediately from (3.8). Since PaOo,o)- Ph, we obtain with (a)that

P(A f (A{O) 0)) PA((O(,10)A)f (A{O) 0)) PA(A (A{O) 0)).

By part (a) and again by Lemma 2.2, we have

Eo 1 1 ordx.1 o)A{0} A (A(0) >

A{A’(y))1A o y. I(A{A,(y)} > o)dYI
since A’(y)- 0 for all y e (A(0-),h(0)). By Fubini’s theorem and Theorem 3.1, this
last expression is equal to

)AO)IEA 1A n (A{0} > 0 A(0- o
-y < y < A(0) o ? y))dY

1A c (a{0} > 0)" Leb{y E IR: A(A’( y) < 0 < A(A’( y))})
PA(A N (A{0} > 0)).

(Here Leb represents Lebesgue measure.) Part (b) follows.
Proof of Theorem 4.2: Starting with P(A), we use inversion of PA into P as

expressed in Theorem 4.1 and then we apply Theorem 3.3(b). Splitting the resulting
P-expectation into two parts according to whether A{0) 0 or A{0) > 0, only the
second part, i.e.,

/E0 1 1
A{0}

h{o} o

a’(1 + x)

1A o Otdtdx. I(A{0} > 0)/,
needs some arguments. Since A’(1 + x) 0 for all x with A{O} < x < 1 (if any),
we can restrict the outer integral. Concerning the inner integral, note that there are
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at most countably many t where A(. ,w) is discontinuous; we omit them. Note also
that the remaining t satisfy A’(1 / x) >_ tiff A(t)

_
1 + x. Applying Fubini’s theorem

to the resulting expression, we obtain"

Eo 1 1 1A o 0 1 (x)dxdt. 1 o)A{0} - [A(t) 1, o) (A(0} >
0 -(h{0} ^1)

E0 l1 1/A{0}
0

’(1-)

(A{0} A (i A(t))) 1A o Otdt. I(A{o} > o) I.
The theorem follows by noting that for all t e(A’(1-,w), A’(1,w)), we have:
1- A(t,w)-0.
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