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The class of harmonizable fields is a natural extension of the class of sta-
tionary fields. This paper considers a stochastic series approximation of a
harmonizable isotropic random field. This approximation is useful for
numerical simulation of such a field.
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1. Introduction

In recent years the study of harmonizable processes has played a central role in the
development of the theory of nonstationary processes. Crucial to this development is
the pioneering work of Chang and Rao [1] on bimeasures and Morse-Transue
integration. Their paper set the stage for the recent advances in the theory. A recent
account of the development of harmonizable processes and some of their applications
may be found in Swift [5]. That paper also contains a detailed bibliography of the
existing work on harmonizable processes.

In this paper, a stochastic series approximation of a harmonizable isotropic
random field is considered.

2. Background

Let (a,Z,P) be a probability space. For p >_ 1, define L(P) to be the set of all
centered complex valued f E LP(f, E, P), that is E(f) 0, where
E(f) fnf(co)dP(w)is the expectation. We will consider second order random
fields, more specifically, mappings X:Nn--Lg(P).

1Presented at the Fifth International Conference on Combinatorics, Statistics,
Pattern Recognition and Related Areas, Mysore India, December 28-30, 1998.
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A random field X(t)is (weakly)stationary if its covariance function

t)

is translation invariant and continuous. Thus r(s,t)= (s-t) and is also positive
definite. The power of the stationary assumption is seen in the following classical
theorem of Bochner.

Theorem 2.1: If Y (.) is a continuous stationary covariance then there exists a

unique bounded Borel measure F:n---C such that

(t) / ei"dF().

This representation bring8 to bear the powerful Fourier analytic methods in the
study of stationary processes and fields.
A motivation for the concept of harmonizability is to enlarge the applications of

stationary processes and fields while retaining the Fourier analytic methods. This
notion is seen in the following definition.

Definition 2.1: A random field X:nL(P) is weakly harmonizable if its
covariance r(., is expressible as

r(s,t) //ei’-ix"’dF(,,,V) (1)

where F’IRnxlRn--+C is a positive semi-definite bimeasure of bounded Frchet
variation.
a random field, X(.), is strongly aoi;* ir the bimeasure F(., .)in (1)

extends to a complex measure and hence is of bounded Vitali variation. Random
fields often admit an additional property:

Definition 2.2: a random field X:[R+L2(P) with mean m(.) and covariance
r(.,. is isotropic if for each orthogonal matrix t/acting on [Rn, one has

m(gt) re(t) and r(gs, gt) r(s, t).

The representation of the covariance of a harmonizable isotropic random field was

first obtained by R.J. Swift [4] and more recently by M.M. Rao [3], using a dilation
procedure.

Theorem 2.2: The covariance r:nxn---*C of a weakly harmonizable isotropic
random field has representation

0 0

where Ju(’) is the Bessel function (of the first kind) of order u- (n-2)/2 and
F(., .) is of complex bounded Frchet variation.

Note that when the spectral measure F(.,. concentrates on the diagonal ,- ,V
the representation of the covariance becomes

J(r)

o
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which is the representation of a stationary isotropic covariance obtained by Bochner.
A useful characterization in spherical-polar form for the covariances of

harmonizable isotropic random fields was given by Swift [4] as:

Theorem 2.3: A random field x:n--L(P) is weakly harmonizable isotropic iff
the covariance function r(.,.) is expressible for n >_ 2 as:

where u - and

(i) 8- (T1, ll), - (7"2, V) are the spherical polar coordinates of s, in Nn, here

7"1 II S II, 7"2 [1 /11 and u rl v r- are unit vectors.

(ii) S/m( ), 1 < < h(m n) (2m + 2u)(m + 2u- 1)!
(2u)!m! m>_l, Colo(U)-1 are the

spherical harmonics on the unit n-sphere of order m.

2 22u + 1 n 7r-ff(iii) an > O, an-
with F(., as a complex function of bounded Frchet variation.

Using (2) and a form of Karhunen’s Theorem, a spectral representation of a har-
monizable isotropic random field is given by:

Theorem 2.4: A random field X’Nn--*Lg(P) is weakly harmonizable isotropic iff it
admits a spectral representation of the form

E(Zm(B1)Zm,B(2)) 6mm,61l,F(B1, B2)

with F(. .) a function of bounded Frdchet variation and 7" II t [I u-7, and (5
mr.a

the Kronecker delta, the stochastic integral being in the Dunford-Schwartz sense.

With these details now in place, we will consider a series approximation of a

harmonizable isotropic random field.

3. A Series Approximation

Recently, Yadrenko and Rakhimov [6], considered a method of simulating a

stationary isotropic random field using a stochastic series. With the above
background in place, we will consider a similar notion for a harmonizable isotropic
random field.

Let , be a nonnegative random variable with density function fl()) and let .’ be
another nonnegative random variable with density function f2(1’).

Let {rml} and {m2} be two mutually independent sequences of independent

random variables such that for each m
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and
E(r/ml) E(r/m2) 0

where 5 is the Kronecker delta.
Let t E N2, with polar coordinates (11 t II, 0) and consider the stochastic series

x() x( II t II, o) -’mJr( Iltll )[rlmlCsmO A- rlm2sinmOm’--0

where

for m-0

for m 76 0.

Now using (3), the covariance of the series is computed as

(,, t) E(X()x(t))

Thus

E(X II II ,Ol)X( Iltll ,02)

Vr( II" II )[r/mlcsrnO1 + m2Sinm01]
m-----O

Zmm(’ I111 )[rlmlCSm02 - m2sinm02]
m’-0

.(, ) E go(( II II )r]OlJO((/’ II t II )r]01 -+" 2 E Jm(’ I[ II )Jm(’ II 11)
m---0

x [mlCosmO1 -t- Om2SinmO1][lmlcOSmO2 nt- rlm2Sinm02]

(3)

+ 2 #J(A II s II )jz(x’ Iltll )[ZIklCSk01 -4- Zlk2sinkO1][ZllCOSlO2 "4- 12sinl02] ),
upon applying the expectation, the expression becomes

0 0

+ 2E Jm() II s II )Jm(’ IIt[[ )cOSta(01 02))fl($)f2(A’)]dAd)’ (4)
m=O

where fl(" and f2(" are densities of the nonnegative random variables , and ,’,
respectively.

The following lemma, the proof of which was given by Swift [4],
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Lemma 3.1" With the notation given in Theorem 2.3, one has

2 Ex3 h(m,n)E iSm(U)Srn(V Jm + u(’rl)Jm + u(A’r2) -2uF(n)gu(R(’’)) (5). (l)(,r) ] (R(, ’))m=O /=1

1

,’,2r22 rr2cosO) an osO u v, he angle beeween

unit vectors u, v, reduces for n 2, to
2

2E ESS()S()Jm(rl)Jm(’r2) Jo(2r + (’)2r- 9’cosO). (6)
m:Ol:l

Substituting expression (6)into () gives the covariance as

(, )- E(X( II II, 01)X( II [I

2AA’cos(O1 --02) ) fl(A)f2(A’)dAdA’.

(7)

But (7) is just the representation of the covariance of a strongly harmonizable
isotropic random field on the plane R2, with spectral density

f(A,A’) fl(A)f2(A’).

This observation is summarized as:

Theorem 3.1: The two-dimensional random field X:2--L2(P) with representa-
tion

x(t) x( II t II, o) mJm(A Iltll )[l]mlCSmO -4- qm2sinmO]
rn=O

where

1]
m _{ 1 for rn--O

2 form#O,

is strongly harmonizable isotropic with zero mean and a covariance with representa-
tion given by (7).
To approximate a strongly harmonizable isotropic random field, the convergence of

the partial sum
N

XN(t) XN( lit I[ ,0) V-:m( Iltll )[lmlCosrnO -+- rlm2sinmO] (8)
m:O

will be considered. Thus

E[ X(t)- XN(t) 2] E[ J(A llt[I )[r]mlcsm0 + 7,2sinm0] ]
rn-N+l

2 Jm( Iltll )Jm(’ II t II)I II(A)f2(A’)dAdA’.
0 0 rn-N+l
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But, the growth inequality (cf., Lebedev [2])

Jm(z) <- Z

gives that

E[ X(t)- XN(t) 2]
_

2 E
0 0 re=N+1

, II t [I
rn2

f (’k)f2(’’)d’kd’

N ,Vfl(A)f2(’)dAdA’.
0 0

Thus, the error in approximating the random field (3) by its partial sum depends
upon a boundedness condition upon its moments and is given by:

Theorem 3.2: Suppose that the two-dimensional random field X(. with represent-
ation

satisfies

X(t)- x(llt[[,0)- E --mJrn() [[ t ll )[rlmlcOsrrtO-l-m2sinrnO
m--O

/ / .,.’fl(/)f2(/’)d/d,t_
0 0

then the partial sum XN(t), given by (8), converges in the L2-sense to X(t) as
N"-’(X)

Letting c o

f J
0 0

then
Corollary 3.1: The error of the L2-approximation of the random field (3) by its

partial sum (8) is bounded by (2 II t II 2#l,1)/N.
In practice, it is often desirable to guarantee not only the closeness of the partial

sum, but also the closeness of partial derivatives up to a given order. The following
theorem is stated here for completeness. The proof follows using similar, (though
tedious), computations as above and the inequality (of., Lebedev [2])

(Jn(z))2 1/2(J2m- 1 (z) -}- Or2rn -I- (z))"

Theorem 3.3: Consider the two-dimensional
representation

x(t) x( II t II, 0) V/-mJm( [Itll )[rlm

1. If #2,2 <- oc and N > 1, then

Olltll 0[I -<

raridom field X(. with

cosmO + rlm2SinmO ].

2 II tll 2z2,2
N-1
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and

oo oo <-
2. If #:,2 <- c, and #3,3 -< o( and N > 2, then

NE 1

02X( ]lt]] 0) 02XN( ]]t]] 0)[212]] t]] 2//33
o1111 olltll ]- x-

and

OX(lltll O) 02XN([[tll O)[i1 211t [[ 4( [[ t [[ 2#3 3

020 020 I N- 2

2x(oII 11111100’ ) O=XN(oII I[111100,0) 121 2 I111 =( IIIIN 4#2’2
Acknowledgments

The author expresses his thanks to Professor M.M. Rao for his continuing advice,
encouragement and guidance during the work of this project. The author also
expresses his gratitude to Western Kentucky University for a sabbatical leave during
the Fall 1998 semester and for release time during Spring 1999 semester, during
which this work was completed. The generous support of the Committee for Faculty
Research at Western Kentucky University is also acknowledged. Without their
support, my travels to India would not have been possible.

References

[1] Chang, D.K. and Rao, M.M., Bimeasures and nonstationary processes, Real and
Stochastic Analysis, John Wiley and Sons, New York (1986), 7-118.

[2] Lebedev, N.N., Special Functions and Their Applications, Dover Publications,
New York 1972.

[3] Rao, M.M., Characterization of isotropic harmonizable covariances and related
representations, (to appear).

[4] Swift, R., The structure of harmonizable isotropic random fields, Stoch. Anal.
and Appl. 12 (1994), 583-616.

[5] Swift, R., Some aspects of harmonizable processes and fields, In: Real and
Stoch. Analysis: Recent Advances (ed. by M.M. Rao), CRC Press, Boca Raton,

(199V), aoa-a6.
[6] Yadrenko, M.I. and Rakhimov, A.K., Statistical Simulation of a Homogeneous

Isotropic Random Field on the Plane and Estimations of Simulation Errors,
Theory Prob. and Math. Statist. 49 1994.


