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ABSTRACT

In this paper we extend the method of quasilinearization to stochastic initial
value problems. Further we prove that the iterates converge uniformly almost
surely to the unique solution and the convergence is quadratic.
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1 . Introduction

Quasilinearization is a well known technique for obtaining approximate solutions of nonlinear
differential equations [1, 2]. It provides a monotone sequence of approximate solutions that
converges quadratically to the unique solution of the IVP (initial value problem)

u' = f(t,u),u(0) = uy on J =[0,T], (1.1)

if f is convex. Recently, this method has been generalized and extended using less restrictive
conditions on f so as to be applicable to a large class of problems [4-10, 12]. In particular, in [4,
8], this technique has been extended to obtain monotone sequences that converge quadratically to
the unique solution of (1.1) when f can be decomposed into a difference of two convex functions.
In this paper we extend the technique used in [8] to stochastic initial value problems.

2 . Main Result

Let (2, A, P) be a probability measure space and u,:2 — R be a given measurable function.
Consider the stochastic initial value problem (SIVP)
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u'(t,w) = f(t,u(t,w),w) + g(t,u(t,w),w), a.e.onJ =[0,T], (2.1)
u(0,w) = up(w),

where f: JXRXxQ — R and ¢: J xR x Q — R satisfy:
(7) f(t,u, -) and g(t,u, - ) are measurable for all (t,u);
(%)  f(-,u,-)and g(-,u, -) are measurable for every u;
(737)  f(t, -,w) and g(t, - ,w) are continuous for all (¢,w).

Suppose that
1) If(t,m,w)ISK(t,w) on JxRxS, where K:JxQ— R_ is measurable in ¢ and

T
J K(s,w)ds < oo on Q.
0

A stochastic process u:J x Q—R is called a sample solution of (2.1) if u(0, -) = uy and is
absolutely continuous (a.c.) on J and satisfies u'(¢,w) = f(¢,u(t,w),w) + g(t,u(t,w),w), a.e. on J.

A stochastic process a:J x Q—R is said to be a sample lower solution of (2.1) if for almost
all we Q, a+,w) is a.c. and &'(t,w) < f(t,a(t,w),w) + g(¢, a(t,w),w), a.e. on J. The definition of
sample upper solution is obtained by reversing the inequality above. For further details we refer
to [3].

Theorem 2.1: Assume that

A;)  ag and By are lower and upper sample solutions of (2.1) such that oy < B on J x€2;
Ay)  fu(tu,w), g, (tu,w), f L (e w),g,,(tu,w) exist, are continuous in u, measurable
m
w, measurable in (t,w) and satisfy f,, (t,u,w) >0, g,,(t,u,w) <0;
A3)  fur 9w Fuu and g, sotisfy (2.1) with different bounds.

Then there exist monotone sequences {a,(t,w)}, {B,(t,w)} which converge uniformly, for
almost all w € Q, to the unique sample solution of (2.1) and the convergence is quadratic.

Proof: Let us first observe that (A,) implies, for any u > v,

f(tyu,w) > f(t,v,w) + fo(t,v,w)(u—v),

(2.2)
g(t,u,w) > g(t,v,w) + g, (t, u,w)(u —v).
Moreover, for any uy, u, such that ay(t,w) < u, < u; < By(t,w), it follows that
f(tvulaw)_f(t,UQ,w) S Ll(t?w)(ul —U2), (2 3)

9(t uy,w) = g(t, ug,w) < Lo(t,w)(uy — uy),

T
a.e. on J, where L,(t,w) > 0, is measurable for every ¢ and [ L;(t,w)ds < oo on , for i =1, 2.
0

Let oy (t,w), B;(t,w) be sample solutions of the linear SIVPs

ay = f(t,ag,w) + f (1, ag,w)(ay — ag) + g(t, ag,w) + 9,(t, g, w)(ay — ), (0, w) = up(w),
,8/1 = f(t, ﬂoaw) + fu(taa()aw)(/@] - ﬁo) + g(t,ﬂov w)+ gu(t,ﬂ()a ‘U)(,Bl - ﬂo)a ﬂ](o»"-’) = uo(w)’
(2.4)
a.e. on J, where a(0,w) < up(w) < B,(0,w).

We shall prove that oy < oy on J xQ. To do this, let p=ay— a, so that p(0,w) < 0. Then,
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using (2.4), we get

p =ap-oi
< f(t, o, w) + g(t, Qg w) - [f(ta Qg w) + fu(t’ Qg w)(al - aO)
+ g(t, Qg w) + gu(t’ ﬂoa w)(al - aO)]
= [fu(t,opw) + g,(t, By, w)]p, a.e. on J.

This implies, by Theorem 1.1 [11], that p(t,w) <0 on J x§. Now set p = oy — f, and note that
p(0,w) < 0. Using (2.2) and (2.4), we obtain

P =0 =hy
<[f(tag,w) + fulty ag w)(ey — ag) + gt ag,w) + g, (8 By w)(ag — )]
= [t Boyw) — 9(t, By w)
<[f(t ag,w) + £, (1, ag,w)(ag — ag) + g(t, By, w) — 9,(t, Bo, w)(Bg — )
+ 9u(t, By w)(ay — ag)] = f(t, ag,w) — £ (t, gy w)(Bg — eg) — 9(t, By w)
= [F oty gy 0) + 9oty Bop )Py @i on J,
which again implies p(t,w) <0 on JxQ. As a result we have ay(t,w) < oy(t,w) < By(t,w) on
J xQ. Similarly, we can find that ay(t,w) < 84(t,w) < By(t,w) on J xQ. We need to show that
oy (t,w) < B1(t,w) on J xQ so that it yields
ot ) < a3 (1) < By (1) < Fylt,w) on T X (25)
Using (2.2) and (2.4), we see that
ay = [t agyw) + F (1 ag,w)(ay — ag) + 9(t agy ) + 9, (2 Aoy w)(ey — )
< f(tyoq,w) 4 g(t g, w) = gy (8 o, w)(aq — ag) + g, (8, By w)(eg — @)
=f(t,aq,w) + g(t, oy, w) + [94(E Boy @) — 9,8 g, w) (@ — )
< f(t,ay,w) + g(t,0q,w), a.e. on J,

because of the fact that g,(t,u,w) is nonincreasing in u and a; < B, on J x€2. Similarly, using
(2.2) again, we obtain

B1 = f(t, Byyw) + £ (8 g, w)(By = Bo) + 9(t, By ) + 9, (1, By w) (B = Bo)
> f(t, By, w) + [ (1, By, w)(By — Bo) + [ (¢, agyw)(By — Bo) + 9(t, 1, w)
= f(t,B1,0) + [ = [ (t, By, w) + f ot a,w)](By = Bo) + 9(t: By, @)

2 f(t,By,w) +9(t, By, w), a.e. on J,

because of the fact that f, (t,u,w) is nondecreasing in u and oy <y on J x €. It then follows
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from Theorem 1.1 [11] and (2.3), that oy(t,w) < B;(t,w) on J x Q which shows that (2.5) is valid.

Assume that for some k > 1, a}, < f(t, oy, w) + g(t, o, w), By > f(t, By, w) + g(t, By, w), a.e. on
J and o (t,w) < By (t,w) on J xQ. We shall prove that

op(t,w) <ap 4 1 (tw) < B 4 1(tw) < Bi(t,w) on T xQ, (2.6)
where o | (f,w) and By , 1(t,w) are sample solutions of the linear stochastic SIVPs
ap 41 = f(togw) + £, (6 ag w)(og 4 1 — o) + g8, o, )
+ 94 (t Bryw)(og 4 1 — o)y (2.7)

oy +1(0,w) = ug(w)

and
Br+1=F(t,Brw) + f (Lo, w)(Br 41 — B) + 9(¢, By, w)
+ 94(t Bro ) (B 41— B)s (2.8)
Br +1(0,w) = uy(w),
a.e.on J.

Setting p = ap —ay , 1, we have, as before, that p’ < [fu(t, g, w) + g,(t, By w)]p, a.e. on J
and p(0,w)=0. This proves that p(t,w)<0 on Jx€.  On the other hand, letting
p=ay 1~ By yields

P = A= B
STt agw) + fu(tagw)(og 11— ag) + 9(t oy w) + 9,(8 By w) (o 41 — o)
- f(ta /Bkvw) - g(ta /Bkvw)-

Since a < By, (2.2) gives, after some computation,

P <[fu(tapw)+g,(t B w)lp, ae onlJ.

Thus we have oy (t,w) < ak+1(t,w) < Bi(t,w) on J xQ. Similar arguments yield a(t,w) <
Br 4+ 1(t,w) < By(t,w) on JxQ.  Now to show that ap | < f(t,0q 41 w)+g(t, o 4 w), we
proceed as before. Utilizing (2.2), (2.7) and (A,), we get

a1 S F(Gog o pw) +a(tog 1 w) =gy (tog o w)(og g — o) + 9,(8 By w)(ag 4 g — o)
= f(t,ak+ 1»"”) + g(t,ak+ 1"-‘)) + [gu(taﬂkaw) - gu(t,ak + 1,"-’)](0% +1 ak)

< ftog 4 qpw)+9(tap 4 q,w), ae. on J.

In a similar manner, we can prove that 83 , ;> f(t,ﬂk+1,w)+g(t,ﬂk+1,w), a.e. on J and
hence Theorem 1.1 [11] shows that ay , ;(t,w) < By 4 1(t,w) on J xQ which proves (2.6) is true.
Hence by induction we have for all n,

g <o <, <...<a, <f <..<fB,<B;<PByonJxKQ.
0 1 2 n n 2 1 0
Let us note that for each fixed t € J,
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a(t,w):supa (t,w) = lim a,(t,w),

n>0

b(t,w) = znfﬂ n(tw) =lim B,(t,w)

exist and a(t,w), b(t,w) are measurable functlons in w for each t € J. We obtain, from (2.7) and

(2.8),
t

X+ 1(ta w) = uo(w) + / [f(s, ak(s’ w),w) + fu(sa ak(s’ w), “")(ak + 1(5’ w) — ak(s’ w))

0
+ g(s, ak(sv w)a w) + gu(s, /Bk('s) w)a w)(ak + 1(5,“-’) - ak(sa w))]ds

and
t

B + 1(t’ w) = up(w) + / [f(5,Br(s,w),w) + fu(s’ak(s’w)’ w)(ﬂk + 1(8,w) = By(s,w))

0

+9(s, (s, w), ) + 9, (5, Br(5, ), W) (B 4 1(8,w) = By (s, w))]ds.

By standard arguments, it is easily seen that {a, ,,(t,w)} and {8, , (t,w)} are sample
bounded and equicontinuous and consequently, (2.3) together with Lebesgue dominated conver-
gence theorem yields that

aty ) = ugw / {F(5,a(5,w), ) + g(5, a5, w), ) }ds

and

¢
b(t,w) = uy(w) +/ {f(5,0(s,w),w) + g(s,b(s,w),w)}ds.
0

In view of (2.3), it is clear that a =b on J x, and as a result, a = b = u on J xQ is the unique
sample solution of (2.1).

Next we shall show that the convergence of the sequences {a,(t,w)}, {8,(t,w)} to u(t,w) is
quadratic. Let p,(t,w)=u(t,w)—a,(t,w) >0, q,(t,w) =F,(t,w)—u(t,w) >0, and note that
?,(0,w) =0, ¢,,(0,w)=0. From (2.7) and the mean value theorem together with (A,), we obtain
successively,

Pn = f(bw,w) +g(tu,w) = [f(t o, _py0) + fo(ty oy w)(a, —ay _q)
+9(tyay _ 1, w) + 9,(8 By, — W), =y 1))
=fu(t,6,0)p, 1+ g, (tio,w)p, 1+ fu(tia, _ @) (=P 1 +Pp)
9u(ts Br - 1@) (= Pp 11 Pp)
<fultuw) = f ot ey, _w)lpn —y = [9,(t 8y 1y w) — g (t a1, @)lp,
+ [ u(t ey, —1yw) + 9,(t 8, 1y w)lp,,
= w6 81,9)P5 _ 1 = 9y (t,01,0) (B 1 = 0 )Py 1

+ [fu(t’an— 1""‘)) + gu(t’lgn - l’w)]pn’
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where o, _; <6, 0 <uvanda,_,<b <u,a,_,<0;<pB,_;

But
= Guu(t 01, @) By 1 =y 1P 1 S Ny(t, )4y _ 1 + P 1)Pp — 1
:N2(t,w)[p,21 1+ Pn_19n 1]
< 2N, (tw)ph 1+ Ny(t,w)gl _ ;.
Thus

P < M(t,w)p, + [Ny(t,w) + 2Ny(t,w)]p}, _y + No(t,w)ay, g,

whtzre )Ifu(t,u, w) | < M, (t,w), |gu(t,u, w)ls M, (t,w), Ifuu(t,u, w) | < Ny(tw), |guu(t,u, w) | <
No(t,w),

T T
M=M,+M,, / M(t,w)dt = Q(w)<oo, / N,(t,w)dt = R(w) < o0
0 0
and

T
/ N,y(t,w)dt = S(w) < oo.
0

Thus, by Gronwall’s lemma, we get

0<p,(tw)

< [ {eap [ M, )IUN, (5,0) + 2No(o, )} (5,0) + Nofo ) (5,))ds
0 s

< [ exp [ M5 )Y N (5,0) + 2N, 00} y(5,) + Nofo, ) y(5,)1ds.
0 0

It therefore follows that
mJaa:| u(t,w) — ap,(t,w)| < eQ(w)[{R(w) + 2S(w)}mjam| u(t,w) —a,, _4(t,w) |2
+ S(w)mjle B, —1(t,w) —u(t,w) |2],

for almost all w € Q.

Similarly we can proved that
Q(w) 2
mJaarI Bo(tw) —u(t,w) | <e?{S(w)+ 2R(w)}mjw| u(t,w)—p,, _ 1(t,w)l
+ R(w)m;z:c' a, _(t,w) —u(t,w) |2],

for almost all w € Q. This completes the proof. O
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