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An estimate is given for the lower bound of real zeros of random algebraic
polynomials whose coefficients are non-identically distributed dependent
Gaussian random variables. Moreover, our estimated measure of the
exceptional set, which is independent of the degree of the polynomials,
tends to zero as the degree of the polynomial tends to infinity.
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1. Introduction

Let Nn(R w) be the number of real roots of the random algebraic equation

Fn(x w) Eav(w)xv O, (1.1)
=0

where the a,(w), v 0, 1,...,n are random variables defined on a fixed probability
space (f,t, Pr) assuming real values only.

The problem of estimating the lower bound of Nn(R,w was initiated by
Littlewood and Offord [4]. They considered the case when the coefficients are

normally distributed, uniformly distributed in [- 1, 1] or assume only the values + 1
and 1 with equal probabilities, and proved that there exists an integer 0 such that

Clognfor n > no, Nn(R w) > og 1--gn except for a set of measure at most where C
and C’ are constants.

The lower bound has been studied especially in 1960’s and early 1970’s (cf.
Bharucha-Reid and Sambandham [1] and Farahmand [3]). Taking the coefficients as
normal random variables, Evans [2] proved that there exists an integer no such that

Cqog log n0Clog n except for a set of measure at mostfor each n > no, Nn(R,w) > log log n log n0
The above result of Evans is called the "strong" result for the lower bound in the
following sense. The result of Littlewood and Offord is of the form,
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logn >C >1
logn"

log log log n

In this case, the exceptional set depends on the degree n of the equation. While the
"strong" result of Evans is of the form,

Pr inf > C > 1-
n > n0

log n log no
log log n

In such case, the exceptional set is independent of the degree n.
Since Evans’ paper appeared, there has been a stream of papers on the lower

bound by many workers, like Samal and Mishra [7, 8], although they mainly worked
with independent and identically distributed coefficients.
or non-identically distributed coefficients, Samal and Mishra [9] considered the

following type of the random algebraic equation:

sn( , 0,
v--0

where the av(w)’s have n symmetric stable distribution and the bv’s are non-zero real
numbers, and estimated the lower bound and the "strong" result for it. In this case,
the coefficients av(w)bv’s are non-identically distributed.

For dependent coefficients, Renanathan and Sambandham [6] nd Nnynk and
Mohanty [5] took up several cases. Both of them defined the random variable ym in
their proofs and treated the ys as independent rnndom wrinbles. Uno [10] pointed
out that the ms were dependent and that their required results had not been
completed, and obtained the lower bound in the cse of the type of (1.2), where the
av(w)’s are normMly distributed with mean zero and joint density function

M 1/2(2) -(n + 1)/2exp( 1/2)a’Ma), (1.3)

where M- 1 is the moment matrix with

1

Pij PI-Jl
0

(i- j)

(1_< li-jl <_m)
(li-jl >m) i,j 0,1,...,n,

(1.4)

for a positive integer m, where 0 < pj < 1, j- 1,2,...,m and a’ is the transpose of
the column vector a, and the bv’s are positive numbers. However, the result of Uno is
not the "strong" result for the lower bound.

The object of this paper is to show the "strong" result for the lower bound when
the coefficients are non-identically distributed and dependent normal, that is, to
obtain a "strong" result of Uno. We assume the same conditions of the av(w)’s and
the bv’s as those of Uno. We remark that this assumption of the av(w)’s is called
stationary m-dependent Gaussian and equivalent to the following two statements for
a stationary Gaussian sequence"

1. {av} is .-mixing,
2. {av} is C-mixing,

according to Yoshihara [11].
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Throughout the paper, we suppose n is sufficiently large. We shall follow the line
of proof of Samal and Mishra [8] and Uno [10].

Theorem: Let
n

fn(X, w) E av(w)bvxv 0
v--O

be random algebraic equation of degree n, where the av(W)’s are dependent normally
distributed with mean zero, joint density function (1.3) and the moment matrix given

k
by (1.4) and the by, v-O,l,...,n are positive numbers such that log(y-nn)- o(logn),

where kn max0 < v < nbn and tn min0 < v < nbv"
Then there exits n integer no such th-dt fSr each nc>longO,nthe number of real roots

of most of the equations fn(X,W)- 0 is at least k except for a set of

n
C’measure at most where C and C’ are positive constants.

log

log (t---n0 log no)

2. Proof of the Theorem

Let
A V/ log/ (2.1)

and MI, 1, 2... be a sequence of integers defined by

M +1 (2.2)

where a is a positive constant and [x], as usual, denotes the greatest integer not
exceeding x. Let k be the integer determined by

2k+2(2k)!M2k < n < (2k + 2).Mn (2.3)

It follows from (2.1), (2.2)and (2.3)that
C log n

(k )log log n

<k (2.4)

for a constant C1. Hence k is large when n is large.
We shall consider fn(x, w) at the points

1

xl.-(l-(21)!lM)-’
for l-[] + 1, [-]-t- 2,..., k.
We write
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fn(Xl, w) Ul(w + Rl(w

Eav(w)bvx71 +(E2 + E3 )av(w)bvx’
where v ranges from (21-1)!Ml-l+l to (2/+ 1)!M/+1 in El, from 0 to

(2/- 1)!M1-1 in E2 and from (2/+ 1)!M +1 + 1 to n in Y3.
The following lemmas are necessary for the proof of the theorem.
Lemina 2.1: For aI > 0 and

(2/+ 1)!M + 1 (2/+ 1)!M + 1 (2/+ 1)!M + 1

oix +2 bibjxl Pj-i,
21- 1 j + 1(t- + (t- t)M] +

we have

Proof: First for tn min0 < v < nbv, we have

where A and B are positive constants such that A > 1 and 0 < B < 1.
given in (1.4), we get

(2/+ 1)!Ml+ 1 (2/+ 1)!M + 1

i= (2/-1)!Ml- l + J +1

Next, for m

(21)!Ml- 1 (21)!M
2

(- )!i + 1 + 1
x + J

flj_

2{(2/- 1)!M]l- 1

2Xl
n PiX {(21)!M (2/- 1)!M 1}

i=1 i=1

(B,)> -- Pot2n(21)!M21

where P0
m A’ B’j Pj and and are positive constants satisfying A > 1 and

O<B’< 1. So we get
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22 2cr >_ Cltn(21).Ml l,

where a1 is a positive constant, as required.
The following lemmas (Lemmas 2.2 and 2.3), which are required to prove Lemma

2.4, can be proved by Feller’s inequality.
Lemma 2.2:

Ea(w)bvx
2

h

where,
(2/- 1)!Ml- 1

i=0

2 2ib x + 2
(21-1)!M1-1

0

-1 (21-1)!M]I-1
bibjx + J

Pj- i"

Lemma 2.3:

Eav(w)bvx7
3

whe_,re_,

n n-1
,2 2i
0 X + 2

i= (2/+l)!M/+1+1 i= (2/+l)!M/+1 +1

+jE bibjxl Pj-i"
j=,+l

Lemma 2.4: For a fixed l,

Pr({w: IRt(w) < t)) > 1 2V
Proof: By Lemmas 2.2 and 2.3, we get for a given l,

outside a set of measure at most 2 e

and

2
2

"l Again we have

(2/- 1)!M]l-

E bxi<2k2n( 1)’M2/-l"
i=0

(2/- 1)!M]l- (2/- 1)!M]l-

-0 j=+l
bibjx + JPj-

m

i--1

(21-1)!MI-1

j--1

-(i-1)

xj +i-2 _< pok2n(21_ 1)!M/-



356 T. UNO

Hence, we get for a positive constant

(r < ck2n(2/- 1)!M/-1

Similarly we have

2 2 1)!Ml- 1"Y < c3kn(21-

for a positive constant a3. Therefore we obtain outside the exceptional set,

< / 3)]nMl -’ oz2 -4-o3 kn< 1 n ll /M < I,

by Lemma 2.1 and (2.2).
Let us define random events Ep, Fp and Gp by

Ep {w:U3p(W >_ o3p, U3p + l(w) < -r3p +1),

Fp {w:U3p(W < -o’3p, U3p + l(w) >_ o’3p +1}

and

Gp {w: R3p(W) < r3p R3p + l(W) < tr3p + 1}

for (3p, 3p + 1) such that [-] + 1 < 3p < 3p + 1 < k. It can be easily seen that

Pr(Ep t Fp) > ,
where i > 0 is a certain constant.
such that

And we define random variables r/p, (p and p
1 on Ep U Fp
0 elsewhere,

(p { 0 on Gp
1 elsewhere

and

p p-

If p 1, there is a root of the polynomial in the interval (X3p, X3p-4- 1)"
Let Pmin and Pmax be the integers such that

and
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Then the number of roots in the (x ,x,_) must exceed Pmax _.
r; p p p
L’J -t- mln

We shall need the strong law of large numbers in the following form.
If ri2, ri3,.., are independent random variables with var(rii)< 1 for all i, then for

given any > O, we have

Pmax
Pr sup 1 E (rip- E(rip))

Pmax Pmin + 1 > k0 Prnax Pmin -4- 1 p Pmin

D> <2ko
where D is a positive constant.

Here we get

PlTIX

P Pmin

Pmix

P Pmin
-4-

Pmx

P Pmin

Since

from Lemma 2.4, we have

E(,) <
)3p

,k23p

PlI1O.x

E P < (Pmax- Pmin -4- 1)1
P Pmin

outside an exceptional set of measure at most

Pmax A23p
1 __1 e 2E (Pmax- Pmin -4- 1)1 )3pP Prnin

-<C 1

2"3Pmin

,2
3Pmin

2

where C2 is a constant. Thus we obtain

sup 1

Pmax- Pmin + > k0(Pmax Pmin -4- 1)

Pmax

P Pmin

outside an exceptional set of measure at most

"k23Pmin
C2 e 2

Pmax- Pmin + 1 > k0 "3Pmin
By using the strong law of large numbers since the rip’s are independent for

sufficiently large n, we have
Pmax

sup 1 Z {p-E(rip)} < ,
Plnax- Pmin + > k0(Pmax- Pmin -4- 1 P Pmin
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outside an exceptional set Gko of measure at most

"k23Pmin
C e 2

Pmax- Pmin -t- >_ k0 ’3Pmin
C3

where C3 is a constant.
A simple calculation shows that

Hence we obtain

Pmax- [k + 21--1 and Pmin- I6k--] +13

Pmax Pmax
1 p> 1 E(rp)-Pmax- Pmin / 1

P- Pmin Pmax- Pmin / 1
P- Pmin

for all k such that Pmax- Pmin / 1 > k0 outside an exceptional set Gko.Applying E(rlp > 5 and using (2.4), we get

Pmax C5 log n
Nn > E P > (Pmax- Pmin / 1)(5--e) > C4k > k

P Pmin log (y log n)
n

for all k such that Pmax- Pmin + 1 >_ ko outside an exceptional set Gko where C4

and C5 are constants. It can be seen that the set {k E N Pmax Pmin / 1 _> k0} is
contained in the set {k e N lk >_ 6ko- 2}.

If n-no corresponds to k-6ko-2 then all n > no will correspond to
k > 6ko -2. Therefore, we have for all n > no,

where

C log n
k

log (-- log n)
n

Pr(Gko) < C2

,2
3Pmin C31 e 2

k > 6k0 23Pmin k0

"k32k0 "k(k0 -t- 1) 3(k0 + 2)
C31 e-+6 1 e- 2 / 1 e- 2 /... q
k0--< C2 /3k

0 "3(k0 + 1) /3(k0 + 2)

,kq 3q(log (3q)) 2C3 C3_< 6C2
1e 2 / 6C2E 1 e 2

q Oz3q 0 q _> ko - log (3q) ko
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C3 C6 C3< 4_c 1+ < + <
V’3 q_ 0q(log q)2 0- log k0 - log

log nn

kn0log (t--O log

where C6 is a constant. This completes the proof of the theorem.
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