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In this paper we study differential inclusions with boundary conditions in
which the vector field F(t,x, y) is a multifunction with Caratheodory type
conditions. We consider, first, the case which F has values in R and we
establish the existence of extremal solutions in the order interval determin-
ed by the lower and the upper solution. Then we prove the existence of
solutions for a Dirichlet problem in the case in which F takes their values
in a Hilbert space.
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1. Introduction

In the study of differential equations with initial or boundary conditions, different
methods are used to establish the existence of solutions. One among these is the
method of upper and lower solutions. It seems that probably this method appeared,
for the first time, in [39] where O. Perron used the method of "sub-harmonic
functions" in the potential theory. Later, in 1937, M. Nagumo introduced the
method of upper and lower solutions in the study of second order differential
equations with boundary conditions, in particular for Dirichlet problems. Then many
authors developed and applied this method to prove the existence of solutions to
problems of the form

x"(t) f(t,x(t),x’(t) (i.e. f(t,x(t),x’(t))) a.e. on T [a,b] (1.1)
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with boundary conditions: see for example, [12, 13, 15, 23, 33-35, 37] in which "f" is
a continuous function. For the discontinuous case (at least in the time variable t) we
mention, for instance, the following papers [7, 18, 25, 28].

In this context, in 1995, N. Papageorgiou-F. Papalini [38] studied equation (1.1)
with Sturm-Liouville or periodic conditions and they proved the existence of extremal
solutions in the order interval characterized by the lower and upper solutions, by
assuming on f, in addition to the classical Nagumo growth condition, Caratheodory-
type hypotheses. Moreover, some authors (cf. [16, 17, 30]) have also studied bound-
ary value problems for second order differential inclusions. In 1990, M. Frigon [16]
applied the method of upper and lower solutions to a boundary value problem for
differential inclusions of the type:

x"(t) F(t, x(t), x’(t)) a.e. on T. (1.2)

Frigon proved r. [16, Theorem VI.4]) the existence or solutions in the case in which
F: T x x ---2" is a particular multifunction. The author later extended the prev-
ious result (cf. [20, Theorem 5.2]) to a generic multifunction F.

In this paper, we first consider the differential inclusion (1.2) with Sturm-Liouville-
type or periodic conditions and we obtain a result that contains Theorem 5.2 of [20].
Specifically, under the same assumptions required by M. Frigon in Theorem 5.2 of
[20], we prove the existence of extremal solutions in the order interval characterized
by the lower and upper solution. Moreover, we observe that this result contains also,
as a particular case, Theorem 2 of [38].

In the second part of this paper we study the following problem:

x"(t) e F(t, x(t), x’(t))
(0)

a.e. on T
(1.3)

where F is a multifunction defined on T H H with values in 2H, where H is a real
separable Hilbert space.

M. Frigon [20], studied problem (1.3) in the case H- RN. Prior to the authors
(cf. [19, 26, 31, 42]) applied the method of upper and lower solutions to systems of
differential equations by extending the notion of upper and lower solutions while M.
Frigon in [20] generalized this concept to differential inclusions by introducing the
definition of "tube solution" (cf. [20, Definition 5.8]). So, under suitable conditions,
Frigon proved the existence of solutions for the problem (1.3) (cf. [20, Theorem 5.9]).

In this paper, by extending in a natural way the notion of "tube solution" to
Hilbert space and by assuming on "F" Caratheodory-type conditions we obtain the
existence of solutions for problem (1.3). Our result extends Theorem 5.9 of [20] in
the sense that there exist multifunctions which satisfy our conditions but not those of
the mentioned theorem of [20]).

2. Prehminaries

Let X be a Hausdorff topological vector space, (Y, I1" [[) be a Banach space. If Z is
a nonempty subset of Y, we put II Z II sup II z II:z z}. Throughout this work,
we use the following notations:
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Pwkc(X)- {A C X: A = , A closed, bounded and convex}

LetFPl(kc!(X)--=.{A C X:A =/= , A closed (compact and convex)}.
Z2 be a multifunction. We denote by

R(F) U F(y) and GrF {(z, x) e Z x X’x e F(z)}
yEZ

the range and the graph of F respectively. Moreover, for every subset A of X, we
put F I(A) {z E Z" F(z) N A - q}} and F + (A) {z Z" F(z) C A}.
F is called upper semicontinuous (u.s.c.) on Z if F- I(A) is closed, for every closed

subset A of X (or, equivalently, if F + (A) is open, for every open subset A of X).
Another notion of upper semicontinuity is that of metric upper semicontinuity: F is
said to be metric upper semicontinuous (u.s.C.)m on Z if /z0 Z and for every neigh-
borhood U of zero in X there exists a neighborhood I(zo) of z0, with the property

F(z) C F(zo) -t- U, Vz e I(zo).

In general, every (u.s.c.) multifunction is also (u.s.C.)m and the two definitions are
equivalent, for instance, for compact-valued multifunctions.

The multifunction F is said to have closed graph if the set GrF is closed in Z x X.
Now we suppose that X is a Banach space and Z is closed in Y.
F is said to be compact if the set R(F) is relative compact in X; moreover, F is

said to have weakly sequentially closed graph if for every sequence {Yn}n C Z with

Yn---*Y in Z and for every sequence {Xn}n with xn F(Yn) gn N, Xn--x weakly in
X implies x F(y). F is called weakly completely continuous if F has a weakly se-

quentially closed graph and, if A is a bounded subset of Z, then F(A) is a weakly
relative compact subset of X.

Let now (T,,#) be a measure space; a multifunction F: T+PI(X) is said to be
measurable (weakly measurable) if F-I(B) ff for every closed (open) subset B of
X. If some values of F are empty subsets of X, then F is measurable if TO
{t T: F(t) q)} belongs to V and on T- TO F is weakly measurable.

For a function V defined in a Banach space Y, with values in a Banach space X
we recall the following definitions. V is said to be bounded if V(A) is bounded in X
for every bounded subset A of Y. V is said to be compact if it is continuous and
V(A) is relative compact in X for every bounded subset A of Y. Finally, V is said to
be completely continuous if for every sequence {Yn}n C Y with Yn-’*Y weakly in Y, we

have that {Y(yn)}n weakly converges to Y(y)in X.
Now we denote by X* the dual space of the Banach space X and by ((.,.)) the

dual brackets between X* and X. A subset S of X X* is said to be monotone if
V(x,x*), (y,y*) S we have that ((x*-y*,x-y)) >_ O. S is called maximal
monotone if it is not .properly contained in any other monotone subset of X X*.
Let A: D(A) C_ X2X be a multivalued operator, where D(A) {x A: A(x) q}}
denotes the domain of A. A is called a monotone (maximal monotone) operator if
GrA is a monotone (maximal monotone) subset of X X*.

Remark 1: We observe that if X* is a uniformly convex space, then every
maximal monotone operator A: D(A) C X---,2X* is demiclosed which means that for
every sequence {xn}n C D(A) with xn-x in D(A) and for every sequence {Yn}n C X*
with yn-y weakly in X*, (Xn, Yn) GrA, Vn N implies (x, y) GrA.

Let A’D(A)C_ X2z be a set-valued operator with domain D(A). We say that
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A is accretive, if for every Xl, X2 E D(A), for every Yi A(xi), = 1,2, and for every. > 0, we have II 1 2 II < II 1 2 / (yl y2)II. Another equivalent definition
can be given using the duality map of X, which is the set-valued function J: X--.2X*

defined as J(x) {x* X: ((x*,x)) II II 2 II * II 2}, Clearly the values of J are
nonempty, closed, convex and bounded subsets of X*. Moreover, we recall that if X*
is strictly convex or locally uniformly convex, the duality map J is single-valued. So
A is accretive if for every Yi A(xi), i= 1,2, there exists x* J(zI -x2) such that
((X*, Yl Y2))

_
0.

Moreover A is said to be m-accretive if it is accretive and for each A 0, I + AA is
surjective, where I is the identity operator of X. Obviously if X is a Hilbert space
the notion of accretive (m-accretive) operator coincides with that of monotone
(maximal monotone) operator.

If X is a Banach space and T is the closed interval [0, b], we denote by
wm’p(T,X) the space of the functions u LP(T,X) which have distributional
derivatives u(k), k- 1,...,m, which belong to the space LP(T,X). It is known (see
[3, p. 18]) that the Sobolev space wm’p(T,X) is a Banach space with the norm
defined by m

II u II m, p II u II p / II u(k)II p,
k=l

Moreover, if X is reflexive then wm’p(T,X) can be identified with the space of ab-
solutely continuous functions which have strong derivatives u(k), k 1,...,m, with
the property that u(k), k 1,... m- 1, is absolutely continuous and u(m) E LP(T X).

3. Existence of Extremal Solutions

Let T-[0, b]. We start with the following second order boundary value problem for
differential inclusion"

-x"(t) F(t,x(t),x’(t)), a.e. on T
(1)

(B0x)(0) Vo, (Blx)(b) Vl,

where F: T x R x R---,2R is a multifunction with nonempty, compact, convex values
and v0, v1 R, (B0z)(0) aoz(O CoZ’(O), (Bz)(b) az(b) + cz’(b), with
ao, al,co, c1>0, ao(alb+cl)+coa1#0. Note that if c0-c1-v0-v1-0 then we
have the Dirichlet problem.

For problem (1), we give the definition of lower and upper solution: a function
(E W2’I(T,) is said to be a lower solution for problem (1) if

F(t, q(t), ’(t)) Yl cA3, "(t)] - 0 a.e. on T

(B0)(0) < v0, (Bl)(b) < V1.

Since F has nonempty, compact and convex values in R, we can represent F as

F(t,x,y) [f (t,x,y),f (t,x,y)], V(t,x,y) T,

where f, f" T x R x --,R are suitable functions.
So we c--an say that @ W2’I(T,R) is a lower solution of problem (1) if

(3.1)
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--"(t)

_
f (t, (t),’(t)) a.e. on T

(B0)(O)

_
vO, (Bl)(b)

_
v1.

A function E W2’I(T,) is said to be an upper solution for problem (1) if

F(t, (t), ’(t)) VI ["(t), + cx) q) a.e. on T

(B0)(0) _> v0, (Bl)(b) _> V1.

So, using representation (3.1) of F, we say that E W2’I(T,) is an upper solution
of problem (1) if

"(t) >_ _f (t, (t),’(t)) a.e. on T

(B0)(0)

_
v0, (Bl)(b)

_
v1.

A function x:T--,R is a solution of problem (1) if x e W2’I(T,) and

"(t) e F(t,x(t),x’(t)) a.e. on T

(Box) v0, (Blx)(b) v1.

Moreover, a solution x. of problem (1) is called minimal solution if for every solution
x of problem (1), we have that x.(t) <_ x(t), Vt T.

Analogously, a solution x* is said to be a maximal solution if for every solution x
of problem (1) we have that x(t)<_ x*(t), /t T. The functions x., x* are called
extremal solutions of problem (1).
Now we shall prove a sufficient condition for the existence of extremal solutions for

problem (1). We shall need the following conditions"

H(F)I: F: T -Pkc() is a multifunction with the following properties"
(i) Vx, y e U, tHF(t, x, y) is measurable,
(ii) for a.e. t T, (x, y)HF(t, x, y) is (u.s.c.)
(iii) /r > O, 27r LI(T,+ such that [iF(t,x,Y)I[ <- 7r(t) for a.e.

tTand/x,ywith Ixl, lY] _<r.
H0: There exist a lower solution and an upper solution of problem (1)

with (t) <_ (t), Yt E T, and there exists a function h
such that [[F(t,x,y)[[ <_h([yl)for all tTandall x,ywith (t)<_
x _< (t) and

rdr ma_x(t) (t)h--> min
tE’ tET

where A max{ (b)- (0)I, I(b)- (0) }.
lmark 2: Condition H0 is known as "Nagumo growth condition" and guarantees

an a priori L%bound for the first derivative of every solution of problem (1). In
fact, using a similar proof to that of Lemma 1.4.1 of [5], it is possible to prove that
there exists N1 > 0 (depending only on , and h) such that for all x W2’I(T,R)
with x"(t) F(t,x(t),x’(t)), a.e. t ( T such that

x [,]- {x w2’l(T,)’t(t) <_ x(t) <_ (t), ’t T},
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we have that x’(t) <_ Nl,Vt E T.
In the following, Va E R and for any subset B C R we will use the notations:

Bfl[a, +o) if BYl[a, +o0)
B V a

{a} otherwise,

BAh--{ Br3(-ov, a] if Bn(-,a] # 0,

{a} otherwise.

We have the following existence result for problem (1).
Theorem 1: /f hypotheses Ho and H(F)I hold, then problem (1) has extremal solu-

tions in the order interval [,].
Proof: Let S1 be the set

$1 {x t [lit, ]: x is a solution of (1) }.
From Theorem 5.2 of [20] we have that S1

q. Consider, in the space W2’I(T,),
the order structure defined by - **(t) < (t), w e T.

Then we shall prove that S1 is an inductive and directed set with previous order
structure. To this end, let C be a chain in S1. Since LI(T,) is a complete lattice
and C is a bounded subset of LI(T,), if x supC, by Corollary IV.II.7 of [11],
there exists a sequence {Xn}n Q C such that x -sup{Xn)n and x LI(T,). By the
monotone convergence theorem (cf. [6, Theorem IV.l]) we obtain that z,z in
LX(T,), Now, put - mx<N1, II ’ II o, II’ II } (f, Remark 2). From condition

H(F)I (iii) we have that I;(t)l <(t), ,e, on T, n, Hence {Xn}n is
bounded in W2’I(T, ) and the set {z}, is uniformly integrable.

1,1Since the space W"I(T,) embeds compactly in W (T,) and continuously in
CI(T,) (cf. [1, pp. 100 and 144]), by the Dunford-Pettis Theorem applied to the
sequence {z}n (by passing to a subsequence if necessary) we deduce that
z CI(T,), Zn(t)--x(t), x’n(t)----x’(t), Vt T and x---,y weakly in LI(T,).

Taking into account that f ,,OXn(s)ds---* f y(s)ds, Vt T (cf. [43, p. 180])and that
x’(t) x’(O) + f t__,,oXns)ds, Vn hl, Vt T, we obtain that x’(t) x’(O) + f toy(s)ds,
Vt T, and so x"(t) y(t) a.e. on T. Therefore x’--x" weakly in W2’ I(T,).

Moreover, since x--,x" weakly in LI(T,), there exists a sequence {Vk}k,
Vk_ o -k ,, (where k k

m kAmXm )t
m 0 except for a finite number of m’s in which Am > 0

and o k
m kim- 1) which converges to z" in LI(T,). By passing to a subseq-

uence, if necessary, we may assume that vk(t)--,x(t), a.e. on T.
We fix eT such that (x, y)F(t, x, y) is (u.s.c.)in x, -x(t) E

F(t,x,(t),x’(t)), Vn and vk(t)--x’(t ). For every > 0, since F(t, .,. is (u.s.c.)
in the point (x(t),x’(t)), it is possible to find 1 such that

v > v(t) _, ’(t) e (t, (t), ’(t)) +[- , ],
m’-k

which implies that x"(t) F(t,x(t),x’(t))+[- ,]. Therefore, since is
arbitrary, it follows that x S1. Using Zorn’s Lemma, we infer that S1 has a maxi-
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mal element x* E S1. In a similar way we prove that in S1 there is an element z.
which is minimal.

Finally, we show that S1 is directed (i.e., if zl, x2 S1 then there exists x S1
such that x1 - Z and x2 - z). To this end, let Xl,X2 G S1 and let x3 max{xl,Z2}.
Since xl, z2 W2’I(T,) and z3 (Xl, X2) + + x2, from Lemma 7.6 of [27], it follows
that x3 G WI’I(T,) and

X’l(t if Xl(t > x2(t),
x’3(t)-

x’2(t if Xl(t < x2(t),

for every t E T.

a.e. on T. First suppose that x3 W2’I(T,). Since x3 CI(T,I), we have that at
the points t T at which zI and x2 coincide, z’(t) is equal to x’2(t and so

x (t) if xa(, >

x’3(t x’2(t if xl(t < x2(t),
X’l(t if xl(t x2(t),

Let

and
TO {t e T: X’l(t x’2(t and X’l’(t =/= x’(t)}

T’- {t
_
T" x’’(t) and x’(t)}.

From the Banach Lemma (cf. [20, Lemma A.9]) we obtain that mTo 0. Moreover,
for every t GT’\T0 we have that if zl(t > z2(t), then z(t)-z’’(t); while if

zl(t < z2(t then z(t)- z’2’(t ). Finally, if zi(t)- z2(t then z(t)- z’(t)- z’(t).
Therefore, it follows that

J x]’(t) if xl(t k x2(t),
x’(t) if xl(t x2(t),

kit e T’\To. From this we deduce that -x(t)e F(t, x3(t),x’3(t)) a.e. on T, which
means that x3GS1. Sox3 is the element in Slsuchthat x1-x3andx2x3.

In the case in which x3 W2’I(T,) we consider the following truncation operator

7"3: W1’ I(T, )---+W1’ I(T, ) defined by

(t) if x(t) > (t),

7-3(x)(t x(t) if x3(t < x(t) < (t),

x3(t if x(t) < x3(t),

for every x E WI’I(T,) and for all T.

’(t)

7"3(x)’(t x’(t)

x WI’I(T,[) and for a.e. T.

By Lemma 7.6 of [27], we get that

if x(t) >_ (t),
if x3(t < x(t) < (t),

if x(t) <_ x3(t),
Put N=l+max{N1, II ’11, ]1’11} (cf.
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Remark 2) and denote by qN and u3 the truncation function and the penalty function
respectively, which are defined by qN:--.R with

N ifx>_N,

qN(x)- x if --N _< x < N,

-N ifx< -N,

x- (t) if x >_ (t),
0 if x3(t < x < (t),

X--X3(t if x < x3(t),

V(t,x) E TxR. Now let ’TxRxR2R\{O} be the multifunction defined by

i=1

where Fi: T x N x N2N, i- 1,2,, are the multifunctions defined by

F(t,x, y) if x3(t < x < (t),
F1 (t, x, y)

q) otherwise,

F(t, x3(t), y)V { (t)} if x3(t > x,
F2(t x, y)

otherwise

F(t, (t), y) A (- "(t)} if (t) < x,
F3(t x, y)

otherwise,

V(t,x,y) TxRxR, and 7 G LI(T,) is the function

(t) max{ x(t), x"(t2k /J, a.e. on T.

It is obvious that F has nonempty, closed and convex values. We shall prove
that, for every (x,y) R x R, the multifunction t-,F (t,x,y) is measurable. To this
end, it suffices to show that V(x,y) R x, t-Fi(t,x,y is weakly measurable (cf.
[32, Proposition 2.3 and Theorem 9.1]). If i-1, then the measurability of
t-,Fl(t,x,y follows by observing that, for every open subset A of R, the sets
TO {t T’Fl(t,x,y -} and FI-I(A) are measurable. If i-2, first we observe
that

q) if x(t) > x3(t),

F2(t,x,y

F(t, x3(t), y) [ (t), + cx) if 7 (t) < f (t, x3(t), y) and

x(t)<_x3(t),
(t)} if " (t) > f (t, x3(t),y and

x(t)<_x3(t),
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Y(t, x, y) E T x R x . Moreover, since the set {t E T: F2(t x, y) q}} is measurable
and also since the multifunctions t--,[ (t), + cx) and t-F(t, x3(t), y)
are measurable (cf. [32, Theorem 4.1 and Theorem 6.4])it follows t-,F2(t,x,y is
measurable. In a similar way we obtain the measurability of the multifunction
t-F3(t,x,y).
Now we shall show that, for a.e. t T, the multifunction (x, y)HF (t, x, y) is

(u.s.c.) in R. As for the measurability, using Theorem 3’ of [4], it is sufficient to
prove that the maps (x, y)HFi(t x, y), 1,2, 3 are (u.s.c.) in every (Xo, Yo)
Let 1. If x0 < x3(t or x0 > (t) it is possible to find a neighborhood U of (x0, Y0)
such that Fl(t,x,y = q}, V(x,y) U, and so (x,y)F(t,x,y) is (u.s.c.)in (xo, Yo).
Instead, if xa(t

_
xo

_
(t), then the upper semicontinuity of (x, y)-F(t, x, y) in

(xo, Yo) follows directly from H(F)l(ii). If 2, observe that

q} if x > x3(t),
F(t, xa(t), y) if x < x3(t and (t) < _f (t, x3(t), y),

F2(t x, y) [ (t), f (t, x3(t), y)] if x < x3(t and

_f (t, x3(t), y) < (t) < f (t, x3(t), y),

{ (t)} if x < x3(t and (t) > f (t, x3(t), y),

Y(t,x,y) ETxRx. Now fix an open subset A of such that AF2(t,xo,yo). If
x0 > x3(t), then we can find a neighborhood U of (xo, Yo) such that E2(t,x,y
/(x,y) EU. If _xo_x3(t and (t)

_
_f (t, x3(t),Yo), choose e>0 such that

If_ (t2 x3(t), Yo) e, f (t, x3(t), Yo) + e] C A. Since the functions y-f (t, x3(t), y) and
y-,f (t, x3(t), y) are (l.s.c.) and (u.s.c.) respectively in Yo, there exists a neighborhood
U of (Xo, Yo) with the property

A D [f (t, x3(t), y), f (t, x3(t), y)] F:(t, x, y), V(x, y) e u.

In the case in which x0 _< x3(t and f (t, x3(t), Yo) < (t) < f (t, x3(t), Yo) choose > 0
such that [’(t),f(t, x3(t),y)+]C A. So from the upper semicontinuity of
yHf (t, x3(t),y we can find a neighborhood U of (xo, Yo) such that

A F2(t x, y), V(x, y) U.

Next, we consider the case in which x0 < x3(t and 7 (t) > f (t, Xa(t), Yo)" Using
again the upper semicontinuity of y] (t, x3(t),y at Yo and the fact that 7 (t) A,
as above, we deduce the existence of a neighborhood U of (xo, Yo) such that A D
F2(t,x,y), /(x,y) g. Similarly, we obtain the upper semicontinuity of (x,y)
F3(t,x,Y).

Finally we shall prove that F is integrably bounded on the bounded subsets of
LI(T,). To this end, fixr>0and x,ysuchthat xl _<r and ]y[ r. From
H(F)l(iii it follows that there exists a function rLI(T,)such that

II F(t,x,y)II r(t) a.e. on T. Now let R max{ [ ] , ]] ]] ,r} and let

7 LI(T,R) be the function corresponding to R from condition H(F)l(iii).
Putting 7 + 7 %1"1 + I l, it is evident that 7r LI(T,a)" So, if

xz(t)<x<(t), then F (t, x, y) F(t, x, y) and so ]F(t,x,y)] 7(t), a.e. on T.
Instead, if xz(t > x (or analogously x > (t)) we have that
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F(t,x,y)

F(t, x3(t),Y)
(t), f (t,

(t))

if (t) _< _f (t, x3(t), y),

if f (t, x3(t), y) < (t) < f (t, x3(t), y),

if 7 (t) > f (t, (t), y)

and so, in any case, it follows that IF(t,x,y) < 7(t) a.e. on T. Finally, if x-

x3(t (or analogously x- (t)), we have that

F(t,x,y)
F(t, x3(t),Y)

(t, U), 7 (t)]

if 7 (t) < f (t, x3(t), y),

if (t) > f (t, x3(t), y),

which gives the expected equality IF (t,x, y) < 7(t) a.e. on T.
Consider now the following boundary value problem"

I- x"(t) (t,x(t),qN(r3(x)’(t))) u3(t,x(t)) a.e. on T

(B0x)(0) 120, (Blx)(b)= 121"
1

We shall prove that (2) has a solution in W2’I(T,). Let H’WI’I(T,)-,2L (T,,)
be defined by H(x) {z LI(T, R): z(t) (t, x(t), qN(r3(x)(t))) u3(tx(t)) + x(t)
a.e. on T}, Vx WI’I(T,). From the properties of the multifunction F and from
the continuity of the function tqN(v3(x)’(t)) we deduce that H(x)O,
’ix WI’(T,R) and, denoting r max{N, II II , II II } by H(F)(iii) it follows
that

II H(x)II1 <-- II ")’r II1 + rb. (3.2)

Moreover, let : D C_ LI(T)--,LI(T) be defined by x -x", for every x E Dkwhere
D- {x W2’I(T,R):(Box)(O)- Vo,(BlX)(b -Vl}. From [38] we have that L is m-
accretive and so (cf. [3, p. 72]) the operator L-1 (I/)-I"LI(T,)--,D C
LI(T,R) is well-defined, linear and compact (cf. [38]).

W1 1(Now let F:W1 I(T,R)-.2 T,) be the multivalued operator defined by
F(x)- L-1H(x), Vx WI’I(T,). From the properties of 5 -1 and from the
condition H(F)I it is easy to show that F has nonempty, convex and compact values
and by (3.2) we deduce that F is a compact operator. Now we shall prove that F has
a closed graph. To this end, from the continuity of the operator L-1, it is sufficient
(cf. [40, Proposition 1.5]) to prove that H is weakly completely continuous.

Denote by G’WI’I(T,)--2LI(T’) the Nemtyskii operator

G(x) {z L(T,):z(t) (t,x(t),qN(r3(x)’(t))) a.e. on T},

Vx WI’I(T,). We shall prove that G has a weakly sequentially closed graph To
this end, let {X:n}n be a sequence which converges to x in wI’i(T,R) and {Zn}n be
sequence in LI(T,R) such that z --,z weakly inn LI(T,) for zn G(xn) Vn
Applying Mazur’s Theorem to the sequence {Zn}n, we obtain that there exists
sequence {Vn}n, vn cO{Zm:m >_ n}, such that vn--*z in LI(T,N). Passing to a subse-
quence if necessary, we may suppose that
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vn(t)--z(t a.e. on T. (3.3)

From the upper semicontinuity of (x, y)-F (t, x, y) and since

qN(va(x)’(t)) a.e. on T, we deduce that for a.e. t E T and for every e > 0, there exists
E N such that

(t, c (t, + Vn >

Since zn G(xn) and F has convex values, it follows that

vn(t F (t, x(t), qN(r3(x)’(t))) +[-- , ], Vn > ne

and so from (3.3) and recalling that F has closed values we conclude that z a(x).
Moreover, taking into account that the function x-x(.)-u3(.,x(.))is

continuous from WI’I(T,) into LI(T,) (it is simple to deduce this by applying the
dominated convergence theorem), we obtain that H has a weakly sequentially closed
graph and since H maps bounded subsets of WI’I(T,R) into weakly relative compact
subsets of LI(T,R), we get the weakly completely continuity of H.

Finally, we apply the Kakutani-Ky-Fan Theorem (cf. [20, Theorem i.2]) to F and
obtain that there exists x D such that x E F(x). Therefore, x is a solution of the
problem (2).

Now, we shall show that every solution x of problem (2) belongs to the order inter-
val Ix3, ]. First observe that the boundary conditions on x, xI and imply that

(XI-x’)(0)(x1-x)+(O)

_
O, (X’ (’)(O)(x ) + (O)

_
O,

(X1 )(b)(x1-x)+(b)_ O, (x’-t)(b)(x-)+(b)
_

O.

In fact, we know that

a0Xl(O) CoXl(O) o aox(O) CoX’(O)=2z Co( 1 )(0) ao(X Xl)(O ).
(o)-If co 0, then a0 > 0 and so (x1 x) + (0) 0. Therefore (X1 )(0)(X1 X) 4-

0. If co > 0, then
--(Xi X’)(0) --u(X Xi)(0 ). (3.5)

Now, if x(0) >_ Xl(0 then (xI x) + (0) 0 and so (x1 )(0)(xI x) + (0) 0,
while if x(0)< Xl(0 by (3.5) we have that (xl-x’)(O) >0 and hence (xi-
x’)(O)(x1 x) + (0) >_ 0. In an analogous way we obtain the other inequalities.

If x [Xl, ] then there exists > 0 such that either x() < xl() or x(7) > ( ).
If x(7) < xi(7 (analogously we can proceed if x(7) > (7 )) it is possible to find an

interval Its, t2] C T on which

x(t) < xl(t Vt (tl, t2)

x(tl)-- xl(tl) or 0

and
x(t2) x(t2) or 2 b.
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In any case, at tI and t2, we have (cf. (3.4))

(i ’)(t)( )(t) > o, ( ’)(t)( )(t) <_ o (3.6)

while Yt E (t1, t2) it follows that v3(x)’(t x3(t) and u3(t,x(t))- (x- x3)(t). Since
x is a solution of problem (2), we deduce that -x"(t)+x(t)-x3(t E
F2(t,x(t),x’3(t)) a.e. on [tl, t2] and so x"(t)+ x(t)- x3(t > (t) > X’l’(t a.e. on

[tl,t2]"
Multiplying by (xI -x)(t) and integrating over It1, t2] we have

2 2

f (Xl’-X")(t)(xl -x)(t)dt>- f (Xl -x)2(t)dt"
I I

(3.7)

From the integration by parts formula and from (3.6), we obtain

2

J (Xl x")(t)(xI x)(t)dt <_ 0

I

and so, since (Xl-x)(t) >0, Vt e (tl, t2), from (3.7) we get a contradiction.
Therefore we must have z [x1,]" Similarly, we can prove that z [2,] and so

X [X3’]"
From this, we obtain that x really is a solution for problem (1) and moreover

x1 z and z2 - z, which was to be proved.
The proof of the previous theorem can be adapted to prove a similar result for the

following periodic problem

-x"(t) F(t,x(t),x’(t)) a.e. on T

(0)- (), ’(0)- ’(),
(3)

where F: T x x Pk,c() is a multifunction.
Obviously we say that a function G W2’I(T,R) is a lower solution for problem

(3) if

F(t, (t), ’(t)) n cx, "(t)] : @ a.e. on T

(0)- (), ’(0) >_ ’(),

and W2’I(T,R) is an upper solution for problem (3) if

F(t, (t), ’(t)) t3 ["(t) + cx3) # 0 a.e. on T

(0)- (), ’(0)< ’().

Therefore we have the following result.
Theorem 2: /f hypotheses Ho and H(F)I hold, then problem (3) has extremal solu-

tions in the order interval [, ].
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4. Boundary Value Problem in Hilbert Space

Let (H, (.,.)) be a real separable Hilbert space. In this section we prove the exist-
ence of solutions for the following boundary value problem for differential inclusions:

-x"(t) e F(t,x(t),x’(t)), a.e. on T

x(O) Vo, x(b Vl,
(4)

under the condition that F:TxH x H--,Pwkk(H is a multifunction satisfying the
following hypotheses:
H(F)2: F: T x H x H--Pwkk(H) is a multifunction with the properties:

(i) Vx, y e H, tF(t, x, y) is measurable;
(ii) for a.e. tin T, (x, y)HF(t, x, y) is (u.s.c.);
(iii) Vr > 0, Tr E L2(T,R +) such that II F(t,x, y)II <- 7r(t) for a.e.

tETandVx, yHwith Ilxll -<r;
and Vo, v1 H.
A function x: T--,H is a solution of problem (4) if x W2’2(T, H) and

-x"(t) e F(t,x(t),x’(t)) a.e. on T

x(O) Vo, X(b v1.

Put D {x e W2’2(T,H):(O) Vo, x(b) Vl}, and let ,:D C_ L2(T,H)L2(T,H)
be the operator defined by L(x) x", Vx D. First we prove the following proper-
ties on the operator.. L.

Proposition 3: L is a maximal monotone operator.
Proof: From the integration by parts formula, it follows immediately that L is

monotone. So we need to show that R(I + )- L2(T,H) (cf. [3, Theorem 1.2]) or

equivalently, that Vh L2(T,H), the following Dirichlet boundary value problem

x"(t)+ x(t) h(t) a.e. on T

(0) Vo,() vb,

has a solution in W2’2(T,H).
To this end, we denote by K the following closed and convex subset of WI’2(T, H)

K {x e WI’2(T,H):x(O) Vo, X(b Vl}

and we consider the bilinear form a: WI’2(T,H)x WI’2(T,H)---iI defined by

a(u, v)- /u’(t)v’(t)dt + /u(t)v(t)dt.
T T

First note that a is continuous, since a(u, v) I(t, V}w1,2
_

IlUllw1,211vllW1,2 and it is coercive since a(v,v)- Ilvll 2wl,2. By the

Stampacchia theorem (cf. [6, Theorem V.6]), there exists a unique element u g
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such that

/ u’(t)(v’- u’)(t)dt + / u(t)(v- u)(t)dt >_ j h(t)(v- u)(t)dt, Vv It’.
T T T

(4.1)

Putting v u + w in (4.1) with w e C(]0,1"" b[), we have that

/ u’(t)w’(t)dt / J u(t)w(t)dt / h(t)w(t)dt, w Cc(]O,b[).
T T T

Hence, u E W2’2(T, H) and u is a solution of problem (4).
Proposition 4: The operator (I + )-I:L2(T,H)--D C_ WI’2(T,H) is completely

continuous.
Proof: Let {xn}n be a sequence in L2(T,H) such that xx weakly and let

{yn}n C D be the sequence yn (I + )- l(xn), Vn e N. Since L is a maximal mono-
tone operator, it follows that II Yn II < II xn II, Vn (cf. [3, Proposition 3.2]) and
so {Yn}n is bounded in L2(T,H). Moreover, since xn -Yn-Y, we have that also
{Y}n is bounded in L2(T,H), therefore the sequence {Yn}n is bounded in

W2’2(T,H). Since the latter embeds compactly in WI’2(T,H), by passing to a sub-
sequence if necessary, we deduce that Yn’-’*Y in WI’2(T,H).

Now, taking into account that the operator I + L is maximal monotone (of. [3,
Theorem 1.7]) we have that (of. Remark 1) Gr(I + L)is sequentially closed in
L2(T,H) L2(T,H)w. Here, L2(T,H)w denotes the space L2(T,H) endowed with
the weak topology. We conclude that y-(I+L)(x), and hence the operator
(I + )- 1 is completely continuous.
Now we give the definition of "tube solution" to the problem (4), introduced in

[20] in the case of finite dimensional spaces. We extend this definition in a natural
way to Hilbert spaces.
A couple of functions (r, M) W2’2(T,H) W2’2(T,[0, + cx)) is said to be a tube

solution to problem (4) if
(i) for a.e. t in {t T: M(t) > 0} and for every (x, y) H H such that

II (t) It M(t) and (x r(t), y r’(t)) M(t)M’(t),

there exists v F(t, x, y) such that

(x a(t),v a"(t)) + [I Y r’(t) II 2 >_ M(t)M"(t) + M’(t)2;

(ii) r"(t) F(t, or(t), a’(t)) a.e. on {t G T: M(t) 0};
(iii) ]Ivo-a(O) ]] <_ M(O), ]Iv1-a(b) ]] <_ M(b).
Observe that requiring the existence of a tube solution for problem (4) is

equivalent, in the scalar case, to requiring the existence of an upper and lower
solution (cf. [20, p. 70]).

Using a similar proof to that of Lemma 5.10 of [20], we obtain the following pre-
liminary result which we shall use in the existence theorem.
Lemma 5: Let (r,M) be a tube solution to problem (4) and x W2’2(T,H) be a

function such that x(O) uo and x(b) u1. If for almost every t in {t G T: I] x(t)-
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or(t) II > M(t)} it holds that d(t,x(t),x’(t),x"(t)) > M"(t), where

d(t,x,y,v) ( (t), v "(t)) + I[ ’(t) II (- (t),- ’(t))

then II x(t)-a(t) ll - M(t), Yt E T.
Denote by H1 the following condition:

HI: there exists a tube solution (a,M) for problem (4).
We have the following existence result.

Theorem 6: If hypotheses HI and H(F)2 hold, then problem (4) has a solution
such that II x(t)- r(t) ]]

_
M(t), Vt T.

Proof: First we introduce some functions that we shall use in the proof.
Let u: T x HH, "T xHH and : T x H x HH be functions defined by

M(t)

(t, )
II x- r(t)[[ .(a(t)- x)+ x- (r(t) if II x- or(t)II >/(t),

0 otherwise,

V(t,x)TxH;

(t,)-

M(t) if II x- or(t)11 > M(t),

x otherwise,

V(t,x)TxH;

y+(M,(t)_(x-r(t),y-r’(t)) x-r(t) )II - (t)II II - (t)II
if II x- r(t)II > M(t),

y otherwise,

V(t, x, y) E T x H x H. Now let F: T x H x H--2H be the multifunction defined by

r(t, , y)

{v H: (7 (t, x) r(t), v r"(t))

H

+ II (t, , y)- ’(t)II >_ M(t)M"(t)+ M’(t)2}
if II - (t)II > M(t),

otherwise,

V(t,x,y) T x H x H and let (I)’T x H x H2H be the multifunction

(b(t,x,y) F (t,x,y) + g(t,x), V(t,x,y) T H H,

where g: T x H---,H and " T x H x H-2H are defined by
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(,) =

M(t) XM"(t) (x r(t), g"(t)))l
+

(- (t))

if [[ x- r(t)[[ > M(t) =/= O,

0 otherwise,

V(t,z) eTxH;

M(t)
II x r(t) II F(t, (t, x), (t, x, y)) ’1 r(t, x, y))

-F(t,x,y)

if IJ x-r(t)II > M(t) > 0

if I] x-r(t)II <- M(t) 7 0

r"(t) if M(t) 0,

V(t,x) ETxHxH.
Observe that V(t, x, y) E T x H x H we have that (I)(t, x, y) 5 . This is evident

when Ilx-r(t) ll <u(t):fi0 or M(t)=O. If IIx-a(t) ll >M(T)>O, then

II (t, ) -,,(t) II = M(t) and ( (t, x) r(t), ’(t, x, y) r’(t)) M(t)M’(t). There-
fore from H1 we deduce the existence of an element v F(t,’ (t, z), ff(t, x, y)) with
the woperty that ( (t. ) (t). v ,,"(t)> / II if(t. . y) ’(t) II 2 >_ M(t)M"(t) +
M’(t)2 and hence v F (t,x,y).
On the other hand, using the properties of F and observing that F has closed and

convex values, we infer that is a multifunction with closed, convex and bounded
values and it is integrably bounded in L2(T,N+), since II(t,)ll <_M(t)+
II (t)II and II g(t.x)II _< M"(t) + II "(t)II a.e. on T.
We now consider the following Dirichlet boundary value problem

"(t) e v(t, (t), ’(t))+ (t, (t))

(o) Vo, X(b Vl,

a.e. on T
(6)

and put S {x e W2’2(T,H): x is a solution of (6)}.
Suppose initially that S 5 q}. We shall prove that every element of S satisfies

II x(t)- r(t)[I <- M(t) in T. We will then prove that S 7 q) and hence every element
of S is a solution of our problem (4).

Claim 1: z e S=, II .(t)- ,,(t)II </(t), Vt e T.
First observe that denoting by T’ and T" respectively, the sets T’= {t T:

M(t) O,M’(t) =/= 0} and T"= {t T:M’(t) O,M"(t) # 0}, from the Banach
Lemma (cf. [20, Lemma A.9])it follows that roT’= mT"= O. Fix t T\(T’U T")
and (x,y) H xH such that I{x-r(t)II > M(t) and let v be an element of
((t, x, y) -{- u(t, x). M(t)In the case in which M(t) > O, we put v II x- a(t) II v + g(t, x) + u(t, x), where v
is an element of F(t,x,y) and so it satisfies the following inequality
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M.(t)(x r(t)) r"(t)) / II Y Ix c(t), y cr’(t))2

II - (t)II 2 > M(t)M"(t),

(4.2)

since [] ’(t, x, y) r’(t) ]] 2 II y-a’(t)]]2 + M,(t)2 (x-a(t),y-a’(t))2

IIx-(t) ll
Now, put

M(t) M"(t)r](t,x) 1 II -(t)II I[ -(t)II +

We have (of. Lemma 5)

d(t,x,y,v)

(x if(t), II x a(t) II vl + r](t, x)(x (r(t)) + u(t, x) ("(t))

II - ,(t)II II - (t)II 3 (t, )II - ,(t)II +
11 - ,(t)It 2

M(t)(x o’(t), V1

M(t) II o-(t)II (t)) + II y ’(t)II 2 ( (t), y ’(t))2

+ II :- ,(t)II 2 (,"(t),- II - ,(t)II + II - ,(t)II 3

(x-a(t),u(t,x)).
II - ,(t)II

from which, by (4.2) we deduce that

M(t)M"(t)M(t)- II :- ,(t)II (,"(t), :- (t))/ II - ,(t)II

(x a(t), u(t x)) > ( l
M(t) M"(t)+ II-(t) il II-(t) l] II-(t) ll +

(x cr(t), r"(t)) )II -(t)II 2 II -(t)[[

M(t)M"(t)M(t) II ,(t)It <,"(t), ,(t)) + II ,(t)II ++ II - ,(t)II
(x-a(t),u(t,x))

II - (t)II

M"(t) + II - (t)II M(t)

and so d(t,x,y, v) >_ M"(t).
In the case in which M(t) O, since v r"(t)+ u(t,x(t)), we have that

d(t z y v) (x o’(t), u(t, x)) II y ,’(t) II 2 ( (t), y ’(t))2

II :-i- iI + II - (t)II II - (t)II 3

>_ II - ,(t)l[ >_ o.
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Hence, since t T’t2 T", we conclude that also in this case d(t,x, y, v) >_ M"(t).
Now, if x ES we obtain that d(t,x(t),x’(t),x"(t))> M"(t) a.e. on {t E T:

IIx(t)-r(t)l > M(t)}, since x"(t)(t,x(t),x’(t))+u(t,x(t)) a.e. on T.
Therefore, from Lemma 5, we conclude that II x(t)-cr(t)II < M(t) for everyt e T
which proves the claim.

Claim 2: S is nonempty. 2
Denote by G:WI’2(T,H)2L (T,H) the multifunction defined by

G(x) {z e L2(T, H): z(t) e (t, x(t), x’(t)) + u(t, x(t)) x(t) a.e. on T},

/x E WI’2(T,H). It is simple to check that the values of G are nonempty, for every
x W1’2(T, H). Now consider the operator A: W1’ 2(T,H)W1’ 2(T, H), where (cf.
Proposition 4)

A(x)- -(I -- )- 1G(x), Vx WI’2(T,H).

First we observe that, since the values of G are convex and (I / )- 1 is linear, the
values of A are convex and, moreover, from boundedness of the set G(WI’2(T,H))
and from Proposition 4, we obtain that the set A(x)- -(I / )- 1G(x) is compact,
/x W1’ 2(T, H).
We shall now prove that A has a closed graph. To this end, from Proposition 4

and since R(G) is bounded in L2(T,H), it is sufficient to prove that G has a

sequentially closed graph in W1’ 2(T, H) x L2(T, H)w. So denote by G1" W1’ 2(T, H)-
2L2(T’H) the Nemytskii operator associated to , that is

Gl(X {Z L2(T,H) z(t) (t,x(t),x’(t)) a.e. on T}, Yx WI’2(T,H).

Since G(x) GI(X + g(’,x) + u(’,x)- x and the function xHg(.,x(.)) +
u(.,x(.))-z(.) is continuous from WI’2(T,H)into L2(T,H), it is sufficient to
prove that G1 has a weakly sequentially closed graph.

Let {Zn}n be a sequence which converges to x in WI’2(T,H) and {Zn)n be a se-

quence weakly convergent to z in L2(T,H)such that zn Gl(Zn) Vn 1.
First we observe that it is possible to find a function h L2(T, +) and a sub-

sequence of {X}n, denoted again by {X}n, such that Vx, y E H

Z’n(t)x’(t), II F (t,x, y)II < h(t) on T. (4.3)

Applying Mazur’s Theorem to the sequence {Zn}n, we obtain that there exists a
sequence {Vn}n, vn cO{Zm:m >_ n} such that vnz in L2(T,H), and so by passing
to a subsequence if necessary, we have that

v(t)z(t) a.e. on T. (4.4)
On the other hand, since T {t T" II (t)II > o} is an open subset of T, we
can represent it as T n(an, bn), where (an, bn)C T. Therefore by the absolutely
continuity of t---. I1 x(t)-r(t)II-M(t) and the Banach Lemma (cf. [20, Lemma
A.9]) we obtain

U{t (a,,, II II M(t), II I1’# O.
\ /
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Now fix t E T such that it satisfies (4.3), (4.4) and

t U{t e (an, ha)" II (x-r)(t)II M(t), II (x-a)(t)I1’: M’(t)}.
First we consider the case in which M(t)> 0 and II x(t)-a(t)]] > M(t). Put

R- {r G H: II r- r(t)[I > M(t)}. Then there exists a closed ball B with center x(t)
and N such that Xn(t) B C R Vn > ft. Observe that the multifunction
F B x H has a weakly sequentially closed graph since the map (x,y)-
F(t,7(t,x),(t,x,y)) is (u.s.c.)in BxH and FIBxH has a weakly sequentially
closed graph. From this we deduce that the multifunction (x,y)F (t,x, y) is (u.s.c.)
from B x H into Hw and so, for a fixed neighborhood U of zero in Hw, since F has
convex values, we obtain that there exists nU > such that vn F (t,x(t),x’(t))+ U,
Vn > nU. From the arbitrary choice of U and since F has closed values, we have
that z(t) Gl(X)(t).

In the case that M(t) > 0 and II x(t)- r(t)II < M(t) we can find N such that

J] xn(t)-r(t)II < M(t), Vn > and so, from the upper semicontinuity of (x,y)
F (t,x,y) we obtain again, z(t) Gl(x)(t).

If M(t)> 0 and II x(t)-r(t)II- M(t), since xn(t)x(t), we have that either
there exists n* such that II xn(t)- a(t)II <- M(t), Yn > n* or there exists a sub-
sequence of {Xn(t))n, denoted again by {Xn(t))n such that ]1Xn(t)-(t) II > M(t),
Vn N. In the first case, proceeding as above, we obtain that z(t) Gl(X)(t), while
in the second case, we observe that from the upper semicontinuity of (x,y)H
F(t,’ (t,x),y)in (x(t),x’(t)) and since (t, xn(t),X’n(t))--*x’(t), we have that for every
neighborhood V of zero in H, there exists n. N such that

M(t)zn(t) II xn(t)-r(t) II (- F(t,7 (t, xn(t)),(t, xn(t),x’n(t)))gF(t, xn(t),X’n(t))

c r(t, + v Vn > n,,

and so z(t) e Gl(X)(t). Finally, if M(t) O, since F (t, xn(t),x’n(t)) F (t,x(t),
x’(t))- r"(t), we deduce the desired property. Therefore G1 has a weakly sequential-
ly closed graph.

Now, since A is a compact multifunction, we can apply the Kakutani-Ky-Fan fixed
point theorem (cf. [20, Theorem A.2]) and conclude there exists x WI’2(T,H) such
that

x"(t) e (t, x(t), x’(t)) + u(t, x(t)) a.e. on T

x(O)-vo, x(b)-v1.

Now, from Claim 1, we have that II (t)II _< M(t), Vt T, and so for a.e. t in
T, we have

{x"(t) F (t,x(t),x’(t))
F(t, x(t), x’(t)) if M(t) :/: O,

r"(t) if M(t) O.

Applying Banach’s Lemma (cf. [20, Lemma A.9]) and the definition of a tube solu-
tion we obtain that x is indeed a solution of problem (4).
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Remark 3: Observe that, even if H- RN, Theorem 6 extends Theorem 5.9 of [20]
in the sense that there exist multifunctions F which satisfy our conditions but not
those of the result of [20].
An example is proved by the following multifunction F: [0,1] x R2 x R2___22

defined by

F(t,x,y)- {(4tin [[y]]’O)} if t0,

{(0, 0)} if t O.

It is easy to see that F satisfies the hypothesis H(F)2 and H1 by assuming ((t)=
(0, 0) and M(t) 1, Vt e T.
On the other hand, F does not satisfy condition (5.9.3) of Theorem 5.9 of [20].
The proof of Theorem 6 can be adapted (with minor modifications) to prove a

similar existence result for the following periodic problem

x"(t) C= F(t, x(t), x’(t))

(0)-

a.e. on T

where F: T x H x H-OPwkc(H is a multifunction.
Obviously we have that a couple of functions (r,M) E W2’2(T,H) x

W2’2(T,[0, + cx)) is said to be a tube solution to the problem (5) if
(i) For almost every tin {t E T:M(t)> O} and for every (x,y) H x H such

that

II (t)II M(t) and (x tr(t), y r’(t)) M(t)M’(t),

there exists v F(t, x, y) such that

(ii) a"(t) e F(t, r(t), r’(t)) a.e. on {t e T: M(t) 0};
(iii) a(0) = r(b), ][ a’(0)- r’(b)I] - M’(b)- M’(0) and M(0) M(b).

Therefore we have the following result.
Theorem 7: /f hypotheses H1 and H(F)2 hold, then problem (5) has a solution
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