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In this paper, we propose a new continuous time stochastic inventory
model for stock dependent demand items. We then formulate the problem
of finding the optimal replenishment schedule that minimizes the total ex-
pected discounted costs over an infinite horizon as a Quasi-Variational In-
equality (QVI) problem. The QVI is shown to have a unique solution un-
der some conditions.
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1. Introduction

This paper discusses a single item continuous time stochastic inventory model for
stock dependent demand terms. The discussion is motivated by the well known princi-
ple in the marketing literature that demand for certain items depends largely on the
quantity displayed on the shelf (see for example, Corstjens and Doyle [2] and Schary
and Becker [1]). There are some simple EOQ deterministic models such as Datta and
Pal [3], Coswami and Chaudhuri [4] but no attempt has been made to incorporate
this principle in continuous time stochastic inventory model due to the technical com-
plication that arises from the inclusion of the stock dependent demand items.

To formulate the problem, let x(t) denote the level of stock at time t. We assume
that the cost structure of the model is the following:

(1)  The discount factor is @, with a > 0.

(74)  The holding cost is

— pz, for £ <0 (shortage cost),
f(e) = ,
qz, for 2 > 0 (holding cost),

Printed in the U.S.A. ©2001 by North Atlantic Science Publishing Company 317



318 L. BENKHEROUF, A. BOUMENIR and L. AGGOUN

with p > 0 and ¢ > 0.
(4i7)  The setup cost is k, with & > 0.
(iv) A cost per unit of item is ¢, with ¢ > 0.
A replenishment policy consists of a sequence (t,,Q;), i = 1,..., where ¢, is the ith
time of ordering and @, is the quantity ordered at time t,, where t; <, <.... Let

Ve={t:Q)}i=1,..

Fo{z(s)s <t}
and set
Ve :TllLrIgoVn =V.

Assume that the variation in inventory is governed by the following stochastic
differential equation

dzy = —( g+ ae(0)PI(a(t) > 0) it — oduw, + 3" Q8(t —1,), (1)
120
where I(A) is the indicator function of set A, § is the Dirac function, g >0, ¢ > 0,
a>0, 0<B<1, gnd {w,} ig the standard Brownian motion. Note from (1) that
when o = 0, then ( g+ az(¢)? ) can be interpreted as the demand rate when z(t) > 0.
Also note from (1) that it is implicit in the model that when z(t) < 0, shortages have
no effect on the demand.

If a = 0 then the above model reduces to the model found in Sulem [8]. However,
our treatment is different from that of Sulem in a number of ways resulting in a more
general approach.

Assume that V  is ¥ -measurable. Then, the optimal replenishment schedule re-
duces to the problem of finding the sequence V* that solves

vo) =i Bo| [ Seo)em it Y (ke | (2)

b >0

where the expectation is taken over all possible realizations of the process z(t) under
Policy V.

In the next section, we formulate the problem addressed in (2) as a Quasi-Varia-
tional Inequality (QVI) problem and show that under some conditions on the
discount factor, the unit cost and the holding cost, a unique solution to the QVI
exists. We conclude with some remarks on the problem of finding a replenishment
schedule that minimizes the total cost per unit of time.

2. The Quasi-Variational Problem and Optimal (s,S) Policy

In this section, we formulate the problem addressed in (2) as a Quasi-Variational In-
equality (QVI) problem and show that the optimal impulse control policy is an (s, S)
policy, where s and S are determined uniquely under certain technicality conditions
(see Theorem 1 below).

Fix t and let 7 be a short interval of time. We then have two cases:

(1)  If z(t) > 0 and no order is made in the interval [t,¢ + 7), then (1) and (2)
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imply that

t+ 7
y(@) < E / fa(t)e ™ ¢~ Vs +y(t + r)e =0T | (3)

t

Write
z(t+71) = 2(t) + Az,

and use the fact that for a standard Brownian motion w(t), E[w(t)] =
and E[w?(t)] = t. The Taylor expansion of the right side of (3) gives

y(@) < 7)) + y(2(t) + BlAs, 1 (a(1))
+1E[Ae, Py (2(1) — aty(e(t)) - aTE(Az,)y'(2(1)
~LarB((Az,)? " (2(1) + O(r),
which leads to
0 < 7f(2(0) = (9 + ax(f i/ (2(0) + §o*ry" (@ (1)) =~ aTy(a(0) + O,
Dividing by 7 and letting 7—0, gives

~Lo2y(a(1)) + (g + a2 () (2(1)) + av(z) < 1.

(d) If z(t) <0 and no order is made in the interval [¢,¢+ 7), then a similar
argument to the one used in (i) gives
— 302y (2(1)) + gy'(2(1)) + ay(2(1)) < f.
(¢i7) If an order of size @ is placed at time ¢, then the inventory level jumps from
z(t) to z(¢) + Q. In other words,
y(2(1)) < k +inflcQ +y(2(1) + Q)]
Let A and M be two operators defined by
() - 102y”(x) + (g + azP)y'(z) + ay(z), ifz>0 B
y(z) =
—50%y"() + gy'(z) + ay(=), if 2 <0.
My(z) =k +infle@ +y(z + Q)). (5)

Then the optimal expected costs for the inventory model is given as a solution of the
QVI problem
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Ay < f
y< My (6)
(Ay— f)(y— My) = 0.

For more details on QVI, see Bensoussan and Lions [1].

To find the solution of the QVI problem given by (6), we follow Sulem [8] and
divide the inventory space into two regions

(%) the continuation region

C={z€R; y(z) < My(z)} = {z € R;z > s},
where no order is made and
Ay =/,

where A is defined in (4).
(1)  The stopping region

C ={zeR; y(z) = My(z)} = {z € R; = < s},

where M is given by (5), corresponds to the states where an order is made.
In C, we have

y(z) =k+ igf[CQ +y(z + Q)] )
=k+c(S—z)+y(S). (8)

The solution to the QVI given by problem (6) is continuous differentiable and
continuity at the boundary point s gives from (8) that

v(s)= —c. (9)
The infimum in (7) is attained at S. Hence,
v($) = —c. (10)

Also, y is continuous at s, which leads to

y(S) =y(s) —k—c(S —s). (11)
Also, we require that
. y(z)

Note at this stage, s must be <0, otherwise (8)-(11) will lead to s =5, which
means that k=0, contradicting the assumption that k& > 0. The following is the
main result of the paper.

Theorem 1: There exists a unique solution to the QVI problem given in (6) if and
only if (— p+ac) <0.
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The proof of Theorem 1 is lengthy and thus is done in stages. In the first stage,
we are concerned with the asymptotic nature of y(z) + cz as z— + oo and of y(s) + cs
as s— — 0o.

In the second stage, we prove a series of results that eventually lead with the
asymptotic result to the proof of Theorem 1.
Let

L(z) = y(z) + cz. (13)

Then we have:
Theorem 2: If (—p+ac) <0, then

(%) limz‘—>+ooL(x) = 4+ o0o;
(i6)  lim,_oL(s) =
Proof: Let
y o (), ifz>0
y(e): = * ,
_(2), ifz<0
be the solution of
— pz, ifz>0
Ay(z): = )
qz, ifz <0

with A given by (4). Note that from (4) we have for z > 0,

—1o%" +(g+ Py + ay = gu. (14)
Rewriting (14) as
B
,,+2g+ ar Ty +2 y_2—;c
o?
Now, let
P(z) = (y +az?),

a = Q%a q = Q%a

and o 4

y(z) = z(x)exp %/ P(t)dt ;.
0

Then it can be shown, after some algebra, that

T

—2"(z) + 2(x)Q(x) = T xzexpq — %/ P(t)dt », (15)
0
Q2) = 1PY2)-LP/(z) +a (16)

:%(g—i—a:cﬁy——gz’@"l-}—a
o o

Using WKB method (see Olver [6, Chap. 6, Th. 2.1]), the complementary solutions of
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(15) as £— + oo are asymptotically,

from which we get

T _l T
uy(2) 2y (x)exp {% / P(t)dt}z@ 4<x>exp{ / (\/_Q(t)+%P(t))dt},
0 0

T

_1 i
Ya(x) = z9(x)exp {% / P(t)dt}zQ 4(w)exx>{ / (- Q(t)+%P(t))dt}-
0 0

Note as £—0, 1/1+z ~ 1 + }z and from (16)

W:J%Pz(z){l—QF(m)+4 a }

P¥(z)  P(z)

1 P'(z) a
~ =P 1-— 2—— .
2 (””){ P T P%)}
The above implies

Q(z) + %P(z) ~ P(z) — Plz) | _a

2P(z) ' P(z)
~ P(z) —-g-+ﬁﬁ. (17)
Also,
~ Q@) +iP@) x5 -2 (18)

Using (18), we have

_1 “”
Yo(z) = Q 4(vf)em{ / (- Q(t)+%P(t))dt}
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_8 1-
~-Z-z Z2exp {ﬂlogw o +constant}
a a(l-5)
8 1-8
~ ——ﬁr * Zexp { —h}——»o as &—oo. (19)

Similarly, it can be shown using (17) that

_B +1
yy(z) >z 2exp{2@f————},
o )

Note that asymptotically, the general solution has the form

y(x) = cqyy(2) + coyy(z) + ypa

where y,(x) and yy(x) are given respectively by (19) and (20) and that g“jp is the
asymptotic particular solution to be found later.

Now, the growth condition (12) implies that ¢; = 0, which means that in order to
show (i), we only need to check that @’p is well behaved. To this end, we only need

~ a . . . .
to look for a formal solution ¥, ~ 3>~ 2"}, 5 g—m, which is an asymptotic series (see
e 4

Olver [6])). Keep in mind that an asymptotic series may not converge.
There are several ways of finding the coefficients a,, but here we use an iterative
method. Rewrite (14) as

B
+ az” ,
(:L‘) aw + 20[ ~7 a Y-
Define
B
+ axr
U4 1(2) = Soys(e) - Ly @),
where
Yo %x.
The first iteration gives
8 8
+ azx aqx
yl(x) = “qg 2 ~ q2
o o

Then

2 s
yale) <5808 ~ 1)ef -2 +aq(_9a+§&)ﬁxg 1

ﬁ —_
~ - (ap( )

«
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This suggests that y, (z) may be written as
Un+1(2) ~ (= 1)@k y0(),
from which we deduce that
v~ B(- )28~ 1) (n = 1)B — (n—2))e® =",

The series ), 5 oy, is an asymptotic series since y, , ; = o(y,,) (see Olver [6]). It
follows that the particular solution is '@’p such that

Hence (i) is true.
The argument used to show (%) indicates that

y+(:c) = €¢1(x)+yp+(x)7 (21)

where ¢;(z) is the complementary solution and y, , (z) is a particular solution.
Also, it can be shown that we have an explicit solution for z < 0,

y_ (&)= a7 4?2 g p b, (22)
where
A= ﬁ(g + \/g2 + 2a02), Ay = ﬁ(g — \/g2 + 20102),
with k; = - ky = %, a and b are to be determined.
o

Because the solution y(z) of Ay = f is continuously differentiable, by matching
y_(0)=y,(0)and y'_(0) =y', (0), we get

- Y

ae” 1 pbe” "2t ky =4y (0)+y, , (0)

Y -
adje” "V 4 bde” "2 kg = eg)(0) + Yp +1(0).

Using the condition y'_(s) = —c, after some algebra, leads to y(s) ~ ks as s— — oco.
It follows that

L(s) = y(s) + cs = (c + ky)s— 4 00 as s— — oo.

This completes the proof.
Consider the differential equation

Ay =f, (23)

with the conditions (9) and (12).
Lemma 3: If (— p+ac) <0, then the solution (s,S) satisfying (9) — (12) exists.
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Proof: Write the solution of (23) as y(z,s). Let
L(z,s) = y(z,s) + cz.

Then it follows from (10), (11), and (13) that the problem of finding (s,S) reduces
to the problem of solving the system of nonlinear equations given by

L'(S,s) =0,
L(s,s) = k+ L(S,s).
It is clear from (9)-(11) that as s—0, S—0. Then
L(s,s) < k+ L(S, S), as s—0.

Also, we know by Theorem 2 that L(s,s)— + oo as s— — oo and k + L(z,s)— + oo as
z— +0o. Then there exists an S(s*) € (— oo, + o0) such that L'(S*(s),s) =0 and
L(8*(s),s) < oo, which implies that as s— — oo, L(s,s) >k + L(S*(s),s). The proof
is then immediate.

Lemma 4: Assume that (—p+ac)<0 and (s,S) is the solution found from
solving (15) with (9)-(12) satisfied. Then L"(s) > 0.

Proof: Assume that L'(s) > 0. Note that L(S) < L(s) implies from (7) that there
exists some z* € (s,5) such that L'(¢*) = 0. But L'(s) = 0. Hence, there exists some
Z € (s,z) such that L"(Z) =0 and L'(Z) >0. Thus, Z is a local maximum of the
function L'.

Suppose first that z* <0. Then (23) with z <0 implies that L"'(Z) >0,
contradicting the assertion that Z is a local maximum.

Now, if z* > 0, then (14) gives

aL(z*) = (q+ ac)z* + (g + az*?) + %qu”(:c*),

with L"(2*) < 0. But L'(S) =0. Then there exists a turning point Z* € (z*,5) such
that L'(Z*) = 0 and L"(Z*) > 0, which implies

(¢ + ac)z* + (g + az*?) + —%—021;”(3:*) <(g+ac)Z*+ c(g + aZﬂ*)
+121"(2%).

But this contradicts the fact that L(z*) > L(Z*) which completes the proof.

Lemma 5: Under the assumptions of Lemma 3, we have

() L(2)<0; s<8<8,

(#r) L'(z)>0; 2> 8.

The proof of Lemma 5 is similar to that of Lemma 4.

The following corollary follows immediately from Lemma 5.

Corollary 6: If (— p+ac) <0, then if s is known, S is uniquely determined.

Theorem 7: Under the assumptions of Lemma 2, the (s,S) policy is optimal for
the QVI problem (6).

Proof: We need to check that the inequalities y < My for z > s, and Ay < f for
z < s are satisfied.
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Lemma 5 implies that the infimum of the expression My(z) in (5) is achieved at
the point £=S—2z for s<z<S, and at £€=0 for z>S. It follows that
My(z) =k+c(S—x)+y(S), for s<z< S and My(x) =k + y(z), for > S.

If s<z <SS, we have

y(z) - My(z) = y(z) — k- c(S — z) — y(5). (24)
It follows that
(y(2) - My(z))' = y'(z) —c = L'(z) < 0 by Lemma 5.
Thus y(z) — My(z) < y(S) — My(S). Also y(z)— My(z) = —k for z > S. Hence,

y(z) — My(z) <0 for > s.
Next, we show that Ay < f for z > s. Note that for z < s, we have

y(@) =k +c(S — ) +y(5) = y(s) + ¢(S - x)
But Ay < f when z < s which leads to
—ge+ ay(s)+acs < (— p+ ac)z.
Since (— p+ ac) < 0 and z < 5 <0, then it is enough to show that
— g¢ +ay(s) + acs < (- p + ac)s,
or equivalently,
—gc+ay(s) < —ps.

Now (4) with Lemma 4 gives the desired result.

Lemma 8: If (—p+ ac) <0, then (s,S) is the unique solution of the QVI problem
given by (6).

Proof: Assume that we have two solutions (s;,5(s;)) and (s4,S(s,)), with s; < s,.
Then Lj(s;) = L'(sy) =0 and L"(s;) <0, L"(sy) <0 by (9) and Lemma 4 respective-
ly. Then there exists z* € (s;,5,) such that L"(z*) =0 and L'(z*) < 0. Further, we
have Ay(z*) < f(z*), giving

aL(z®) < (—p+ac)z* + gc.
Also, we have Ay(z™) = f(z*), since s; < s,, giving
—%— 20"(z*) + gL' (z*) + aL(z*) = (- p + ac)z* + ge.

However, the above is in contradiction with the assertion that L'(z*) <0 and
L"(z*) = 0. This completes the proof.

Lemma 9: If (—p+ac) >0, then the QVI problem given by (6) admits no solu-
tion.

Proof: Assume that there is a solution (s,S) to the QVI problem given by (6).
Then
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Ay < f, for z <s,
or equivalently,
L(z) < (- p+ac)e + 5. (25)

If (—p+ac)>0, then clearly (25) is violated when z— — oco. Then in this case,
(s,S) cannot be a solution to the QVI problem.
Now assume that (— p + ac) = 0. Then Ay < f when z < s which gives,

L(S) <
which in turn leads by (11) and (13) to
LS)<L k.

Using the fact that Ay(S) = f(S) and L'(S) = 0, we get

(- p+ac)s it S <0,

1 274
—50°L"(S) —ak >
2 ) (¢ + ac)S + aSPe if §>0.

The left side of the above inequality is strictly negative while the right-hand side is
strictly positive, which leads to a contradiction.

Theorem 1 follows from Theorem 2 and Lemmas 3-8.

Assume now that we are interested in impulse control policies, of the form
V={(t;,Q;)}; = 1)--~ where the t, are the ordering times and @Q,, the quantities
ordered. The total cost per unit time is given by

E, [[Tf@@)dt+ Y (k+cQ,~>}
t,<T

yy(z) :qli_{noo T

where the dynamics of the process are given by (1) and the expectation is taken with

respect to all realizations of the process. Then we say that V* is average cost optimal
if

Yyx(x) = ir‘}fyv(:c).

Let =y, «(z). Then, it is known (see Lions and Perthame [5]), that the optimal
cost y in (2) behaves like (& +y,) where y, satisfies some QVI problem that can be
obtained from (6). Also, it is known that the optimal (s,S) policy obtained from (6)
converges to the optimal policy that minimizes the expected average future costs.

In this paper, we proposed a new continuous time stochastic inventory model for
stock dependent demand items. We also formulated the problem of finding the
optimal replenishment schedule that minimizes the total expected discounted costs
over an infinite horizon, as a QVI. The QVI was shown to have a unique solution
under some conditions.
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