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ABSTRACT

We present a diffusion approximation of the first overflow time in the
GI/G/m system with finite capacity. We derive the Laplace Stieltjes transform
of the first passage time of diffusion process which approximates the system size
in the GI/G/m system with finite capacity. We use the first passage time of dif-
fusion process as the first overflow time in the GI/G/m system with finite capa-
city. To check on accuracy of this approximation, the analytical results for the
mean of the first overflow time in the GI/M /m system with finite capacity is nu-
merically compared with the diffusion approximation results. Numerical results
show that the diffusion approximation is a good approximation for heavy traffic
systems.
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1. Introduction

For a single server system, diffusion approximations for the first overflow time in the
GI/G/1 system with finite capacity were presented by Kimura et al. [12] and Duda [6]. Kimura
et al. [12] analyzed the first overflow time using the backward diffusion equation for the first pas-
sage time of diffusion process under the assumption of the exponentially distributed holding time.
In the concluding remarks, they mentioned that an extension problem to many server queueing
systems is not difficult theoretically, but it becomes difficult to solve the corresponding differen-
tial equations because of spatial nonhomogeneity. Duda [6] obtained a diffusion approximation of
the first overflow time for the GI/G/1/N — 1 system by using a transient diffusion approxima-
tion of the queue size distribution. Recently Choi and Shin [4] obtained a transient diffusion ap-
proximation for the queue size distribution in a GI/G/m system using the solution of Fokker-
Planck equation, and they [5] also obtained a transient diffusion approximation for the queue size
distribution in an M /G /m system with finite capacity.
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In this paper, we deal with the first overflow time for a multi-server system. Following
Duda’s approach [6] and using our recent results [4, 5], we obtain the probability density function
of the first passage time in the diffusion process with an elementary return boundary having Cox
distribution of holding time as an approximation of the probability density function of the first
overflow time in the GI/G/m/N —1 system. As an application of the first overflow time, we in-
vestigate a transient behavior of the maximal number of customers in the GI/G/m system.

This paper is organized as follows. In Section 2, we find the Laplace Stieltjes transform of
the first passage time by using a solution of the Fokker-Planck equation of a diffusion process
with an elementary return boundary at # = 0 and absorbing boundary at £ = N. Then we use it
as an approximation of the first overflow time in the GI/G/m/N — 1 system. In Section 3, we
present a transient diffusion approximation of the maximal number of customers in the GI/G/m
system using the first overflow time. In Section 4, we derive the analytical results for the first
overflow time in the GI/M/m/N —1 system and numerically compare them for accuracy with
the approximation results.

2. First Overflow Time in GI/G/m/N — 1 System

Let Q(t) be the number of customers in a GI/G/m system at time t. Given Q(0) = z, the
first overflow time in GI/G/m/N — 1 system, defined by

T(xg, N) =1inf{t >0|Q(t) = N,Q(0) = z,},

represents the time at which the number of customers first exceeds the capacity. As an approxi-
mation of T'(z,;, N) we take the first passage time of a diffusion process approximating Q(t).
Since the state space of Q(t) is {0,1,...,N} when t<T(zy, N), as a diffusion process
approximating Q(t) up to T'(zy, N), we take the diffusion process X(t) with state space [0, N] and
with. elementary return boundary at £ = 0 and absorbing boundary at « = N. (For the examples
of usages of diffusion process with elementary return boundary, see [3-7], [9-12], etc.) The process
{X(t),t >0} behaves as follows. When the trajectory of X(¢) reaches the boundary z =0, it
remains there for a random interval of time called a holding time. After the sojourn at the
boundary the trajectory jumps into the interior (0, N) and starts from scratch. The holding time
at £ =0 in the diffusion process corresponds to the time interval during which the system is

empty in the queueing theoretic context. The first passage time of X(¢) to the value z = N is
defined by

Ty, N) = inf{t > 0| X(1) = N, X(0) = o)

and is used as an approximation of the first overflow time T'(zy, N). The remaining part of this
section is devoted to the finding the p.d.f. of T j(xy, N). The diffusion process X(t) is specified
by the infinitesimal variance a(z) and infinitesimal mean b(z). By the same reason as in Kimura
[11], and Choi and Shin [4], we choose the diffusion parameters as

a(z) = X302 + min(m,[z)u30? (2.1a)
b(z) = A — min(m,[z])p, (2.10)

where [z] is the smallest integer greater than or equal to z. The mean and variance of the
interarrival times are 1 and 02, and the mean and variance of the service times are -}; and af,
respectively. We assume that the holding time at = 0 has the n-stage Cox distribution [4, 6, 7,
9, 10] with the Laplace Stieltjes transform h*(s) = > 1'_ (1 —c;)d,ei(s), where €](s) =

J

l.
J=1

and
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; 1 ifi=1
Y gy ifi> 1

Then the probability density function f(z,t|z,) of X(t) given X(0)= =z, defined by
f(z,t]|zg)dz = P{z < X(t) <z +dz| X(0) = 2}, satisfies the following Fokker-Planck equation
(Feller [8], Gelenbe [10])

2

J°’

(‘Tf ta(2)f(z, ] a0)} - —{b(x)f(x t] o)}

1
29

n
+ 3 N1 —c)Pi1)s(z—1), 0<z<N, t>0 (2.2)
=1

with the initial and boundary conditions

f(z,0|zg) = 6(x — ) (2.3q)
fQ0,t|zy) = f(N,t|zg) =0 (2.3b)
_ 1 if:EO:Oa,ndi:]
Pi®) —{ 0 otherwise (2.3¢)
dP,(t) _ — M Py(8) +limy oCy o f ifi=1 (2.3
i = AP () + A _qei Py _4(1) if 1 <i<n,

where 4(-) is Dirac’s delta function and P,(t) is the probability that the process X(t) is at the ith
stage of the Cox distribution on the lower boundary z =0 and C, ,f = 5 {a(x)f(:c t|zg)}—
b(z)f(z,t|zg). Let ap = a(k), by =b(k), g5(t|zy) = f(k,t]|xy), k=1,2,..,m ¥ and fr(z,t]zy) be
the restriction of f(xz,t|zy) onk—1<z<k, t>0,k=1,2,...,m—1.

Following the same approaches as that in Choi and Shin [3], the Laplace transform
[(z,s| zy) of the solution f(z,t|x,) of equation (2.2) under conditions (2.3) is given as follows:
fork—1<ez<k, k=1,2,....m—1

. b sinh A (z—k+1)
Fie,5120) = carl gz - k) [P AR ey

by sinh Ay(z —k)
_6$P(ak($—-k‘+1) S‘inl;zak gk_l(S |$O), (2.4)

and form—1<z <N, t>0,

b h A
I (xsla:o)__ewp( Tl ™ m+1)/Sl:;1nA (N( ma-i:—)l) m-1(51%0)
b mh A
+am%4mexp<a%(z—x0))<si;Z:A (1\(’ m+)1)sznhA (z—m+1)

—sinh A, (z —xq)l(z > xo)) I(m—-1<zy<N), (2.5)
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\/2aks+b,2c
where 1(D) is the indicator function of D and A = ——F5——

a , k=1,2,...,m. Next we will

determine gi(s|z,) in (2.4) and (2.5) in terms of known parameters like A, 02, 41,02 and h*(z).
By applying the Laplace transform to equation (2.3d) with respect to t-variable, we have the
following:

[Ca, o/ 110 = (A +8)P3(s) = Py (0), (2.6)
Pi(9) = $ei(s)04 + 9)Pi(e), 1<i<n, (27)
where
Cop ol =3 Lla(@) (2,5 20)} — (&) (2,5 | 20).

Thus, we have from the definition of h*(s) and (2.7) that

SN = e)PI(s) = K () +9)P(6). (238)

i=1
Applying the Laplace transform to equation (2.2) with respect to ¢-variable, then integrating with
respect to z-variable, and using (2.8) we have that

Cod* =100 Lapo+s [ F(wrs] 2y 12 2 20)
0

— (O + 5P (6)1(e > 1), (2.9)
After simple calculations we have from (2.9) that

[Co,sf2)zi1 = [Ca, s T)ors = (A1 + 8)PT(s)h7(s) = 1(zp = 1) (2.10)

[Ca,sfklztk—1 = [Cosfk—1lat—1 = 1zg =k = 1), k=3,4,...,m. (2.11)

From (2.4), (2.6) and (2.10) we have

(A +5)Pi(s) — Bygi(s | zy) = 1(zq = 0), (2.12)
— (0, + 9)P(sH(5) + Cog}(s | 30) — Bygiy(s | 20) = 1(ao = 1), (2.13)
where
b
By = ak2Ak € aksinlll A k=12,

by a;A coshA; b, a, AjcoshA,

2773 sinh A, ty 2 sinh Ay
By eliminating (A; + s)P(s) in (2.12) and (2.13), we have

Cy=—

(Cy = h*()By)a3 (s | 20) — Bya3(s | zo) = h™(s)1(xo = 0) + 1(xq = 1).

By following the same procedure as we obtain the above equation for gj(s | z,) and g5(s | z;), we
can obtain equations in gi(s|zy), k =2,3,..,m—1 from (2.4), (2.5) and (2.11). We omit the
detail derivations and we express all equations in gi(s|z,) in matrix form as following
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tridiagonal system,

T(s)g(s) = U(s), (2.14)

where §(s) = (97(5), 95(5)s- - 95 _1(5))t and T(s) = trid(p(s),q(s),7(s)) is the (m—1)x(m—1)
tridiagonal matrix with diagonal vector ¢(s) = (¢;(5),45(5),.-- 4., — 1(5)), super diagonal vector
7(s) = (ry(s),m9(8),.. 7, _o(s)) and subdiagonal vector p(s) = (py(s),P3(5),. Py _1(5)). The
components of p(s), g(s) and 7(s) are as follows:

g,(s) = Cy— h™(s)By,
() =Cryry k=23,...m—2,q, 1(5)=Cp, N

b

2a;
pi(s) = —Bge %, k=2,3,..,m—1,
re(s)= =By o1, k=12, ,m—2, (2.15)

where By, Cy, Cm,N are given by

A, ok
w A, 2k
B, =Kk %

) k=1,2,...m—-1

1
Slnh Ak,

bk—l ak__lAk__l COShAk_l bk akAkCOShAk

Crp= - 2 + 2 sinhAk_1+7+ 2 sinhAk’k:2’3""’m_1
o _ _bm_l +am_1Am_1coshAm_1 +§r_"+amAmcoshAm(N—m+ 1)
m, N 2 2 sinhA,, _, 2 2 sinhA (N-m+1)
The components of the vector #(s) = (v{(s), v9(5),- . v,y _ 1(5))" are as follows:

vy(s) = h*(s)l(zg = 0)+ 1(zy = 1)

v(s)=1(zg=k), k£=2,3,...m—2, 2.16
k 0
o ) sinh A, (N —zp)
_ a_(m-1-gxg) sinhA_(N -z,
Uy, _q(s)=e€e™ sinh A_(N —m +1) I(m—-1<zy<N).

Note that Ay, By and C) are functions of variable “s”. However, for brevity we use Ay, By,
C} instead of Ay(s), Bi(s), Cy(s), whenever this will cause no confusion. By solving the
simultaneous equation (2.14), we can obtain gi(s | z,) explicitly.

Remark. From (2.14), (2.15) and (2.16), we see that gi(s|z,) depends only on the Laplace
transform h*(s) of holding time but not on the P}(s). By the continuity theorem of the Laplace
transform and the fact that the set of all Cox distributions is dense in the set of probability on
(0,00) (Asmussen [1]), (2.14), (2.15) and (2.16) hold true for general distribution of holding time.

The probability density function f,,;(t|zg, N) of Ty(xy, N) is obtained as the flow of the
probability mass away from [0, N) via the absorbing boundary z = N (Duda [6]), that is,

fealt |2 ¥) = —tim [ L{a(a)f (2, 20)) = @) (.t | 0)| (217)
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Thus from (2.5) and (2.17) we have the following theorem.
Theorem 1. The Laplace transform fi (s |z, N) of foq(t|zo, N) is given by

m

* . am b_m — \ 1
fra(slzg,N) =gr, _1(s| ) 5 e:cp(am(N m+1)/sinhAm(N—m+1)

b
a—%(N —xzg)sinh A, (25 —m+1)

te sinh A (N —m+1)

1(m—1<zy,< N). (2.18)

Remark.  An explicit expression of the inverse Laplace transform f,,;(t|zy N) of
fta(s| 2o, N) does not seem to be accomplishable. Instead, there are many algorithms available
for the numerical inversion of Laplace transforms. For example, there are three standard routines
currently available from the ACM library of software algorithms: Algorithm 368 (Stehfest [14]);
Algorithm 486 (Veillon [15]); Algorithm 619 (Piessens and Huysmana [13]).

By differentiating f7,(s|zy, V) at s = 0 we obtain the mean of T'j(zy, V).
Corollary 2. When b, = X —mpu # 0,

exp(z—::(N -m+ 1))

E(Td(EO’N)) = - 3 (I+II)

b
2bm(sinha—"1(N —m+1)
m

ool —2y)

b
bm(sinhaﬂ(N -—m+1)

S (III-1V),

where

/ b
I=g _1(0)b2 sinhg™(N —m+1)
m
b b
II = g’:n_l((])(amsinha—m-(N—m+ 1)=b,,(N —m+1)coshg™(N —m + 1)),
m m

b b
Il = (xg—m+1)coshg™(xy—m+ 1)sinhg™~(N —m +1)1(m — 1) <z < N),

b b
IV =(N-m+ l)sinh<a—m—(x0 —-m+ 1))co.«3h(—1m (N-m+1)1(m—-1<zy<N).

a. g" (N —m+ 120
BT g, V) = mlim 22 O -t ) 602 0)

+ (zg—m+1)(N —zo)(N + 25— 2(m —1))

3a (N—m+1) I(m—-1<zy<N).

3. Maximal Number of Customers

The maximal number of customers in the GI/G/m system up to the time ¢ > 0 is defined in
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[12] as
M(t]2g) =sup _ (Q(u)|QU0) = 2.

Let M ,4(t | z,) denote the diffusion approximation of M(t|x,). Using the following relation
{M 4(t| zg) < n} ={Ty(z,n) > t},
we obtain the distribution of M 4(t | z,) as follows
P (1 20) = PO 4(t | 2g) S m) = 1= F, (t]agm),

where F, (t|:L'O, n) is the distribution function of T,(xy,n). Thus the Laplace transform of
(t n | xo) with respect to ¢ variable has form

F (s.n 1 20) = H1= £ (s | 2g,m)).

The Laplace transform of the mean maximal number of customers is
o0

/ e T E(M y(t| zo))dt = §($o+ > fi (slzgm )>

0 n—xo

4. Numerical Examples

In order to examine the accuracy of the diffusion approximation we numerically compare the
approximate results obtained in Section 2 with analytical results. It is impossible to obtain the
exact probability density function of the first overflow time for the GI/G/m/N —1 system.
However, for the case that the service time distribution is exponential, that is, for the
GI/M/m/N —1 system, the analytical results of the first overflow time can be obtained.
Following the procedure in Kimura et al. [12], we have the following theorems for
GI/M/m/N —1 system and we will omit their proofs.

Theorem 3. Let {qﬁj(s):j =0,1,2,...,N — 2} be the solution of the following linear system
N -2
$:(s) = qf N _1(8)+ D af ;(8)8,(5), i=0,1,2,.. N =2, (4.1)
—

oo
where q;j(s) =/ e_Stqi]-(t)dF(t), and F(t) is the probability distribution of interarrival times
and 0

0 ifj>i+1,
(R (s if j<i+l<m,
o (m™; W@:T L1 e gt = )i = mg =gy i e < i,
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Then the Laplace Stieltjes transform of the distribution of the first overflow time for the
GI/M/m/N —1 system is given by

N -2
Pl N) =7 y_1()+ Y m; i(5)8(s), (4.2)
j=0
where
fooe - "téodeo(t) fori=10
mii(s) = °
4 -1, 4(5) fori#0,

where 61~]- denotes Kronecker’s delta and F(t) is the probability distribution of the first arrival

time.

_9
ds

Theorem 4. Let {$j, j=0,1,2,...,N — 2} be the solution of the following linear system

By differentiating the both sides of (4.1), we have the following theorem for ¢, = .
s =0

N-2
=5+ Zoq;*j(owj, i=0,1,2,..,N—2. (4.3)
J =
Then the mean value of the first overflow time for the GI/M /m/N — 1 system is given by
N -2 _
E(T(i,N)) =vy+ Y m;;(0)8,, (4.49)
—

(e}
where vy = [ zdF(z).
0
Calculation procedure of E(T 4(z,, N))

To calculate the mean E(T ;(zy, N)) of the first passage time from Corollary 2, we need to

dgr, —1(s ] zp)
ds

find gy, _,(0) and Pl (0)=

m—1

The procedure of finding g;, _,(0) and
1] -0
gr. _1(0) is as follows. *

1. To find g(0), solve tridiagonal system (2.14) at s = 0,
7(0)g(0) = v(0).
2. To find §'(0), solve the system
T(0)g'(0) = v'(0) — T'(0)4(0).
A simple calculation gives the components of T'(0), §(0) and ¥(0) as follows:
59

2g;

41(0) = By(0)e "2,q4(0) =Cy  1(0), k=2,3,...,m=2,9,, _1(0)=C,, n(0)

pr(0) = — B,(0)e 'k, k=2,3,...,m—1,
ri(0) = — By 1(0), k=1,2,...,m -2,

v1(0) = L(zg = 0)+ 1(zy = 1), v(0) = I(zg = k), £k =2,3,...,m =2,
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b . %m

B m -1 - 2,) sznhm(N - xg) )

em —a I(m—1<=zy<N) ifb,, #0,
vm—l(o) — stnhm(N—m+l)

F—mgl(m~1 < 2y < N) ifb, =0,
where
bk .
——“—E-I:——- 1fbk7€0,k'=1,2,...,m—1,
By(0) = cwpq)~1
ap .
by

2%
Cr(0) = By _1(0)+ B(0)e “k, k=2,3,..,m—1

b
_m if b, #0
ezp(2ﬁ(N -m+1))-1

B, (0) =

b
275N —m +1)
e m

Con N(0) = By _1(0) + B,y (0)

The components of T'(0), §'(0) and ¥"(0) are as follows:
41(0) = C5(0) +3B,(0) - By (0),

75(0) = Cf 41(0), £ =2,3,...,m =2, ¢, _41(0) = m, N(0);

bk

pi(0) = — Bi(0)e %, k=2,3,...,m—1,

re(0) = = Br 4 1(0), k=1,2,..,m -2,

v (0) = —Li(zy = 0), vj(0) =0, k=2,3,...,m -2,

A

b

a—m(m—l—mo) v

e m = ifb,, #0, m—1<zy< N
/ 2b, (sinh g™ (N — m +1))°
v, _1(0) = N m .

—z — 1 - 1 -
6(11 (2N -z, m;LV_)(io+1m+ (zg—N) ith, =0, m—1<z,<N,
m
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where

b
V=02N-zy—m+ 1)sinh2—:(x0 -m+1)—(zg—m+ 1)sinhﬁ(2N —zg—m+1),

and
b
a
bl(ak—bk)e bk_(ak—bk) £, £0,
W0)={ © (emrlzg) -1’ b=12,.,m1
-3 if by, =0,
10)= X, _1(0)+ X,(0), k=2,3,..,m—1,
Crn, N(0) = X, _1(0) + X,,(0),
'h2bk 2b
a, Sinn-g——
le:;i——‘:f;_—ﬁ if b, #0,
Xk(O) — (Sinha-ic- 2 k=1,2,...,m-—1,
2 e p —
'h2b'"(N 1)-2b_(N 1)
a,_sinh"(N-m+1)— —m+
e ™ if b, #0,
m imh_ TN _ 2
X, (0) = (sznham(N m+1))
52—(N —m+1) if b, = 0.

In Tables 1-6, we use three types of interarrival time distributions: exponential distribution
(denoted by “M”), Erlang distribution of order 2 (denoted by “E,”) and hyperexponential
distribution of order 2 (denoted by “H,”). We assume that F(t) = F(t). The service time

distribution is exponential with mean %: 1.0. In the tables, p denotes the traffic intensity

p= ml,u The probability density functions for the interarrival times are
M:a(t)=de™?, t>0

Ey:a(t) = B%e= Pt t>0,8=2)

Hy:a(t) = plﬂle_ﬂlt + pgﬂze_ﬁzt, t>0,

where A = mp, p; = 0.5(1.0 + 1/0.2), p, = 1—p;, By = 2p; A and By = 2p,A.

Simple calculations give the explicit expression q:‘j(s) as follows.

Case 1. a(t)=de™*, 1>0
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0 if j> 041,

i+1

A Zf%-1ﬁ€*1}__i___. ifj<i+1<m
k=0 Jk 5+ﬂ(k+})+A — — ’
mu -m+1™ P .

)‘<z\+s+my> Z( )(k] z\+s+;¢(k+;) lf]<m<l+l,

A(mu)"“—f
(/\+s+mu)i+2_j

fm<j<itl,

i+1)_ 4!
where(jyk)_m.

Case 2. a(t) = f%e Pt t>0

0 if j>141,
1+1 - .
ﬂz szl\ 1 if j<i+1<m,
* . kz—jo( )(Jv’“/s+uk+j)+ﬂ)2 = B
Qij(s)— mu i—-m41m 2
8 (arstom) ,Eo(_l (Wilerrrmers)  fi<m<ith
i +2 = j)(mp)' T 17 ifm<j<itl.
(B+s+mu)t t377 o

Case 3. a(t) = pyBie "V 4 pyfpe 2 150
ij(s) = P1ij(8, By) + pzq;*j(s,ﬂZ),

where ¢;;(s,c) is obtained by replacing A with ¢ in ¢;;(s) of Case 1.

For the diffusion approximation, we need to approximate the idle period distribution which is
not known for GI/G/m system. Heuristic approximations for the distribution of an idle period
in the GI/G/m system were proposed in Choi and Shin [4]. It was shown by simulation that
ho(t) = a(t) (interarrival time distribution) gives the most accurate result. In this paper, we take
ho(t) = a(t) as an approximation of the distribution of an idle period. The “relative percentage
errors” (denoted by “ERR”) are calculated by the formula

exact value — approximate value x 100(%).

ERR =
exact value

The tables deal with the case p > 0.7. When the relative percentage error is greater than 50%, we
use the notation ’#*x**' instead of numerical results, since the numerical results are meaningless.
We see that the diffusion approximation performs better for the exponential distribution of
interarrival time than other distributions. From the tables, we can learn that the accuracy of the
diffusion approximation yields the following properties with respect to the mean. The greater
traffic intensity p is, the more accurate the diffusion approximation is. In particular, if p is
extremely high (p > 0.90), then the approximation is quite accurate. When the system capacity
is small or the number of servers is large, the tables show that diffusion approximation is still
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good for even moderate traffic p.
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TABLE 1
Mean of First Overflow Time for M /M /3/N —1 System
11 41
% 0 5 10 0 20 40
P mean
TA 116.41 108.47 38.04 7405535.73 7401437.24 2221680.87
0.70 D 111.40 103.70 36.20 4976645.35 4973662.98 1479975.28
ERR 4.30 4.40 4.83 32.80 32.80 33.38
TA 75.87 69.13 22.12 542841.65 541582.36 135724.44
0.75 TD 73.80 67.21 21.46 484155.52 48298521 120336.71
ERR 2.73 2.78 2.99 10.81 10.82 11.34
TA 52.45 46.63 13.68 61612.08 61082.13 12335.52
0.80 D 51.54 45.82 13.44 59487.26 58966.43 11866.71
ERR 1.74 1.74 1.79 3.45 3.46 3.80
TA 38.14 33.03 8.94 9652.05 9386.97 1461.03
0.85 TD 37.71 32.67 8.85 9486.15 9224.11 1433.23
ERR 1.12 1.08 1.05 1.72 1.74 1.90
TA 28.93 24.41 6.14 2069.84 1921.05 220.23
0.90 TD 28.72 24.24 6.11 2056.42 1908.53 218.69
ER 75 .69 .62 .65 .65 .70
TA 22.76 18.70 4.41 633.57 540.81 45.95
0.95 D 22.63 18.61 4.40 632.02 539.60 44.86
ERR .54 46 37 24 22 22
TA 15.33 11.99 2.55 152.03 105.97 571
1.05 D 15.28 11.96 2.54 151.90 105.92 5.71
ERR 34 .26 18 .09 .04 .02
TA 5.55 3.74 .65 25.52 14.00 67
1.50 TDD 5.53 3/83 .65 25.51 14.00 67
ERR 24 20 .09 06 .00 .00
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TABLE 2

Mean of First Overflow Time for M /M /7/N — 1 System

11 41
X 0 5 10 0 20 40
P mean
TA 18.31 16.64 6.12 1055817.68 1065232.98 319751.84
0.70 D 17.82 16.16 5.92 852603.92 852096.81 253553.47
ERR 2.68 2.90 3.31 20.00 20.01 20.70
TA 13.50 12.00 4.09 105907.78 105666.46 26482.10
0.75 TD 13.27 11.77 4.01 97246.24 97015.44 24172.87
ERR 1.72 1.90 2.09 8.18 8.19 8.72
TA 10.39 9.03 2.87 14491.27 14371.37 2903.35
0.80 TD 10.28 8.92 2.84 13975.55 13857.83 2789.86
ERR 1.11 1.24 1.30 3.56 3.57 3.91
TA 8.29 7.04 2.10 2628.89 2561.60 399.48
0.85 D 8.23 6.99 2.09 2591.87 2525.13 393.13
ERR 72 .82 79 1.41 1.42 1.59
TA 6.81 5.66 1.60 647.13 605.36 69.91
0.90 TD 6.77 5.63 1.59 643.89 602.30 69.53
ERR 48 .55 48 .50 Sl .56
TA 5.72 4.66 1.25 220.43 192.25 16.27
0.95 D 571 4.64 1.24 220.08 191.97 16.25
ERR .33 .38 .30 16 15 14
TA 4.28 3.36 .82 58.74 43.20 2.39 |
1.05 D 4.28 3.35 .82 58.71 48.18 2.39
ERR 18 21 15 .05 .03 .02
TA 1.93 1.34 27 10.46 6.00 29
1.50 TDD 1.92 1.34 27 10.46 6.00 29
ERR .10 15 .16 .03 .00 .00
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TABLE 3
Mean of First Overflow Time for E,/M/3/N —1 System
1 41
X, 0 5 10 0 20 40
p mean
TA 283.76 273.47 112.80
0.70 TD 221.04 211.16 82.89 ek kok K kKK *okokokok
ERR 22.10 22.78 26.52
TA 153.17 144.77 53.25
0.75 D 132.28 124.00 44.02 Hokkokk Hokk Rk *okkkok
ERR 13.64 14.35 17.33
TA 90.86 83.83 27.53 833445.68 831987.08 216832.83
0.80 D 84.14 77.08 24.73 560589.27 559236.59 139335.39
ERR 7.39 8.05 10.18 32.74 32.78 35.74
TA 58.48 52.48 15.47 63679.37 63085.13 12525.29
0.85 D 56.67 50.56 14.69 49185.00 48644.94 9353.98
ERR 3.11 3.66 5.04 22.76 22.89 25.32
TA 40.34 35.14 9.38 6533.74 6275.79 878.27
0.90 D 40.19 34.85 9.22 5949.46 5699.54 783.46
ERR .37 82 1.66 8.94 9.18 10.79
TA 29.48 24.90 6.09 1142.90 1009.15 93.15
0.95 D 29.85 25.12 6.11 1124.38 990.72 90.96
ERR -1.25 -.88 -32 1.62 1.83 2.35
TA 18.00 14.33 3.05 171.75 117.62 6.15
1.05 D 18.46 14.64 3.10 - 173.21 118.20 6.17
ERR -2.55 -2.19 | 1.67 -.85 -.50 -29
TA 572 3.84 .66 25.71 14.00 67
1.50 TDD 5.83 3.88 .66 25.82 14.00 .67
ERR -1.83 -.97 -25 -42 .00 .00
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Mean of First Overflow Time for E,/M /7/N —1 System

11 41
X, 0 5 10 0 20 40
P mean
TA 30.49 2875 | 1229
0.70 D 27.46 2565 | 1046 Hokkkk Hokkkk KRRk
ERR 9.96 10.79 | 14.89
TA 20.15 18.59 7.23
0.75 D 19.14 17.53 6.58 Hokkkk Hoxonon KRR
ERR 5.01 5.74 8.95
TA 14.24 12.84 457 169354.16 169064.07 44063 45
0.80 D 14.01 12.55 435 1107639.32 107385.26 26757.02
ERR 1.66 2.23 4.62 36.44 36.48 39.28
TA 10.63 9.36 3.06 14418.94 14290.89 2838 81
0.85 D 10.69 9.37 3.01 11515.52 11395.38 2192.54
ERR -.50 -.09 1.62 20.14 20.26 2277
TA 8.30 7.13 2.16 1827.59 1762.22 247 56
0.90 D 8.45 7.24 2.17 1688.06 1623.75 224.09
ERR -1.82 -1.57 -33 7.63 8.97 9.48
TA 6.71 5.63 1.60 379.68 34132 32.00
0.95 TD 6.89 5.77 1.62 375.01 336.41 31.37
ERR -2.58 241 -151 123 1.44 1.98
TA 476 3.82 97 66.32 4831 2.59
1.05 D 491 3.94 99 66.95 48.59 2.60
ERR 3.12 316 | 241 -95 -59 -34
TA 1.98 139 27 10.53 6.00 29
1.50 TDD 2.02 1.42 28 10.58 6.00 29
ERR 218 222 | -101 -46 00 00
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TABLE 5
Mean of First Overflow Time for H,/M /3/N —1 System
11 41
Xy 0 5 10 0 20 40
p mean
TA 78.39 71.32 22.94 684085.65 682739.14 175185.24
0.70 D 70.97 64.49 20.71 559578.57 558405.29 142999.36
ERR 9.46 9.57 9.72 18.20 18.21 18.94
TA 54.50 48.42 14.36 90902.59 90306.92 19189.73
0.75 D 50.21 44.58 13.24 80808.93 80262.35 16953.64
ERR 7.88 7.91 7.78 11.10 11.12 11.65
TA 39.83 34.51 9.50 15955.54 15651.25 2674.27
0.80 TD 37.16 32.21 8.90 14785.95 14500.87 2469.16
ERR 6.71 6.66 6.30 7.33 7.35 7.67
TA 30.35 25.64 6.59 3649.46 3476.27 462.95
0.85 D 28.58 24.18 6.25 3478.28 3313.50 440.68
ERR 5.83 5.71 5.17 4.69 4.68 4.81
TA 23.94 19.73 478 1103.99 995.56 101.14
0.90 D 22.70 18.75 4.57 1070.86 966.61 98.25
ERR 5.16 4.96 4.28 3.00 2.91 2.87
TA 19.44 15.64 3.59 440.62 367.05 28.69
0.95 D 18.54 14.96 3.46 431.77 360.55 28.24
ERR 4.63 4.37 3.58 2.01 1.77 1.59
TA 13.74 10.57 2.23 136.61 95.94 5.28
1.05 D 13.21 10.20 2.17 135.07 95.36 5.26
ERR 3.87 3.49 | 2.57 1.13 .60 35
TA 5.39 3.63 .64 25.32 14.00 67
1.50 TDD 5.27 3.57 .64 25.18 13.99 .67
ERR 2.29 1.65 72 .54 .01 .00
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Mean of First Overflow Time for H,/M /7/N — 1 System

TABLE 6

11 41
X, 0 5 10 0 20 40
P mean
TA 14.51 12.89 438 137422.92 137156.32 35194.35
0.70 D 13.32 11.76 3.98 11432489 114088.58 29013.17
ERR 8.17 8.71 9.03 16.81 16.82 17.56
TA 11.13 9.66 3.07 2121153 21076.36 4479.52
0.75 D 10.35 8.93 2.84 18883.06 18759.00 3963.31
ERR 7.02 7.54 7.62 10.98 11.00 11.52
TA 8.85 7.51 225 422330 4146.74 709.24
0.80 D 8.30 7.02 2.10 3928.36 3856.46 65736
ERR 6.14 6.63 6.51 6.98 7.00 731
TA 7.25 6.02 1.70 1089.69 1041.93 139.27
0.85 D 6.85 5.67 1.61 1040.37 994.91 132.82
ERR 5.45 5.92 5.64 453 451 4.63
TA 6.08 4.95 133 365.21 332.99 34.16
0.90 D 5.78 4.69 1.27 354.40 323.44 33.21
ERR 4.90 5.34 4.94 2.96 2.87 2.80
TA 521 4.16 1.07 157.38 134.19 10.68
0.95 D 497 3.95 1.02 154.20 13177 10.52
ERR 445 487 437 2.02 1.80 1.59
TA 4.00 3.08 74 52.88 38.96 2.20
1.05 D 3.85 2.95 71 5227 38.69 2.19
ERR 3.77 415 3.49 1.17 69 39
TA 1.89 1.30 26 10.38 6.00 29
1.50 TDD 1.84 1.27 25 10.33 5.99 29
ERR 226 2.49 1.60 54 02 00




