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Let T)(x), T{(x),...,T(x) be a sequence of normalized Legendre polynom-
ials orthogonal with respect to the interval (- 1, 1). The asymptotic esti-
mate of the expected number of real zeros of the random polynomial
9oT)(x) + 9T’(x) +... + 9nTn*(x) where 9j, J O, 1,..., n are indepen-
dent identically and normally distributed random variables is known. In
this paper, we first present the asymptotic value for the above expected
number when coefficients are dependent random variables. Further, for
the case of independent coefficients, we define the expected number of zero

up-crossings with slope greater than u or zero down-crossings with slope
less than -u. Promoted by the graphical interpretation, we define these
crossings as u-sharp. For the above polynomial, we provide the expected
number of such crossings.

Key words: Sharp Crossings, Number of Real Roots, Kac-Rice For-
mula, Normal Density, Legendre Polynomial.

AMS subject classifications: 60H99, 42BXX.

1. Introduction

Let (a,A, Pr) be a fixed probability space and {gj(w)}r_ o, w e f, be a sequence of
normally distributed random variables. Let Tj(x) be a Legendre polynomial and

T(x)-w/ij+ 1/2)Tj(x) be a normalized Legendre polynomial orthogonal with
respect to the weight function unity. We denote Nn(a,b by the number of real zeros

of Pn(x)in the interval (a,b) where

Pn(x) Pn(x’w) E gj(w)T;(x). (1.1)
j=o

For the case of independent coefficients, Das [2] shows that for n sufficiently large,
ENn(,- 1,1), the expected number of real zeros of Pn(x) is asymptotic to rt/x/.
Wilkins [13] is an interesting work which involves much delicate analysis and reduces
Das’ error term significantly. In more recent work [4] (see also [5]), we consider the
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case of non-identically distributed gjs. However, all the above results were obtained
by insisting on the coefficients being independent.

Motivated by interesting results obtained in [8, 9] and [10] for the dependent co-
efficients where T(x) in (1.1) is defined as xj, j- 0,1,...,n as well as in order to
gain a better understanding of the mathematical behavior of Pn(x), we consider the
case when the coefficients gj are dependent with moment matrix with Pii- r2 and

Pij P, 0 < p < 1, j. Comparing our results for the Legendre polynomials with
the algebraic one, in the cases of independent versus dependent, significant differences
in the behavior are revealed. It is shown that ENn(- x,c) for the algebraic case
with dependent coefficients is half that of the independent case. However, we show
that for our case of Legendre polynomials, the expected number of zeros is invariant
for both dependent and independent cases.

In another direction, we define a real zero of Pn(x, w) as u-sharp when it up-crosses
the x-axis with slope greater than u or down-crosses it with slope smaller than -u.
We denote the number of u-sharp crossings of Pn(x,w) in the interval (a,b) by
Su(a,b). Our above method allows us to show that in the case of independent
coefficients, most of the crossings of random Legendre polynomials are u-sharp. That
is, unlike algebraic cases, ESu(- 1,1) is independent of u. We prove the following
theorems.

Theorem 1: If the coefficients of Pn(x) in (1.1) are dependent with the above
covariance matrix and mean # then, for all sufficiently large n, the expected number
of real zeros of Pn(x) is

EN,(-1 1). n

Theorem 2: If the coefficients of Pn(x) in (1.1) are independent with mean #,
then for all u such that u/n3---O as n--c, the ezpected number of u-sharp crossings
is

nES(- 1, 1)

2. Analysis

Let

A2-var{Pn(x)}, B2-var{P’n(x)},

C-cov{Pn(x),P’n(X)} O- cov{Pn(x),P’n(x)}
AB

and

A1-E{Pn(x)} 2- E{P’n(x)}

A2 BOA1/A + u

BV/1 02
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Then from Cramfir and Leadbetter [1, p. 125], the expected number of real zeros of
Pn(x) in (a,b) can be obtained as

b

EN(a,b)- ] BV/1-02 (-)A [2(r/) + r/{2(I:’(r/)- 1}]dx
a

(2.1)

where (I)(t) and (t) are the distribution and density functions of a normal standard
random variable, respectively. Denote A2- A2B- C and erf(x)- f exp(- t)dt;
then from (2.1) and since

erf(x/v/)
(I) (x)--21-+ V/ (2.2)

we can write

ENn(a b) exp A2A- 2CA12 + B2A12’
2A2

rA3 --- er
AAV/-

dx.

(2.3)

Also with the above definition of u-sharp crossings from [5, p. 18], we have

b

EOCu(a, b) ff BV/i 02(____1)A [(ru) + (r/_ u) + ro{(I)(ru) + (I)(r- u)- 1}]dx.
a

Now by using (2.2) and with a little algebra, we obtain the following formula for the
expected number of u-sharp crossings"

ESu(a)
a

2rA2 exp
2A2 2 +exp

2A2 2

A2A2 CA1 ,exp---$ er ITulv/ +er I_.lvq d,

(2.4)

where 7u 7u(x) (AA2- CI/A + Au)/A. In the following we evaluate those
elements that appear in formula (2.3) and (2.4). To this end, with the assumptions
of the theorems, we have

* () (.)A2_(a2_p) Tj (x)+p
j -0 j =0

St2 t(-p) ()+ p () (2.6)
j -0 j =0
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and

3:0 j:O 3:0
n

#
=0

n

h
3--0

In order to estimate the terms that appear in (2.5)-(2.9), we recall the following
properties valid for Legendre polynomials, see for example [6, p. 1024]

and

3 o
Tj(x)Tj (x) 4 V2n + {Tn + l(X)Tn(x) Tn + l(X)T(x)}"

(2.11)

(2.12)

As far as A1 and A2 are concerned, we will see that only their upper limits are
needed and we will give these limits later. Now in order to evaluate the right-hand
side of (2.10)-(2.12) we note that for Legendre polynomials we have the following well
known recurrence formulae

2n + 3xT n + 2Tn(x) -n + 1 n + 1(x) n + lTn + 2(x) (2.13)

and

n {Tn (x)-xTn(x)}l_x2 -1
(2.14)

n+ l Tn(x Tn+ll+x:{x (x)}.

Use has been made of (2.13), written for Tn_l(X), in order to obtain the last
equation of (2.14). Now it is easily seen that, by using (2.13) and (2.14), the right-
hand side of (2.10) can be written as

T’n + l(X)Tn(x) Tn + l(X)T’n(x)
n + l {T (x) + 2

1 x + Tn(x)- 2xTn(x)Tn + I(X)}
(2.15)
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Now we proceed to estimate the right-hand side of (2.15). To this end, we assume
1 + e < x < 1 + e where e < 1 is any positive constant, arbitrary at this stage to be

chosen later. From the Laplace formula [11] by setting p 1 for x cos7 we obtain

2 Plk!{F(u + 1/2)}2cos{(n + u + 1/2)7 -(u + 1/2)r/2}Tn(csT) r]n7
u 0 ru!(2sinT)Ur(n + u + 3/2)

+ o(nsinT)- p 1/2

nrsin7 _} + O{(nsin7 /2}.

Therefore, we can obtain the right-hand side of (2.15) as

Z2n +l(X) + Z2n(X) 2xZn(x)Zn + (x) 2V/1- x2
nTr +0 1 )n(1 x2) (2.16)

Hence from (2.10), (2.15) and (2.16), we get
n + +

3 o nTr(2n + 1)(1 x2)
+ O( 1 2)2)"n(1 -x

In order to obtain the second term of A2 in (2.5) as well as estimating Zl, we use the
identity

n

(1 x)E (2j + 1)Tj(x) (n + 1){Tn(x T, + l(X)}.
3=0

(2.18)

Then since

we can write

j=O

Tn(x) < CnV/1 x2

j+ Tj(x) + J +1 x)
j=p+l(P+l/2

O{(p+ 1)
ITp(x)- Tp+

+(n+l)
Tn(x) Tn +

x)

1/6 }=O n

(1 x)V/1 x2

where p stands for the integer part of n2/3. Now (2.20) can, indeed, be used as an

upper limit for /1 as well as from it, (2.5) and (2.17) yield
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A2 ((72- p)(n + 1)2(2n + 3)1/2

rn(2n -4- 1)1/2(1 x2)1/2

0"
2

+0 -P
n(1 12)2

In order to evaluate B2 and C, we note that any Legendre polynomial satisfies

d2y ( 21 dx n(n -1)y
dx2 i ’ X2 +

1 x2

Therefore, the second derivative of T’(x) satisfies

(1 x2)T’(x) 2xT’n(X n(n + 1)Tn(x).

This relation and its equivalent written for n + 1 leads us to

T + l(X)T’n(x) Tn + l(X)T’(x)

--(n + 1){nTn + l(X)T’n(x) nT’n + l(X)Tn(x) + 2Tn + l(X)T’n(x)}

(2.21)

(2.22)

1 X
2

and

T + l(X)Tn(x)- Tn + l(X)T(x)

2xT’n + l(X)Tn(x) 2xTn + l(X)T’n(x) 2(n + 1)Tn(x)Tn + l(X)}
(2.23)

Now by using the first theorem of Steilzer [11 p. 127], Tn(x < 4n-1/2(1
1/4x2) 1/4 o{n- 1/2(1 x2) }. Therefore using (2.14), we obtain

T,n(x) o{nl/2(1 12)- 5/4).

Substituting this estimate in (2.22) and (2.23) yields

Tn + l(X)Tn(x) Tn + l(X)T(x)

n(n + 1){T + l(X)Tn(x)- Tn + l(X)Tn(x)}
1 X

2
(1-- 12)5/2

(2.24)

and

T + l(X)Tn(x) Tn + I(x)T(x)

2x
1-x

2{T + a ,rnx T
(1 12)3/2
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Also, by differentiating both sides of (2.23) and using (2.22) we can obtain

T’+ l(X)Tn(x)- T’(x)Tn + l(X)
(2.26)

8x2 + n(. + 1)(1 x2){T, (x)T(x)- Tn (x)T’(x)} + O 1
(1_x2)2 +1 +1 [,(1--x2)5/2J"

Hence (2.25) and (2.26) give an estimate for (2.11) which completes the evaluation
of the first term of B2 in (2.6). For the second term we use (2.18) and similar to
(2.20) we obtain

E Tj (x) O
2E (2j + 1)Tj(x)

j=o 1 j=o

na/2]Tn(x) }=O
(1-x2)(1-x) (2.27)

o{ )s/4}’(1-x)(1-x

Therefore from (2.6), (2.11), (2.15), (2.16), and (2.25)-(2.27) we have

B2 (er2 P)3
(n + 1)3(2n + 3)1/2

r(2n + 1)1/2(1 x2)a/2

+o{(-p) p }(1 z)5/2 + (1 )(1 )/ (2.28)

Also (2.7), (2.12), (2.20) and (2.27) yields

C O{ (2 p)n
p

I
nr/6 }x2)3/2 + r/41-x)2(1-x2)

(2.29)

From (2.20) and (2.27), we easily obtain the following estimates for "1 and 12 as

’1 0 #(1 x)(1 x2)1/2
(2.30)

and

n } (2.31)#(1 x)(1 x2)5/4

3. Proofs of Theorems

The above estimates obtained are all valid for x E (- 1 + e, 1-e) for which we use

the result obtained in (2.3) and (2.4) for Theorem 1 and 2, respectively. For the
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expected number of zeros outside this interval, we ought to use a completely different
approach based on an application of Jensen’s theorem. We will see that for the
choice of , an.y positive value smaller than n-1/4 will serve our purpose, and we

chose - n-1/4. First from (2.3), (2.21) and (2.28)-(2.31) we note that

ENn(-l+e,l-e) n / dx

-l+e (3.1)

n

Also from (2.4), (2.21) and (2.28)-(2.31) by the assumptions given for Theorem 2 for
u, we obtain

ESu( 1+ , 1 ) .,n / exp{ ttn 3(1 2)3/2}dx
rX/- V/1 x:

-l+e

n [ dx n.__n__
rv/-J v/1_ x v/-.

-l+e

(3.2)

Now for both Theorem 1 and 2 we show that for (- 1, 1 + ) and (1- ,1) the
expected number of real zeros and u-sharp crossings is small. To this end, we use an
application of Jensen’s theorem [7, 12], first used by Dunnage, and its generalization
to the dependent case in [3].

In order to avoid duplication, we note that the expected number of u-sharp
crossings is smaller than the expected number of overall real zeros. Therefore, we
only concentrate on the upper bound for the number of real zeros. The results for the
number of sharp crossing then will follow. Let N(r)=_ N(r,w) denote the number of
real zeros of P(z,w) in z- 1 < . Assuming P(1) -7(: 0 from Jensen’s theorem, we
have

Pn(1 + 2eix, w)N()log2 _< 2- log
pn(1

dx. (3.3)
0

Now since

P,(z) 1 {z + iv/1 z2cos0 dO

0

for all sufficiently large n, we obtain

Pn(1 + eeix) <_ (1 + 3)n < exp(n).

Therefore, since by Schward’s inequality

E v/j+I/2 < n
j=0

n

+ 1)E (J + 2) < t3/2,
=0

for all sufficiently large n, we can write
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Pn( 1 + eix) < n3/2exp(3n)max gj (3.4)

where the maximum is taken over 0 < j < n.

normal distribution
Now since gj, j- 0,1, 2, n has a

Pr(max gyl) > nPr([ gy > n)

r exp
2r2

n

< exp 2(r2

Also since the distribution of P(1)-Ey=0(v/j+ 1/2)gj is normal with mean

m # nj=oV/J + 1/2 and variance h2 r2n(n + 2)/2 we can say

Pr(-I<P(1)<I)-
v
-,ol/{A. /5_2 exp

-1

(t m)2 }2

2 (3.6)<
7rA2"

Therefore, from (3.3)-(3.6) and except for sample functions in an w set of measure not
exceeding 2/A + 4exp{- (n- #)2/2cr2} < 4/ncr we have

(5/2) logn + 3nN(e) < log 2

This gives O(ne + log n) as an upper bound for EN(e), which is sufficient to give the
proof of the theorems.
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