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1. Introduction

In this paper we are interested in the following system of stochastic differential
equations"

dX b(t, Xt, rt, Zt)dt + r(t, Xt, Yt, Zt)dWt + dot,
dY h(s, Xt, YtZt)dt ZtdW + d(t t G [0, T],

XO-x, YT--g(XT),

(1.1)

where and are two adapted processes with bounded variations, which are the re-

flectin processes that keep X and Y from leaving certain prescribed regions, respec-
tively. Since the second equation is determined by its terminal value at T, it is
known as a backward stochastic differential equation, for which the process Z has to
come into play. For this reason, we call system (1.1) a forward-backward stochastic

differential equation with reflections (FBSDER for short) throughout this paper.
The amount of literature on the backward and forward-backward stochastic differ-

ential equations (BSDE and FBSDE) has exploded since the initial works of Pardoux
and Peng [15] and Antonelli [1]. We refer the readers to Ma, Protter, and Yong [14],
Hu and Peng [12], Yong [18] and Pardoux and Tang [17] for different techniques
developed thus far for solving FBSDEs. Recently, efforts have also been made to in-
vestigate BSDEs with state constraints, among others are BSDEs with reflections.
For references in this regard we refer to E1 Karoui et al. [8], Cvitani and Karatzas [5]
for one-dimensional BSDERs; and to Gegout-Petit and Pardoux [10] and Pardoux
and Rascanu [16] for higher dimensional BSDERs.

The FBSDERs considered in this paper have the following features: the forward
component of the solution will live in a fixed, convex domain; while the backward
component lives in a convex domain that is allowed to move, even randomly. We
note that although in this paper we contend ourselves only to the FBSDEs in which
the backward equation is one-dimensional, our method is general enough to cover

many higher dimensional cases, as long as both forward SDER and backward SDER
are separately solvable. It should be pointed out here that in the reflected FBSDE
case, the frequently used methods in FBSDE literature (e.g., the Four Step Scheme
by Ma, Protter and Yong [14] and the method of continuation by Hu and Peng [12]
and Yong [18] do not seem to apply. Therefore we will return to the most primitive
technique: the method of contraction mapping, in the spirit of Pardoux and Tang [17]
with some modifications. We should note, however, that in case the backward SDE
is higher dimensional, the characterization of moving domains becomes more subtle,
and extra conditions might be needed. We plan to address this issue in future work.

Another topic of this paper is to relate FBSDERs to a class of quasilinear variation-
al inequalities. More precisely, in the case when all the coefficients are of Markovian
type, we show that the adapted solution of an FBSDER gives a probabilistic repre-
sentation of the unique viscosity solution to a variational inequality with Neumann
boundary conditions. An interesting but not surprising application is the connection
between the solvability of such FBSDERs and optimal stopping problems. In par-
ticular, combining the results of Cvitani and Karatzas [5] on Dynkin Games and the
solvability of FBSDERs derived in this paper we can study a class of option pricing
problems in which the underlying market involves large investors as proposed by
Cvitani and Ma [6] and later by Buckdahn and Hu [3]. The option under study is of
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American type, but, unlike the standard American option, both parties are allowed to
choose the exercise time. We call it an American game option, and the minimum
hedging price of such an option is found in terms of the adapted solution to a suitable
FBSDER.

The paper is organized as follows. In Section 2 we formulate the problem and
introduce all the notations. In Section 3 we state the main results. The American
game option is presented in Section 4. Finally, Sections 5, 6 and 7 are devoted to the
proofs of the results stated in Section 3.

2. Formulation of the Problem

Let (, , {t}t > 0, P) be a complete filtered probability space on which is defined a

d-dimensional andard Brownian motion W {Wt:t > 0}. We assume that
{t}t > 0 is the natural filtration generated by W, augmented by all the P-null sets.

Thus,-{t}t > 0 satisfies the usual hypotheses.
ThroughoUt this paper we will make use of the following notations: Let = be any

Euclidean space; denote
for any sub-a-field
valued square-integrable random variables;
LF(0, T;: to be the set of all :-valued, {5t}-progressively measurable pro-

T 2X, such that Ef oce2ssesL(; C(0, T; :)) C LZ(0, T; [) to be the set of all :-valued, continuous,
{*Jt}-progressively measurable processes X, such that
E suPt e[O,T]]Xt] 2

BV(O,T;E to be the set of all E-valued, continuous, {t}-progressively
measurable processes whose paths are of bounded variation, and 0 0.

Define for any x E 001,Let O1 be a convex, closed set in n, with boundary 001.
the set of inward normals to 01 at x by

.N.x((l) z {7: [’)’l 1, and (7, x- y) _< 0, Vy E (1}"

Next, consider a moving interval 02(w t,x)= [L(w, t,x),U(w, t,x)], where both L and
V are continuous random fields such that L(w,t,x) < V(w,t,x), V(w,t,x) x
[0, T] x ]{n. We say that L (or U) is an It’5-process with parameter x if

 )(or
0 0

where J and K are measurable random fields, such that for fixed x, J(.,.,x)
L(0, T;R), and K(.,., x) L(0, T; d), respectively. Clearly, if L and U are C2 in
the x variable, then for any It6 process -{t:t [0, T]}, the composition
L - i(t, t), Ut & U(t, t), [0, T] are also It6 processes, thanks to the It6-Ventzell
formula. We shall call such L (or U) an It’5-process with parameter x of class C2.
Now let (1 and C2(w t, x) [L(w, t, x), U(w, t, x)], (w, t, x) x [0, T] x Rn be

given. Consider the following FBSDER: for [0,T],



116 JIN MA and JAKA CVITANI

X x + /b(s, Xs, Ys, Zs)ds + / r(s, Xs, Ys, Zs)dWs +
0 T 0 T

+ f f +

In light of the structure of FBSDEs and SDEs with reflections, we now give the
definition of the adapted solution to an FBSDER.

Definition 2.1: A quintuple of processes (X, Y, Z, /, ) is called an adapted solution

of FBSDER (2.2) if
(1) (X, Y) e t(, C(O, T;n )), Z e L(O, T; Rd), (1, ) e BYe(O, T; Rn x

);
(2) X E 01, Yt O2(’, t, Xt), Yt [0, T], P-a.s.;

07d s,(3) 10It f)lool(x,)dlol,; ot f Vt E [0, T],-a.s. for some

progressively measurable process 7 such that 7s x,(O),d r I-a.e.;
(4) for any continuous and progressively measurable process p such that Pt

O2(t Xt,. ), Vt E [0, T], P-a.e., one has (Yt- Pt, dfft) < O, Vt [0, T], P-
a.e.;

(5) (X, Y, Z, r/, ) satisfies SDE (2.2) almost surely.
We remark that Definition 2.1 (3), combined with (2.1), implies that for any

process K {Kt:t >_ 0} with RCLL paths such that Kt , Vt, P-a.s.,

f <Xs Ks, drls / <Xs K, 7(s)>lo(7(Xs)d[rl < O,
0 0

Vt [0, T], P-a.s.

Throughout this paper we shall make use of the following standing assumptions on
the domains O1, (2 and the coefficients of the FBSDER (2.2). we note that some of
the conditions are made stronger than necessary for the sake of simpler presentation.

(A1) (i) (1 has a smooth boundary, and 0 l1.
(ii) L and U are both It processes with parameter x of class C2 such

that for P-a.e. w f2, we have 0 (L(w,t,x), U(w,t,x)), V(t,x)
[0, T) x Rn, and L(w, T, x) < g(w, x) < U(w, T, x), Vx.

(iii) The coefficients b,h,r, and g are random fields defined on [0, T]
n X X Rd such that for fixed (x, y, z), the processes b(.,., x, y, z),
h(.,., x, y, z), and r(.,., x, y, z) are {t}-progressively measurable,
and g(. ,x) is T-measurable.

(iv) For fixed (t,x,z) and P-a.e. , h(, t, x, z) is continuous, and there
exists a constant K > 0 such that h(w, t, x, y, z) < K(1 + Ix +
Y ), for all (w, t, x, y, z). Moreover,

T T

E/ b(t,O,O,O) dt + E f [r(t,O,O,O) 12dt+EIg(O)l 2

0 0

There exists constants ki_> 0, i-1,2 and 7 such that for all
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A A Rn Rd(t, w) E [0, T] x and x (x, y, z),x (xi, Yi, zi) x x
i- 1,2, and x A_ (x,y) for x- (x,y,z).

16(, ,x) 6(, ,x) < K I, x I;
<h(, , ,, z) (, , ,, ), 2) < 71 212;

h(c0, t, Xl, y, Zl)- h(w, t, x2, y, z2) < K(lxI x2l -+- Zl z2l);
tr(w,t,xl)- r(w,t,x2) 2 < K21xI- x] 2 -4- klz1 2212;

g(W, Xl)--g(a,X2) __< ]21Xl--

(2.4)

To end this section, let us introduce some spaces that will be used in the future.
We shall denote, for t e [0, T), tI(t, T)- L(t, T;), and let tic(t, T) be the subset of
tI(t,T) consisting of all continuous processes. For any A G , define an equivalent

1

on
/x /x

norm H(t,T) by: II II t, {E T s, 2
/te i(s) ds}. Then HA(t,T)- {

r,(t,T)l.I II t, < ) n(t, T). We shall also use the following norm on HC(t,T):
A -ATE 2Ilt, x, -e Izl /l[llt,, HC(t,T), AE, fl>O,

and denote by H (t,T) the completion of HC(t, T) under norm -/,,. Then for
any A and /, Ha(t,T)is a Banach space. Further, if t=0, we simply denote
/|- A 2 A 2 c"11o,; I.’1,= I" o, x,; r,=n(0,T); H =H (0,T);
and IIA, 3 IIA, (, T).

3. Statements of Main Results

In this section, we state the main results of this paper. The proof of these results will
be carried out in the remaining sections. Let us first introduce some notations: for
any , c (0, 1), and constants C1,... C4 > 0,

1

A($, t) e (A ^ o)t; B(, t) 1 ..-e At
t /" e AtOdO,

0

1 " --/-t’(2 -[- C1"" 1 _[_ C2-1) _/.(2; 2 ’ 2’ -/-t’(C3- 1 _[_ C4-1 ),
(3.1)

and
#(c, T) A_ K(C1 -4- K)B(2, T) A-

A(A2, T)(Kc + ). (3.2)

Clearly, for all A Nn, B(,.) is a nonnegative, increasing function, B(A,0)= 0;
A(A,t) > 1 and A(A,0)= 1. Further, the function #(.,.) depends on the constants
K, kl, k2, 7, A, c, the duration T > 0, and the choice of CI,...,C4.

One of the main ingredients of our discussion involves the following relations
among the parameters introduced above which we will call compatibility conditions in
the sequel.

(C1) 0<kl, k2<1;
(C2) k2-0; 3a(0,1) suchthat (a,T)KC3<;
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KC3(C3) k2>0; c0e(kl,k2,1),suchthat#(a,T)k<l andS1-- k
Theorem .1: Assume (A1). Assume also that the compatibility conditions (C1),

and either (C2) or (C3) hold for some choices of constants A, a, C1, C2, C3, and
2

64
1 -a0
g Then the FBSDER (2.2) has a unique adapted solution over [0, T].

Furthermore, the process is absolutely continuous with respect to the Lebesgue mea-

sure, and for any RCLL process V such that V O2(. t, Xt) Yt [0, T], P-a.s., we
have

(ff, Yt Vt) <- O, Vt E [0, T], P-a.s. (3.3)

Moreover, if the compatibility condition (C1) holds, then there exists TO > 0 such
that for all T E (0, T0], the FBSOER (2.2) has a unique adapted solution. In particu-
lar, if either k1 = 0 or k2 O, then the FBSDER (2.2) is always uniquely solvable on

[0, T] for T small.
Remark 3.2: The compatibility conditions (C1)-(C3) do not contain the case when

the duration is arbitrary. However, by combining the methods of this paper
(Theorem 3.1) and that of Pardoux and Tang [17], it is not too hard to prove that
under the compatibility condition (C1), there exist a constantA > 0, depending only
on the constants K, hi, k2, such that whenever 7 < -A, the FBSDER (3.2) has a
unique adapted solution for all T > 0. We omit the details.

Remark 3.3: Let us denote (-( + -(-, (0+ -(0- -0, the minimal decomposi-
tion of as a difference of two non-decreasing processes. By replacing V in (3.3) by

respectively, we obtain

(Yt Lt, dt+ O, (Yt Ut,d O, Vt [0, T], a.s. (3.4)

Let us now consider the FBSDER (2.2) over a subinterval [t,T] C_ [0, T].
words, for t _< s _< T,

In other

Clearly, Theorem 3.1 remains true if we replace T there by T- t. We denote its solu-
tion by (xt’x, Yt’x, zt’x, rlt’x,(t’x). Moreover, we shall need a further assumption:

(A2) The coefficients b,h,r,g, and the moving boundaries L and U are all deter-
ministic. The function r does not depend on z; and the functions b and h
are differentiable in z.

Since under (A2) the coefficients of (3.5) are "Markovian", the standard technique
of "time shifting" can thus be used to show that the process {Yts’x}s >t is aYts-adapt-
ed, where ts -r{Wr, t _< r < s}. Consequently, by nlumenthal 0-1 lav, the function
u(t,x)- y,x is deterministic. The following "continuous dependence" result is not
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surprising.
Theorem 3.4: Assume (A1) and (A2). Assume also that the compatibility condi-

tions (C1) and either (C2) or (C3) hold. Then the function u(t,x)-y,x, t e
[0, T] O1 is continuous and enjoys the following property:

tt(tl,Xl)- tt(t2, x2) 2

_
C( Ix1 x2

2 -t-(1 + IXl 2 V Ix2 2) tl t2 ),
where C > 0 is some constant depending only on b, h, (r, g and T.

The next theorem concerns the connection between the adapted solution of an
FBSDER and the viscosity solution to a variational inequality, for which we shall
assume in the sequel the solvability of (3.5) whenever it is mentioned. Further, let us

denote 5(n) to be the set of n x n symmetric nonnegative matrices, and for p E Rn,
Q E f(n), define

F(t, x, u, p, Q) - 21-tr{rrT(t, x, u)Q + (b(t, x, u, r(t, x, u)p), p)

+ h(t, x, u, a(t, x, u)p).
(3.7)

Consider the following two variational inequalities (or obstacle problems) with
boundary conditions: denoting Du V u (Oxlu,...,OXnU)T D2u (02xixjU)i,j
(the Hessian of u), u Otu; and a A b _A min{a, b}, a V b _A max{a, b},

(u L) A {(u U) A u F(t, x, u, Du, D2u)]} 0,

tt(T,x) g(x), x e I11; (n(x),Du) O, x e 00
(3.s)

and

(u-U) V{(u-L)A[-ut-F(t,x,u, Du, D2u)]}=0,
tt(T,x) g(x), x e O1; (n(x), Du) O, x e O01.

(3.9)

Observe that if a,b E N such that a >_ b, then for any c G N, a A (b V c) b V (a A c).
Therefore, (3.8) and (3.9) are equivalent, because L(t,x)<_ U(t,x)for all (t,x). This
observation will facilitate our discussion quite a bit in Section 6 in the proof of
Theorem 3.8 below.

Definition 3.5: Let u e C([0, T] x Ill) and (t, x) e [0, T] x ll1. The parabolic super-
jet (rasp. parabolic subjet) of u at (t,x), denoted by ’ + u(t,x), (rasp 2,-u(t,x)),
is the set of triples (p, q, X) R x Un x S(d) such that for (s, y) E [0, T] x 01,

u(s, y) <_ (rasp. > )u(t, x)+ p(s- t) + (q, y- x)

+1/2(x(-.),-.)+o(l-tl + I-1).

Definition 3.6: A function u e C([0, T]xO) is called a viscosity sub-(resp.
super-) solution of (3.8) or (3.9), if u(T,x) <_ g(x) (resp. u(T,x) >_ g(x)), Vx G 1; and
for any (p, q, X) e z22’ u(t, x) (resp. p2, + u(t, x)), we have
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(tt-L) A{(u-U)V[-p-F(t,x,u,q,X)]} _< 0,(t,x) [0, T]x(I;
<n(x),q> A {(u- L) A {(u-U) V[-p-F(t,x,u,q,X)]}} <_ O,

(t, X) [0, T] x (1

(3.10)

(resp.

(u U) A {(u L) V p F(t, x, u, q, X)]} < 0, (t, x) [0, T] x O;
(n(x),q) Y ((u-U)Y ((u-U) A[-p-F(t,x,u,q,X)]}} > O,

(, x) [0, T] x 0(1.

(3.11)

Finally, u is a viscosity solution to (3.8) (or (3.9)) if it is both a viscosity subsolution
and a viscosity supersolution.
We shall use the following equivalent definition of a viscosity solution often.
Definition 3.7: A function u C([0, T]xO1) is called a viscosity sub- (resp.

super-) solution of (3.8) (or (3.9)), if u(T,x)< g(x) (resp. u(T,x)> g(x)), Vx E (31;
and for any E CI’2([0, T]xO1) such that whenever (t,x) [0, T-x(31 is a global
maximum (resp. minimum) of u- , we have, suppressing dependence on (t,x),

(u L) A {(u U) V t F(t, x, u, nT, D2T)]} < 0,

(n(x),Dcfl) A {(u- L) A {(u-U)V[-t-F(t,x,u,D,D2)]}}
_

O,

(t, X) ( [0, T] x 0(1

(resp.

(u- U) V {(u-L) A[-Pt-F(t,x,u,D,D2)]}
_
O,(t,x) [0, T] x O1;

(n(x), D)V {(- U) V {(u-L)^[-t-r(t,x,u,D,D:)]}} >_ 0,

(t, X) [0, T] x O(l.

Finally, u is a viscosity solution to (3.8) (or (3.9)) if it is both a viscosity subsolution
and a viscosity supersolution.
We then have the following theorem.
Theorem 3.8: Assume (A2) and the conditions of Theorem 3.1. Suppose that for

a given time duration [t,T] the FBSDER (3.5) has an adapted solution (Xt,x,Yt,x,
A t,xZt, x, tit, x, ct, x). Then the function u(t, x) Yt (t, x) G [0, T] x (11 iS a viscosity

solution of the variational inequality with boundary condition (3.8) (or equivalently
(3.9)). Furthermore, if the coefficient r is independent of y as well (i.e.,
r--r(t,x)), then the viscosity solution of (3.8) is unique among those that satisfy
(3.6).

4. An American Game Option

Before we go into the technical proofs of Theorems 3.1 and 3.8, let us look at a poss-
ible application of FBSDERs in option pricing theory.
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Let us assume that 01 -Rn (i.e., no reflection of X). Denote by Jtlt, T the set of
{5t}-stopping times taking values in It, T]. In light of Cvitani and Ma [6], we
interpret X in (2.2) as a price process of financial assets; Y and Z are the wealth
process and the trading strategy, respectively, of a "large" investor in the market in
the sense that both Y and Z might affect the price X. We note that such an
interpretation should only be used up until the first time we have d < 0, when the
external funds are brought in, contradicting the conventional "self-financing"
assumption.

The American game option can be described as follows. Unlike the usual Ameri-
can option where only the buyer has the right to choose the exercise time, in game op-
tion the seller (the large investor) has the same right as well. However, in order to
get a nontrivial option (i.e., to avoid immediate exercise being optimal), it is required
that the payoff be higher if the seller opts to force the exercise. Of course, the seller
may choose not to do anything, then the game option becomes the usual American
option. To be more precise, we let v < T be the (random) time the buyer chooses to
exercise the option; and r < T be that of the seller. If 7 _< r, then the seller pays
L(r, Xr); if r < r, then the seller pays U(r,Xr). If neither exercises the option by
the maturity date T, then the seller pays B- g(XT). We define the minimal hedging
prices of this contract to be the infimum of initial wealth amounts Y0, such that the
seller can deliver the payoff, a.s., without having to use outside funds. In other
words, the wealth process has to follow the dynamics of Y (with d( >_ 0), up to the
exercise time r A v A T, and at that tie

Ya ^ r ^ T -- g(XT)l(a ^ r T} + L(r’Xr)l(r < T, r <_ a} -t- U(a, Xa)l(a < r} (4.1)

must hold. Our purpose is to determine the minimal hedging price, as well as the cor-

responding minimal hedging process.
In order to solve this problem, we first reformulate it as the following stochastic

(Dynkin) game: for any fixed 0 <_ t <_ T, two players both have the right to choose a

time, say, r,v E "&t,T, respectively, to stop the game. If player I stops the game
first, i.e., r < r, he/she pays U(r) to player II. If player II stops first, r _< a < T,
player I pays L(r). If no one stops by time T, player I pays B. There is also a

running cost h(t). In other words, the payoff player I has to pay is given by

A"

RtB(r, r) A_ / h(u)du + Bl{a ^ r T} + L(v)I{r < T, r _< a} + U(a)l{a < r}, (4.2)

where B E L2(ft) is a given 5T-measurable random variable satisfying L(T)<_ B <_
U(T). Suppose that player II is trying to maximize the payoff, while player I
attempts to minimize it. Define the upper and lower values of the game by

(t) A_ essinf esssup E{RtB((r, v) lfft}
EIt,T rElt,T

If_ (t) A_ esssup essinf E{RtB((r,r) zJt},
r E t,T ( "]t,T

respectively; and we say that the game has a value if (t) _V (t) A_ V(t).
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The following theorem can be proved exactly as Theorem 4.1 in Cvitani and
Karatzas [5], after recalling (3.4). We give only the statement.

Theorem 4.1: Suppose here exists a solution (X,Y,Z, rl,() o FBSDER (2.2).
Then the game (4.2) with B- g(XT) h(t)- h(t, Xt, Yt, Zt), and L(t,w)-
L(t, Xt(w)) U(t,w)- V(t, Xt(w)) has value Y(t), given by the backward component Y
of the solution to the FBSDER, i.e., Y(t) Y (t) V_ (t) Yt, -as., for all 0 <_ t <_ T.
Moreover, there exists a saddle-point (t, t) E Jt,T x At, T, given by

A
inf(sr E It, T)" Ys U(s, Xs)} A T,

?t" -inf(x It, T)" Ys L(s, Xs)} A T,
(4.4)

namely, we have

E{R(XT)(t, v) t} _< E{R(XT)(t,

Yt <- E{R(XT)(a, t) zSt}, a.s.
(4.5)

for every (r, v) Jt, T x Jt, T"
Our main result of this section is the following.
Theorem 4.2: The minimal hedging price of the American Game Option is greater

or equal to Y(O), the upper value of te ame (art-O) of Theorem 4.1. /f the cor-

respondin...g FBSDER has a solution (X,Y,Z,), then the minimal hedging prices is
equal to Yo"

Proof: Fix the exercise times r v of the seller and the buyer, respectively. If Y is
the seller’s hedging process, it satisfies the following dynamics for t <_ v A r A T:

0 0

with ( non-decreasing. Hence, the left-hand side is a supermartingale From this and

the requirement (4.1) that Y be a hedging process, we get Yt >- E{R(XT)(, v) lt},
Vt, -a.s. in the notation of Theorem 4.1. Since the buyer is trying to maximize the
payoff, and the seller to minimize it, we get Yt >-Vt, Vt,-a.s. Consequently, the
minimal hedging prices is no less than V (0).

Conversely, if the FBSDER has a solution with Y as the backward component,
then by Theorem 4.1, process Y is equal to the value process of the game. By (4.4)
(with t-0) and (3.4), t is nondecreasing for t_< 0" Therefore, for t less than the
optimal exercise time for the seller -if0, Y obeys the dynamics of a wealth
process. So, the seller can start with Y0, follow the dynamics of Y until t " and
then exercise, if the buyer has not exercised first. In general, from the saddle-point
property we know that for any v dill0, T,

> g(XT)I{ T} + L(r X )1{ + U(, 1{
This implies that the seller can deliver th required payoff if he uses " as his exercise
time, no matter what the buyer’s exercise time v is. Consequently, Y0- V(0) is no

less than the minimal hedging price. [-!
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5. Proofs of Theorem 3.1 and 3.4

We start by establishing some a priori estimates. The following lemma is a variation
of a similar one in Pardoux and Tang [17]. Since no proof was given there and in the
present case, the reflection processes have to be considered, we shall provide a short
proof for completeness.
Lemma 5.1: Assume (A1). Let.(X, Y, Z, r], ) and (X’, Y’, Z’, r]’, ’) be two solu-

tions to the FBSDE (2.2), and let - ’, where X, Y,Z, rl, , respectively.
(i) Let ) G ,, C1, C2 > O, and let -1 A K(2 + C1-1 + C2- 1) K2. Then,

for all A’ E ,
0

(5.1)
_
/ e- "kre- X’(t- -){/((C1 + K)E 12 / (KC2 + k)EI2.
0

(ii) Let and C3, C4 > O, and let X2 A 2"7 K(C 1

__
C(1). Then,

for all A’ N,
T

T

+ (1 KC4) f e- re ’(r -t)Ei2r ]2dr

T-r ’(r- t) 2r + gca f -%-’( 1. a.

(5.2)

Consequently, if KC4 1- c for some c G (0, 1), then

TEITI2 + 1 II 2 [[ _< K(C1 + K)II II + (KC2 + k2) I[ 2 II 2, (5.)

II II B(-I, T)[K(C1 + K)II f II + (KC2 + k)II 2 II ], (5.4)

(5.5)

(5.6)

Proof: We first show (5.1). Let IX, Y,Z,r],() and (X’,Y’,Z’,rf,’) be two
solutions to the FBSDE (2.2), and let - ’, where X, Y,Z, q, , respectively,.
Let t (0, T], A,A’ be arbitrarily given, and consider the function Ft(s,x
e-)’%-)’(t- s) x ]2, for (s,x) [0, t] n. Applying It’s formula to Ft(s 2s)
from 0 to t, and then taking expectations, we have

e- tE 2t 2 + (A A’)E / e- e- A’(t- r) r 12d7.
0
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= / e-)re-)’(t-r){2(2r, b(r, Xr, Yr, Zr)-b(r,X’r,Y’r,Z’r)) (5.7)
0

0

Since Xt, X (1, Vt ( [0, T],-a.s., by (2.3) we have (Xt, dr

_
0 (as a signed mea-

sure), /s [0, T],-a.s. Therefore, repeatedly applying the Schwartz inequality and
the fact that 2ab

_
ca2 4- c-lb2, /c > 0 to the right side of (5.7), using the definition

of A1, together with some elementary computation with the help of (A1),we derive
(5.1).

The estimate (5.2) can be proved similarly by applying It6’s formula to Et(s, Ys)
from t to T, where t(s,x)-e-)se-)V(s-t)lxl2 using Definition 2.14, and some
by now standard estimates for backward SDEs. We omit the details.

Finally, setting A’-0 and t- T in (5.1) we have (5.3); while setting A’-1 in
(5.1) then integrating both sides from 0 to T (noting that B(A,. is increasing), we
obtain (5.4). Similarly, setting A-A2 in (5.2) and integrating from 0 to T we get
(5.5). In order to prove (5.6), we note that if A2 - 0, by setting ’- 2 and t-0 in
(5.2) we get (remember k4C4

IA2IT.(le-XTE T 2 + KC3 [J JJ }.
llk2e-XTE 2If 2>2, then we let ’-0 in (5.2) to get IIZIl-t 2

KC3 ]] X ]] I}, and (5.6) thus follows. [-!

Similarly to Lemma 5.1, we can derive an a priori estimate for an adapted solution
to FBSDER (2.2). Denote (w,t) r(w, t, 0, 0, 0), f(w, t) f(w,t,O,O,O),
h(w, t) h(w, t, 0, 0, 0), and g(w) g(O, w). Then we have
Lemma 5.2: Assume (A1). Let (X,Y,Z, zl,) be an adapted solution to the

FBSDER (2.2). For any A,A’E , e>0, C1,...,C4>0 we. define
K2)g and -eA2 2- , where 1 and 2 are those defined in Lemma 3.2. Then

e- XtE Xt 2 4- ( -,’) / e-’V(t-r)e- )SE Xr 12dv
_

e

o

+ f e x’(t r)e xl 2 2
e. f(r) +(1 +el---),o’(r)[ )

0

+ K(C1 + K(1 + e))EIY [2 + (KC2 + k2(1 + e))EIZ 12 }dr

(5.s)

and
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T

e- tE Yt 2 + (- A’) / e- ’(=- t)e-E Y. [2dr
T

+ (1 k4C4) / - ,k’(r t)e XEI z 12dr

<_ k22(1 +>e-’(T-t)e-TE XT 2 +(1 +gl)e-’(T-t)e-)TE [gOI2

T

/ / e-A’(r-t)e-Ar{KC3E Xrl

Consequently, if C4 1 (x

K for some c (0,1), we have

-e 2 2"XTEIXTI2 / "1 II x II , _<[I //t’(c1 / K(1 / ))I[ Y [I ,x

+ (-c: + (1 + >> II I1 + I +o lx +( + )II o II
(5.10)

II x II 2 < B(- T)[Ix 2 + K(C1 + K(1 + e))II Y II 2

+ (.-c: + 1=( + / II I1 + II o I +(1 + )II o 1
(5.11)

II Y II < B(, T)[k(1 + e)e- "XTEIXTI2 / KC3 II X II 2,
+(1 + 1}_.o+111 o II , (5.12)

A(A’T)[k(1 + z)e- TE XT 2 + KC3 II X II
-4-(l/lg)e-TEIg12/lgllhll2].

(5.13)

Proof of Theorem 3.1: We introduce a mapping F" tlCHc defined as follows: for
fixed x E Nn, let " A_ F(X) be the solution to the FSDER:

0 0

(5.14)

where the processes Y and Z are the solution to the following BSDER:

T T

Yt- g(XT) + / h(s, Xs, Ys, Zs)ds- / ZsdWs/ T--t" (5.15)

We note that the assumption (A1) on the random fields L and U and the coefficients
enables us to apply the result of Cvitani and Karatzas [5] to conclude that the
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BSDER (5.15) has a unique solution (Y,Z,() such that (3.3) hold. This in turn
guarantees the existence and uniqueness of the adapted solution X to the FSDER
(5.14) (cf. e.g. Lions and Sznitman [13]). Furthermore, by definition of (Lemma
5.2) we see that if A is chosen so that A1 > 0, then it is always possible to choose
> 0 small enough so that A > 0 as well and (5.10) will lead to X Ett sinceX,1

A1>0 and A>0. Let us try to find a suitable A1>0 so that F is a contraction on

tI,,$1, which will lead to the existence and uniqueness of the adapted solution to the

FBSDER (2.2) immediately.
To this end, let X1, X2 E ]1(: and let (yi, Zi, i) and (i, i), 1, 2, be the cor-

responding solutions to (5.15) and (5.14), respectively. Denote A- 1_ 2, for -X, Y,Z,X. Applying (5.3)-(5.6) (with C4 -)- we easily deduce that

(, T){/e-TEIAXTI2 + KC3 II AX 1]
(5.16)

Now fix 64
leads to

where #(c, T)is defined by (3.2).
1 cg

First assume that (C1) and (C2) hold.K Since k2 0, (5.16)

A1
Since we can find C1,C2, C3 and c (0,1) so that #(o,T)KC3 < 1, F is a
contraction mapping on (H, I1" II .x)" Thus the first part of the theorem follows in
this case.

Similarly, if (C1) and (C3) hold, then we can choose A in (3.1) so that A1
KC3/k, and then derive from (5.16) that

lAX < (o, T)k AXxo, xo,.
Let Ci, i- 1,2,3 and c0 (klk2,1) be such that #(og,T)k < 1. The mapping F is
again a contraction, but on the space tl,x,$1, proving the first part of the theorem
again.

To prove the last assertion of the theorem, we again assume k2 0 first. For fixed

C1, C2, C3,) and a e (0,1) we have from (3.2)

o)gc 
(gc +

0[.

Therefore, with CI, C2,C3 and a fixed, we can choose large enough so that
#(a,o)gc3 < 1" Then, by the continuity of the functions A(a,. and B(c,. ), for
this fixed A we can find TO > 0 such that #(a,T)KC3 < 1 for all T (0, To]. thus
(C2) holds for all T e (0, To] and the conclusion follows by the first part of the theo-
rem.
Now assuming k2 > 0. In this case we pick c0 (klk2, 1), and define

5_ 1 k
k22 cg > O. (5.17)
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Let C2 5-’ C4
have

and choose A so that 1- (k3C3)/k > O. In this case we

#(a2o, O) KC2 + k 1 k 1

thanks to (5.17). Using the continuity of #(a02, again, for any C1,C3 > 0 we can
find T0(C1, C3) > 0 such that #(c,T)k22 < 1 for all T e (0, To]. In other words, the
compatibility condition (C3) holds for all T E (0, To], proving our assertion again.

Finally, if k1 -0 then (C1) becomes trivial, and the conclusion follows. [:l

Proof of Theorem 3.4: Let (tl,Xl) and (t2, x2) be given. For - X, Y,Z, let
ti’xi, i- 1,2 and -1_ 2. Assume first t1 _> t2, and recall the norms I1"

and ]t,),fl at the end of Section 2. Repeating the arguments of Theorem 3.1 over
the interval [t2, T], we see that (5.5) and (5.6) will look the same, and I1" II .x being
replaced by I1" II t2,A; but (5.3)and (5.4) become

e- TEI2TI + 1 [[ " [[ 2
tl,A

< K(c1 + K)[[ [[ 2
t2,A + (KC2 + k21)[I [I 2t2,A + E lXt212

II II 2 < (1 T)[K(C1 + K)II II 2
t2,A t2, A

where (A, T) A_ e
At2

],+ (KC2 + k)I[ II 2, + E[2t
-AT-e Now similarly to (5.16) one shows that- TEI2TI2 + 1 ][ 2 II 2

t2, A

_< #(, T){ke- TE 2T 2 / KC3 II 2 II ,} / E IXu^ [2
(5.16)’

Arguing as in the proof of Theorem 3.1 and using compatibility conditions (C1)-(C3),
we can find a constant C > 0 depending only on T > 0 and K, kl, k2 such that

t2 ), < CE Xt2 2 CE x2 x 2

t2 (5.18)

where/3 1 #(a, T)KC3 if ]:2 0 and/3 (a, T)k if k2 > 0.
From now on by slight abuse of notation, we let C > 0 be a generic constant

depending only on T,K,k1 and k2 and it is allowed to vary from line to line.
Applying standard arguments using Burkholder-Davis-Gundy inequality, we obtain

E
t2 _<sup< T IXlU+E _<sups<_ T IYsl2 -<CEI Xt2 I" (5.19)

To estimate E[t212 let us recall the parameters A and A[ defined in Lemma

5.2. For each > 0, define

A(A,T)Kcp(a, T) & K(CIK(1 + ))B(A, T)+ 1-KC 2"
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Since ’1’ eA2--,A2, and #(a,T)--#(a,T), as e--0 if the compatibility condition

(C1) and either (C2) or (C3) hold, then we can choose e>0 such that
#(a, T)k22(1 + e) < 1 when k2 -0 and #(a, T)KC3 < A when k2 - 0. For this fixed
e > 0 we can then repeat the argument of Theorem 3.1 by using (5.10)-(5.13) to
derive

or

1 #(.,T)k XII 2 <C(e) Ix 2
A,f-- 1 + 1+ k20

where C() is some constant depending on T,K, kl, k2 and . Since > 0 is now

fixed, in either case we have, for a generic constant C > 0, [ X1 ] C(1 + Ix1] 2)
which in turn shows that, in light of (5.10)-(5.13), [ Y ]] C(1 + ]Xl]2), and
]] Z ]] C(1 + Xl] 2). Again, applying the Burkholder and HSlder inequalities we
can then derive

<_s<_TsuP X,2)-}-E {$1 <_s<_Tsup Y]]2} C(1-}-] Xl,2). (5.20)

Next, note that on the interval [tl, t2] the process (X, Y,Z) satisfies the following
SDE:

$

I 1
2 2

s E It1, t2], (5.21)

1 (r 1 11 l_h(r 1 1Zlr)"where blr b(r, Xlr, Ylr, zlr) err-or Xr, Yr, Zr) and hr Xr, Yr,
from the first equation of (5.21) we easily derive

E { sup
I _< s <_ 2

Now

Combining this with (5.19), (5.20), as well as the assumption (A1) (iii), we derive
from the second equation of (5.21)

E[I 2 E t212-i-C(1+ Ix1 12V la212) I1-t21
<__ C{Ix1 X2I 2 -]- (1 -}- IX112 v 2)  21}.

Since Y(tl) (tl, Xl) l($2, X2) is deterministic, (3.6) follows. The case when tl _<
2 can be proved by symmetry, and the proof is complete. V1
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6. Proof of Theorem 3.8 (I.- Viscosity Property)

Let us assume that FBSDER (3.5) has a unique adapted solution on [t,T], denoted
by (xt’z, Yt’z, Zt’X, qt’z,t’z). By Proposition 3.4, we see that u(t,x)-y,x is
continuous on [0, T]x@1" it is Lipschitz-continuous in z, and nSlde-1/2 in t,
respectively. We first verify that u is a viscosity solution to (3.8). Since the proof
for the "supersolution" is virtually the same as that of the "subsolution", thanks to
the equivalency of (3.8) and (3.9), we shall carry out only the proof for the latter.
To this end, let (t,z) E[O,T)xl1 be given and let E CI’2([0, T]xI) be such

that (t,z) is a global maximum point of u-. By slightly modifying we can
assume without loss of generality that u(t,x) (t,x) and Dp is uniformly bounded,
thanks to the uniform Lipschitz property of u in x.

Note that the pathwise uniqueness implies that u(s, Xts’z) -yt, x P-a.s., for each
s [t,T]. Using the continuity of the function u and processes t,’x and yt, x, one
can easily check that for all - Jttt.,T the set of all t-stopping time -’ such that
t < r’< T, P-a.s., we have u(r (r,x t,z

,’-r J-Yr P-a.s. In what follows, we shall
suppress the superscript ,,t,z,, for the adapted solution, and denote us -u(s, Xs)
(Do)s Do(s, Xs) (D2)s- D2(s, Xs), to simplify notations.

For any v Jt,T, we have

7"

+ / f +
7"

(6.1)

On the other hand, applying It6’s formula to (., X) from t to v we have

7"

(. x) (t. ) + ] ,(. x.) + f (()s. (. Xs. u. Zs))

+ / 1/2tr{..T(s.X..u.)(D2).)ds+ / (6.2)

/ ((D)s, n(Xs))lo01

Now let us write

h(s, Xs, Ys, Zs) h(s, Xs, us,(D)sr(s, Xs, us) + (s, Zs-rT(s, Xs, us)(D)s));
(6.3)

b(s, Xs, Ys, Zs) b(s, Xs, us,(D)sr(s, Xs, us) + 3s(Zs-rT(s, Xs, us)(D)s)),

where
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1
Oh #Zs + (1 pt)crT(s, Xs, us)(D)s)dl;-_(_s,X,u,

0

1

f Ob(s pZs + (1 #)aT(s,X us)(D)s)d#.
0

(6.4)

By assumption (A1), we see that c and are both bounded. Subtracting (6.2) from
(6.1), using (6.3) and (6.4), and noting the facts that u(t,x)- a(t,x) and u(r, Xr) _<
(r, Xr) we obtain

09 ,Xs) F(s, Xs’us’0 > u(v, Xr) (v, Xr) { -(s (D)sr(s Xs, us)
0

(Zs (D)scr(s Xs, us) as (D)s3s)}ds (r Ct) (6.5)

+ f (z,_ (D)sa(s, Xs, us),dWs)+ J ((D)s,n(xs))lo0l(X,)d I,.

Now define Os - + (D)sfls, s It, T]. The uniform boundedness of a,/, and D
renders the process otr gexp{- f{O,dW}-flO ds}, r e [,T], a P-
martingale on [,T]. Thus, by Girsanov’s Theorem we can define a new probability

measure P via P 0, so that W W- Wt f (%- V(s,X))ds is a P-

Brownian motion on [,T]. urthermore, since (X,Y,Z) e (a;C([0,rl
Nn+))x(0,T;Na) by definition, the boundedness of V and the uniform
Lipsehit property of imply that, for some constant C > 0 depending only on K
and k 1

]Zs -(D)sa(s Xs, us)] 2

1

{/C [IZ2+ lX12+ Ig12]ds

1

 +lx l

Consequentially, the integral
r r

Mtr A_ / (Zs (D)sa(s Xs, us) Os)ds + / (Zs (DT)sa(s, Xs, us) dWs)

r

(Zs (D)sr(s Xs, Us) dWs) r e [t, T]
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is a P martingale on It, T]. Hence, by taking expectation E on both sides of (6.5),
we obtain

0 >_ N(, x) (, x,, (D,)(, x,) e

E (,.- t + E

We are now ready to prove that u(t,x) is a viscosity subsolution. We shall use
Definition 3.5 for this purpose. Let us consider the following two cases:

Case 1: (t, x) E [0, T) x intCl1. Note that L(t, x) <_ u(t, x) Y’ x <_ U(t, x) by de-
finition of FBSDER, and that u(t,x)= L(t,x) would imply that the first inequality
of (3.12) holds, so we assume without loss of generality that u(t,x) > i(t,x). Now it
is easy to see that it suffices to show that

H(t, x; u, )
A

(t x) F(t, x, u(t, x), D(t, x) D2(t x)) < 0--t (6.7)

since u(t,x)- U(t,x) <_ 0 is always true.
Suppose (6.7) is not true, namely, H(t,x;u,)> 0. Then by the continuity of all

the functions involved, we can find a constant e0 > 0 such that

O(t, x) A_ (u(t, x) L(t, x)) V H(t, x; u, ) V d(x, 001)

_
g0"

A ,Xs),s It, T] and define a stopping time 7"1 byDefine Ots O(s

T1 inf{s > t lOs

_
} A T Jt,T"

Replacing 7" in (6.6) by 7"1 we see that the first integral on the right side of (6.6) is no

less than q (7"1- t) and the second integral is zero because Xs 0(31 for s e It, 7"1)"
To analyze the second term there, we define a process Vs

A
l[t r1)(S)[U(8’ Xs)

0/2]. It is easy to check that V is an RCLL, {t)-adapted process such that

0L(, x()) <_ V() (, x()) -- < (, x()) _< U(, x()),

for all s [t, 7"1(W)), P-a.e. w e ft. Moreover, for s It, 7"1(W)), one has Vs(w 0 e
[L(s, Ls(w)),U(s, Xs(w)) by assumption (A1). Therefore, by the definition of the
reflecting process (Definition 2.1 (iv)), we have

r1 r

o >_ / / 0-’-(rI
--t)’

which implies that ((Vl- (t)-- 0, i.e. the second term on the right side of (6.6) is

non-negative. Consequently, we have from (6.6), with 7"- 7"1, that

g0"
0 >_ -rE (7"1 t). (6.8)
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e0But since 0 is continuous and 0 >--, we have rI > t, P-a.s. (whence P-a.s.),
contradicting (6.8). Therefore (6.7)must hold.

Case 2: (t,x)E [0,T)x 001. We are to show that the second inequality in (3.12)
holds in this case. As argued in the previous case, we assume that u(t,x)> L(t,x)
and claim that either (n(x), n(t, x)) <_ 0 or H(t, x; u, ) <_ 0 must hold.

Again, suppose not. Then we can find a constant e0 > 0 such that

(t, x) - (u(t, x) L(t, x)) V H(t, x; u, ) V <n(x), D(t, x)> _> e0.

Define .ts_A6(s, Xs), for sE[t,T] and r2-Ainf{s>tlo’’t_e0/2}ATeattt, T.
setting v r2 in (6.6) analyzing the first and second term on the right side as before,
we see that (6.6) becomes

0 >?(v2 -t)+ / <n(Xs) (Do)s>lo0l(x) I, . (6.9)

But since Jr/[ is non-decreasing, we have

E <n(Xs),(D)s>loo
1
(X)d

T2_
-E 100l(x)dll

Hence, from (6.9), with r- ’2, we obtain E (r2
the first part of Theorem 3.8 is proved.

-t) _< 0, a contradiction again. Thus

7. Proof of Theorem 3.8 (II. Uniqueness of the Viscosity Solution)

In this section we prove the uniqueness of Theorem 3.8, thus we shall assume that
r(t,s,y)- a(t,x). Our proof borrows some ideas of Baden, Buckdahn and Pardoux
[2], with necessary modifications. First we note that the uniqueness result will be a
direct consequence of the following comparison theorem which is interesting in its
own right.

Theorem 7.1: Assume that all assumptions in Theorem 3.8 are in force. Let u be
a subsolution and v a supersolution to the variational inequality (3.8) (or (3.9)),, a (,) >_ L(,) ad v(t,) _< U(,) o a (,) e [0, T]O.
Suppose further thai both u and v are uniformly Lipschitz continuous in x and
continuous in t. Then u(t,x) <_ v(t,x) for all (t,x) [0, T] x (1"

In order to prove Theorem 7.1, we note that since both u and v are continuous, we
only need to show u_<v on (0, T) xintO1. Let us define for each c>0 a subset of
O1

(1 (X (1 d(x, O01) >- c), (7.1)

and choose a0>0 such that O: for all 0<_c<_a0. Then, it suffices to prove
that for every 0 < a <_ no, u(t,x) <_ v(t,x) for all (t,x) (0, T) O. In what follows,
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we denote w u- v, and define

Fu, v(t, x, r, p, q, X) --A --P-- 1/2tr{crrT( t, x)X} (b(t, x, u(t, x), 0), ql
(7.2)

where K > 0 is some constant depending only on the Lipschitz constants of the func-
tions b,h,u,v in (x,y,z). The following key lemma is adapted from Barles, Buck-
dahn, and Pardoux [2]. Since our situation is more involved, we shall provide a

sketch of proof for completeness.
Lemma 7.2: Suppose that the assumptions of Theorem 3.8 hold, and u,v are those

in Theorem 7.1. Then for any 0 <_ a <_ ao, the function w u- v is a viscosity subso-
lution to the following variational inequality:

0 min{w, Fu, v(t,x,w, wt, Dw, D2w)}
(T,x) O,

V(t, ) e [0, T)
(7.3)v: e o.

Proof: Fix a E [0, a0] and (to, x0) E [0, T) O. Let 9 C2([0, T] (1) be such
that (to, Xo) is a maximum point of w-9 and that w(to, Xo)- 9(to, Xo). Modifying
9 if necessary, we may assume without loss of generality that (to, Xo) is a strict,
global maximum point of w-9, and that D9 is uniformly bounded, thanks to the
Lipschitz property of u and v (whence w). Our purpose is to show the following in-
equality:

min{w(to, Xo) Fu, v(to, Xo, w, 9t, 09,029)} <_ O, (7.4)

It is easy to see that (by Definition 3.6 or 3.7), if u is a subsolution and v is a super-
solution, then u(t, x) < U(t, x), and L(t, x) <_ v(t, x). Combining with the assumption
of the lemma, we have l(t, x) < u(t, x), v(t, x) < V(t, x), V(t, x) [0, T] x O. Thus if

(to, Xo) is such that either u(to, Xo)=L(to, Xo) or v(to, Xo)=U(to, Xo), then

w(to, Xo) < 0 and (7.4) holds. Thus we assume without loss of generality that

[u(to, Xo) L(to, Xo) [U(to, Xo) v(to, Xo) :/: 0. (7.5)

Let us define for a given > 0 a function e(t,x,y)- u(t x)-v(t,y)-Ix-yl2
-9(t,x). Choose R > 0 large enough and define O’R BR CI O so that (to, Xo)

0’ R, where BR is the open ball in Nn centered at origin with radius R. Let

(te, xe, y) argmaX[o,T]xO,Re(t,x,Y)"
Applying Proposition 3.7 of Crandall, Ishii and Lions [4], we can easily conclude that

(i) (t,, ,, ,)--(to, o, o), s -o;

(ii) Ie-el2
2 is bounded and tends to zero as 0.

Now, fixing > 0, and then applying Theorem 8.3 in Crandall, Ishii and Lions [4],
we obtain that, for any 5 > 0 there exists (X5, yh) (n) (n), c5 Rn such that
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ca + t(te, xe), Pe + D(te, xe), Xa) E 2, + u(t, xe);

(ca, p,, ya) E 2, v(t,, y),
(7.6)

and
(7.7)

where P = 2(xe2- ye), and A ( D2o(te’x)_2/2+ 2/2

A
computation shows, that for 7- 1 /,

(Dx) + 7Dz
A+SA2-

25..2

0

An easy

Dx 0 I I
+ + 5M(),

0 0 -II

(7.8)

where
2 2 4 2 25..2 [(Dx) + -Dz 5Lx 8M()

25..2

Let us now make use of Definition 3.6 of viscosity solution.
and superjet shown in (7.6) we have

Thus for the subjet

(u L) A {(u U) V I- (ca + t) F(t, x, u, Pe + D, Xa)]} (t,x) (te, xe) -< 0,

(v-U) V {(v- L) A[-ca- F(t,y,v, Pe, Ya)]} (t,y (te, ye) >_ O.

(7.10)

Since (to, Xo) satisfies (7.5) and (t, x, ye)---,(to, Xo, Xo) we may assume that (t, xe)
and (te, y) also satisfy (7.50, thanks to the continuity of the functions u,v,L,U.
Thus we must have u(t,x) > L(t,x) and v(t,y) < U(t,y) and (710) leads to

(ca+t(t,x)) F(t, Xaxe, u, Pe + D,
_

O,

ca F(t, ye, v, Pe, ya) >_ O.
(7.11)

Subtracting the second inequality from the first one in (7.11) and recalling Definition
3.7 of F, we obtain

0 >_ t(t, x) {1/2tr[crrT(t, xe)Xa] 1/2tr[(rrT(te,
{(b(t,x, u(t,x),P + D(t,x))r(t,xe)),Pe + D(t,xe))
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<b(t, y, v(t, ye), Per(t, y)), Pe>} (7.12)

{h( te, xe, u(te, xe), (Pe + D(te, xe))a(te,

h(t, ye, v(t, ye),Per(t, ye))}

A_ t(te, x) I(5)- I(5)- I(5),

where 11,12,13 are three {...}’s on the right side of (7.12) respectively. We now esti-
mate Ii, i-1,2,3 separately. To simplify notations, we hereafter denote re, x=
f(te, x) and fe’u- f(t,y) for any given function f(t,x); and by Oe any quantity
that satisfies

,O, <’{,x-y + ’x-y’ }g2

for some generic constant K that depends only on b,h, crg, u and v, which may vary
from line to line. Let a be the ith column vector of the matrix a. From (7.7), (7.8)
and (7.9), we have

I(5) 1/2{tr[re’x(ae’x)Tx]- tr[ae’ u(re’ u)TY]

(7.13)

(ae’ M(e) e,where R(’z,r’) - ,r, and M()is given by (7.9)
Next it is fairly easy to check

I(6) (b(te, x, ue’x, (Pe + D’x)ae’x), Pe +De’x)

-(b(te, ye, ve’U, Pere’u),P) (7.14)

u, x, 0),De’ x) ) <Ab2 p)=(b(te,ze, +Ab1,De’ +

where

An1
_A b(te, xe, ire, x, (pe + Dp,z)r,z)_ b(t, x, u’ , O) < Kb P + Dpe’ l ’ I,- ( ,,, P +D,),) ( ,,,, P,)

<_Kb{lU’--v’ + ID’ I,l)+O,
where Kb denotes some generic constant depending only on b. Consequently, from
(7.14) we get
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,
u x,O),Da,x)I2(5) _< (b(t, x, + Kb{ P + Da’x ’ D 1

Similarly, we have, for some constant Kh depending on h,

I(5) <_ h(t*, xe, ue’ x, (pe + De,X)cr,, ) h(t, y, v, , pjr, )
(7.16)

Now by definition of (te, xe), and the fact that w’- e,x <_ w(to, Xo)_ (to, Xo)_ O,
we have

0 (*o, o) (*o, 0) ,(*0, 0 o) < (*, *,

= (*, ,, ) + (,*, ,,, v) I*

:2

therefore, IPI 2 I-ul < 2[o’-o’u]
<2Kv < oc. Furthermore, by the uni-u

form boundedness of D we also have P /O’ < K=,v. Therefore, we derive
from (7.15)and (7.16)that

I() + I() <_ (b(t, x, u’ x, 0),D’ z)

Combining the above with (7.13), we obtain
3

,-olim --,o.limE I(5)-< --,olim {1/2tr[a’ x(r’ x’T"-’2),x’ x][ (b(t,x, u’ x, O),D,x)
=1

Therefore, first letting 5--0 and then letting e0 in (7.12) we obtain

0 >_ t(to, Xo) Fu, .(to, Xo, w, DT, D2),

and hence (7.4) holds. Finally, noting that w(T, w) <_ 0 by the definitions of subsolu-
tion and supersolution, the lemma is proved. Vl

Proof of Theorem 7.1: We need only show that w _< 0 on [0, T] x O for any c E
[0, a0]. Consider the function (t,x) exp{(Cl(T- t) + a)(x)}, where (x) (1 +
IX[2)1/2, and A, C1 > 0 are to be determined. Let - (T- A/C1) + It is easy to
check that
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D2 1 x (R) x where x (R) x xxT;D(x) (;), (x) (x) (x)3

D(x) < 1, [] D2(x) II _< / ’(i3 _< 2;

D [CI(T- t) + A]D(x); (7.17)

D2 {(CI(T- t) + A)2(Dx (R) Dx) + (CI(T- t) + A)D2x},

IDOl _<2A, IID2II -<4(A2+A),VtE[Y,T]O"

We claim that for any fixed A, there exists C1 0 sufficiently large such that

min{, Fu, v(T, x, , t, D, D2)} > 0, V(t, x) E [7, T] O. (7.18)

In fact, some direct computations using the facts listed in (7.17) imply

Fu, v(t, x, , t, D,D2)

>_ Cl(x) --1/2/’r II D2 II Kb D K"- "K DI

{C1 ’. 4(A2+A)-2KbA- K 2A} > 0,

provided C1 is large enough and t [71,T], for some constant K > 0, depending
only on a. Thus (7.18) holds because > 0 is always true.
Now let us choose A and C1 such that lim iw(t,x) e- A lx 0 and

satisfies (7.18). Define for ,, s > 0 and 0 s <

_
Mt() mx {(t, ) s(t, )} (r t)

’ [,tlx
with K as in (7.2). We claim that M,T(e 0, Va, s > 0. Suppose not. Then

M,T(S > 0, for some a > 0 and e > 0. Let (to,o) e argmax{w(t,x)-

eO(t,x)}e- wtK(T- t0)" (Note that this is possible even if 1 is unbounded, since for
x sumciently large we have w(t, x) e(t, x) < 0.) Define (t, x) e(t, x) +

Ma(e)eK(T-t). Then e C1’, (to, Xo) w(to, xo) and w(t,z)-(t,x) 0 for all
(t, ) e ff T] e.

Note that w is a viscosity subsolution to (7.3) by Lemma 7.2, and that w(to, Xo) >

s(to, Xo)e
K (T0 t) > 0 by definition, we must have Fu, v(to, Xo, w, Dp, D2p) 0 by

the definition of a subsolution. But on the other hand, one can easily check that

Fu, v(to, Xo, W, gat, D,D2) Fu, v(to, Zo, qg, qtt, Dqg, D2q) > 0,

thanks to (7.17). This contradiction proves the claim. Consequently, w(t,x)-
e(t,x) <_ 0 for all (t,x) e [Y,T]xO. Letting e--,0, we have w(t,x) <_ 0 for all

(t,x) e[-,T]xO. Repeating this argument for [i,Yi-1], for i-1,2,.., if
necessary, where i + 1 (i- 1 A/C1) +, t-o T, t-1 one shows that w(t, x) <_ 0
for all (t,x) e [0, T] x Cl, a _< a0 proving the theorem. V1
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