
Journal ofApplied Mathetnatics and Stochastic Analysis 4, Number 4, Winter 1991, 305-312

ON MODULATED tLANDOM MEASUIS

JEWGENI H. DSHALALOW

Deparlmenl of Applied Malhemalics
Florida Institute of Technolooy

Melbourne, F 8901, USA

ABSTRACT

In this paper the author introduces the notion of a modulated marked
random measure, Z, on the class of locally compact and -compact spaces
with countable bases. As special cases, are marked processes modulated by
are considered where is a semi-Markov or semi-regenerative process. For
either case, the intensities n = limt_}E[Z([O,t])] are evaluated in terms of
parameters of . Examples and applications to inventories, queueing processes
and economics are discussed.
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1. INTRODUCTION

It is quite common, in practice, that one stochastic process is perturbed by another stochas-

tic process. For instance, a stock market index is occasionally affected by major events in politics.

Frequently, these phenomena are ingredients of more complex stochastic systems, like input

streams to queueing, inventory, or transportation systems.

In queueing theory there are widely encountered systems with state dependent parameters,

i.e. systems where the input or service depends upon the state of the system. The input or service

processes may also be perturbed by exterior random factors. Unlike a birth-death type of process,

where the input or service, depending on system parameters, changes instantly (which rarely takes

place in practice), we assume that parameters of a perturbed process are changed at some random

instants of time, when either main perturbations occur or certain decision making is imposed. This

is basic to the notion of "modulation."

Many authors (see [8-10]) have considered a doubly stochastic Poisson process Z whose

intensity is directed by a Markov process with finitely many states. Such a process is called a

Markov modulated Poisson process. In this article, we introduce more general processes, specifically
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Poisson processes modulated by semi-Markov or semi-regenerative processes. Such phenomena are

encountered in stochastic systems, where input parameters (intensity of interarrivals and batch

sizes) are affected by interior random factors, which lead to a more general form of modulation.

One of the target parameters of such a modulated process would be its total intensity, de-

fined as lim E[Z([O,t])] giving the total number of events per unit time over an infinite ho-

rizon. This is not only of independent interest but it is a key part of many optimization problems

involved in controlled stochastic systems (see [1]). In this paper the author also proposes a rigorous

construction of a modulated process specifically considering such important implementations as

random processes modulated by semi-Markov or semi-regenerative processes. Some examples from

queueing theory applications are discussed.

2. PrtELIMINARIES

In this section we give a brief review of basic notions of the theory of random measures

and stochastic processes. For more facts about random measures the reader can be referred to mono-

graphs by Daley and Vere-Jones [4] or Karr [7].

Let E be a locally compact and -compact topological space with a countable base, and let

% = %(E) denote the Borel r-algebra.

2.1 Notation. Denote

.At, the space of all Radon measures on %

.Al,
p the subspace of all point (counting) Radon measures on

dlt,
a the subspace of all purely atomic ldon measures on %. V!

Let K denote the space of all continuous functions on E with compact support. Consider

the mapping (hi(#) = f fdp, i E Jtl,, for a fixed f E g" Let Y, denote the vague topology in

relative to which all these mappings are continuous.

Denote by = (dll,) = r(ff,) as the Borel r-algebra in .At, and by ’10 as the r-algebra of

Baire sets in .At,, i.e. 0 is generated by all maps l" The corresponding traces of r-algebras of all

sets in notation 2.1 are denoted by p = N Al,p, etc.

2.2 Theorem (cf. Bauer [2], corollary 2, p. 206 and theorem, p. 243). Let E be locally

compact, r-compact and let E have a countable base. Then o =

For what follows, we will assume that we meet the conditions imposed on E in theorem

2.2 so as to have I10 =
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Let {12, Y, P} be a probability space. Recall that

(i) a random measure on E is a measurable mapping M of (12,5) into

(ii) a counting (or point) measure is a measurable mapping N of (ft,"Y) into (..p,p).

Let N = i=leTi for a sequence {Ti} of random instants of times on + such that

Tt _< T2 _< Then, N is a counting measure or with its more general representation

E
where K is a random variable valued in N0 = {0,1,...,x}. It is also customary to call a counting

measure the counting process. For a purely atomic measure M E a?i,
a we can generalize (2.3) by

setting M- /K 1 Uiexi’ where U are nonnegative random variables.

Let N eX. be a counting measure on E and let E’ be another locally compact and r-

compact topological space with a countable base. A marked counting measure with underlying

counting measure N is any counting measure

(x,u)
on E x E’. The random element U{ of E’ is ca]led the mark associated to Xiand E’ is called the

mark space. El

Independent marking. Let N- xi be a counting measure on E and let U be indepen-

dent and identically distributed random elements of E’ such that N and U are independent. Then

the marked counting measure N is said to be obtained from N by independent marking.

Position-dependent marking. Given a kernel K from E to E’ we can construct the mark

sequence so that the U are conditionally independent given N, with P{Z A IN}- K(Xi,A) so

that, in addition, the distribution of U depends only on Xi.

Let N-exi be a counting measure on E and let -e(xi,ui be a marked

counting measure with mark space R+, obtained from N by "position-dependent marking" by use

of a transition kernel K. Then the purely atomic random measure, M- UieXi, is called a K-

compound of N or compound counting measure determined by N and K.

2.3 Def’mitions (see Dshalalow [61).

(i) Let T be a stopping time for the stochastic process {,, (PX)xe, Z(t); _> 0} --, (@,

%(@)). Z is said to have the locally strong Markov property at T, if for each bounded random

variable (: 2 @r and for each Baire function f: r...,R, r = 1,2,..., it holds true that

EX[f o o 0T IjT] EZT[f o ] PX-a.s. on {T < oo},
where 0y is the shift operator.

(it) A stochastic process {gt,aJ,(PX)xe, Z(t);t>_ 0} (@, (@)) with @ ___N is called
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semi-regenerative if

a) there is a counting measure N = on R +such that tn---,c (n---<x) and such
n ltn

that each tn is a stopping time relative to the canonic filtering r(Zu;y <_ t),

b) the process Z has the locally strong Markov property at tn, n = 1,2,...

c) {Z(tn + 0), tn n = 0,1,...} is a Markov renewal process.

(iii) Let {n, tn} be an irreducible and aperiodic Markov renewal process with a discrete

state space . Denote fix = EZ[tl] and fl = (fix ;z (5 )z. Suppose that the imbedded Markov chain

n is ergodic and that P is its invariant probability measure. We call the Markov renewal process

recurrent-positive if its mean inter-renewal time, denoted Pfl, is finite. An irreducible and

aperiodic and recurrent-positive Markov renewal process is called ergodic.

3. MODULATED ILNDOM MEASURES

Let E be a locally compact and r-compact space with a countable base. Let be the

space of all Radon measures on (E), and let be the Borel r-algebra in generated by the

vague topology l’v.
3.1 Definitions.

(i) Let {f2,5,P,(t), t E E} (,()) be a stochastic process on E and let denote

the w-section of . Then, for F E %() and B (Z), we define

(3.1a) YI., B f’I tj I(F)
and call it the holding time of in F on set B.

Clearly, for each fixed o, YF is a measurable subset of E which can be measured by any

Radon measure on %(E). In general, Yl" is a mapping from f2 into %(E) which can be made a ran-

aom se after we define the r-algebra F = {A C_ %(E)" Y/= (A) e r}.

(ii) Assume that there is a countable, measurable decomposition
i =oFJ of (where

stands for the union of disjoint sets). Consider a (partial) marked random measure as

ZJ i (Xirj’TiF.)
with mark space E. Introduce

(3.1b) Z( = Z(o,B) = j =oZJ(YF .).

Clearly, Z is a random measure from (f2,) into (./tl,,). Zt is called a marked random measure

modulated by the process .
Consider some special cases.

[C1] Let Zj be a compound random measure (with mark space E’= R +)
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ZJ = E XiFjtTiFj
obtained from the underlying counting measure Nj = itTiFj by independent marking, i.e. for

each Fj, {XiF .} is a sequence of independent and identically distributed random variables with

common mean denoted cj. Assume that Nj is a Poisson counting measure with mean measure

3.2 Lemma. For the modulated random measure Z under the conditions in [C1] and initial

mesure

(3.2a) j=0 B pu{ E I’j} dpj.

Proof. First, by the monotone convergence theorem we have

(3.2b) Eu[Z] E j o Eu[ZJ(YF .)1’
from which

(3.2c) Eu[ZJ(YFj)] = EEu[ZJ(YFj) YFj]]- ajEIj(YFj)]
is obtained. Obviously, Pj(YFj)can be represented as

(3.2d) Pj(YI"j) ; B I., (1.,j)d,j B Irj dlj.

Now the statement of the lemma follows from (3.2b) and (3.2c) by Fubini’s theorem.

3.3 Remark. In order that formula (3.2a) hold true, the random variables XiF. need not
3

be valued in + as [C1] suggests. We may weaken this condition assuming that the terms of

{XiF .) are valued in R and putting appropriate constraints on partial sums of the series in (3.2b),
in order to use the generalized monotone convergence theorem (see [5]).

[C2] Let E = with its natural topology; let #j be absolutely continuous (with respect to
d#j

be its Radon-Nikodym derivative. Then, from (3.2a) wethe Lebesgue measure/); and let 9j =---
have

(3.4) Eu[Z4] Ej=oaj IBgjPU{ Fj}dl.
In particular, if for each j the Poisson counting measure Nj is stationary, i.e. if gj = Aj (a positive

constant), we have from (a.4)
(3.5) Eu[z] E j o ajAj I B pu{ e Fj}dl.

Consider some special cases of modulated random measures.

[C3] SEMI-MARKOV MODULATED RANDOM MEASURE

Let E- + and let Nj be a stationary orderly Poisson counting measure with intensity

Aj. For each j, {Xij} are supposed to be nonnegative integer-valued random variables with finite

means aj = E[Xij]. Let {fl,,(PX)xe,(t), t>_ 0} - {0,1,...} be the minimal semi-Markov

process associated with the Markov renewal process {f2, Y, (px)x ,n (tn + 0), tn} ( x R +,
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( +)). Then, Z in (3.1b) is said to be a marked random measure modulated by the semi-

Markov process .
Let Ez denote the expectation with respect to the probability measure

3.6 Definition. The number

is called the total intensity of Z (over infinite horizon), provided that the limit in (3.6a) exists.

3.7 Notation. We assume that the Markov renewal process {n, tn} is ergodic. Let P be

the invariant probability measure of the imbedded Markov chain {n}" Let

= EX[tl], )t- (’x ;z @)T and a = (cz ;z )T and denote p- a,fl,)t, the Hadamard product of

pz{(u = j} l(du) Denote Oz(t) ((R)z(j,t);jvectors tr,/ and ,. Let O(j, t)= I 0

3.8 Lemma (cf. C.inlar [3]). e be he semi-Markov process associated with an ergodic

Markov renewal process {n, tn} and let P be the invariant probability measure of the imbedded

Markov chain {n}" Then for x e E, ltimoo {Ox(f) ezists; it is independent of x and it is equal to

3.9 Theorem. The total intensity of ff modulated by the semi-Markov process is deter-

mined from the formula:
(3.9a)

Proof. The statement follows from (3.5) and lemma 3.8. 1-1

3.10 Examples.

(i) A trivial special case follows from theorem 3.9, when the process Z is independent of

the semi-Markov process . The process Z is then a compound Poisson process Z with magnitudes

of jumps described by a sequence {X,} of independent and identically distributed random varia-

bles with common mean c. The associated Poisson point process has intensity . Thus the rate of

the process Z should be a. On the other hand, from notation 3.7, we have Pp = ,aPfl, which

yields the same result, .a, in the right-hand side of (3.9a).

(ii) Consider the following queueing system studied in [1]. Let Q(t) denote the number of

units in a single-server queueing system at time _> 0. Let n ((tn + 0), n = 1,2,..., where tn are

successive moments of service completions. We assume here that the server capacity, service time

and the input process depend upon the number of units in the system as follows. If at time tn +
the number of units n is j the following hold.

Within the random time interval (tn, n + 1) the input flow of units is a compound Poisson

process with intensity ,j and with batch sizes XIj, X2j,... as independent and identically distribut-
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ed random variables with the common mean

The server takes for service the nth group of units of size rain{j, re(j)} (where re(k) is the

server capacity, k- 0,1, ...), provided that j > 0. If j- 0, the server begins its idle period which

ends as soon as the next group of units arrives at the system. This group is of size X10 and the ser-

ver takes min{Xlo m(O)} units for the next service.

The nth group is served a random time with the distribution function Bj E {B0,B1, ...} of

general type.

Here is a semi-Markov process imbedded in Q and the process Z describes the bulk in-

put process in the queueing systems with state-dependent parameters (i.e. state-dependent input.

and service processes). Let S(B) denote the total number of processed customers in time-set B

E (+). According to theorem 6.3 of [1], the total intensity of the output process equals

lira EX[S([’t])] PP
to

= fi-, i.e. the same rate as the input process. Specifically it follows that the

expected number of units in the system in equilibrium either is finite or diverges more slowly than

with the unit speed In other words, lim
E*[Q(t)] = 0 (which is due to the fact that Q(t)= Q(O)

+

[C4] SEMI-IEGENEIATIVE MODULATED RANDOM MEASURE

A compound Poisson process can also be perturbed by a semi-regenerative process on which

the Poisson process has little or no affect. A typical example is the influence of the stock market on

an individual stock. Assume that in this case a stock market index (for instance the Dow Jones

Industrial Average) is varying from time to time, primarily affected by major trades imposed by

large mutual funds. In addition, the stock market is perturbed by a sequence {tn} of "catast-

rophes" or shocks caused by major political or economic events. Actions of mutual funds, of course,

depend merely upon the market values at times tn, n = 1,2, Consequently, trades between these

times can be described by a semi-Markov modulated Poisson process discussed in [C3]. Truncating

values of the stock market index to the next integer, we will deal with a semi-regenerative process

relative to the sequence {tn}" If the value of an individual stock is dependent on trades and if it

depends also upon , we can form a semi-regenerative modulated Poisson process, or a nonsta-

tionary compound Poisson process with both intensity A((t)) and magnitudes X.(t dependent on

values (t) of the stock market. Other examples of semi-regenerative modulated Poisson processes

are inventories affected by price indexes or economic indicators, shot noise processes, and stochastic

control processes.

Let Z be a marked random measure modulated by a process {fl, if, (PX)xetp,(t) ;t >_ 0}, which is supposed to be an ergodic semi-regenerative process (relative to the Markov renewal

process {n, t,} with the stationary probability distribution
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The following ergodic lemma is due to C.inlar [3] or lemma 6.1 in [1].

3.11 Lemma. Let be an ergodic semi-regenerative process with the stationary probability

measure x. Then

tim
t--, 0 /:{(u) = j} l(du) = 7rj.

3.12 Theorem. The semi-regenerative modulated Poisson process Z has the total intensity

= tim E[Z([0, t])] = x(.a)

Proof. By (3.5) and by lemma 3.11, this assertion follows. I-I
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