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ABSTRACT

In this paper we investigate the existence of solutions to stochastic variation-
a] inequalities under conditions that are not imposed sample-path-wise.
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1. Introduction

In [9], Noor and Elsanousi introduced the notion of a random variational inequality and de-
monstrated the existence of a solution upon assuming the random operator under consideration
possesses strongly monotone and Lipschitz sample paths. This requirement makes it possible to
view the random operator as a family of deterministic operators (indexed by the sample space),
each having the kind of properties encountered in the theory of deterministic variational inequali-
ties. We propose here an alternative set of sufficient conditions for the existence of a solution, un-

der which the metric and probabilistic properties of the operator are inextricably linked.

We begin by introducing our notation and recalling a few basic definitions.

A probability space is a triplet (f, 5, P) where D is a non-empty set, 5 is a r-algebra of sub-
sets of D, and P is a probability measure on 4. A subset A C f is said to be null if there exists an

F E with A C F and P(F) 0. The space (D, 4, P) is complete if contains all the null sets.

By the Borel (r-algebra of a Banach space G, we mean the smallest r-algebra %(G) contain-

ing all open sets. A map f:fT is said to be measurable if f-I(B) E 5 whenever B %(G). f
is weakly measurable if o f:f--+R is measurable for every @ G*, the dual of G. It is well
known that separability of G entails equivalence of measurability and weak measurability (see
[13]). 0(, 5, P, G) denotes the totality of measurable maps f:DG. Two elements, f and g in

0(D, 5, P, G), are equivalent (mod 0) if {w: f(w) 5 g(w)} is null. The space of equivalence classes
of this relation is denoted by L(D, 4, P, G). We shall, however, use the same symbol for a mem-

ber of 0(D, 5, P, G) and the class it represents. LP(D, 4, P, G) is the subset of L(f, 4, P, G) con-

sisting of all f such that E lfl p < oc where I" G is the norm on G and E is the expectation
with respect to P.
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A random operator on a Banach space G is a map T:fxG---+G such that T(.,x)E
(Ft, 5, P, G), Vx E G. T is said to be continuous (or to have continuous sample paths) if, for w
outside a null subset A, the map T(., w): G--+G is continuous. T is said to be measurable if
VB %(G), T- I(B) 5 (R) %(G), the (product) a-algebra generated by the rectangles F x B
where F 5 and B %(G). If G is separable, continuity of T implies its measurability.

Throughout this paper, (,,P) is a complete probability space, H is a Hilbert space with
norm H and inner product {, )H" K is a closed convex subset of H and PK is the projection
of H onto K. LP(f, 5, P, K) denotes the space of classes in LP(f, 5, P, H) which have a represent-
ative whose range lies in K. PK" L(, ,P,H)-*L(ft, ,P,K) is defined by

( Kf)(w)- PK(f(w)) Vf, Vw.

We shall occasionally write for L2(a, ,P,H) and view H as a subspace of . is a Hilbert
space with (f g)I E(f(. ), g(. ))H"

2. The Random Variational Inequality

Let T be a measurable random operator on H and suppose h E L(Ft,,P,H). We seek to
solve the following problem.

Problem 1: Find f0 0(f, 5, P, K) such that Vy K

(T(, f0()), f0())/ -> (h(), f0())/ (1)

for almost all w.

The measurability of T with respect to Y (R) (H) ensures that for any f G 0(, ,P,H) the

apping w--T(w, f(w))is also in 0(, ,P,H) and we can, thereby, define an operator
0 .__, 0T: L (,,P,H) L (,,P,H)via

(T f)(w) T(w, f(w)).
If order in L(ft,,P,H) is determined point-wise almost everywhere, Problem 1 can be

restated as follows.

Problem 1" Find f0 L(ft, 5, P, K) such that Yy E K

(T fo, Y fO)H >-- (h, y fO)H" (1)’
If T (considered as a process indexed by H) were assumed to have continuous sample paths,

then sufficient condition could be imposed on T itself to ensure the existence of solution to
Problem 1 (cf;[9]). If, however, sample continuity is not stipulated, we shall need to place our

conditions on T rather than T.

We make the following assumptions.

There exists a closed linearsubsp%ce V of ~- L2(ft, P,H), containing H such that

(C1) V is invariant under T and PK (i.e., TV C V, PKV C Y).
(C2) T Iv is Lipschitz, i.e., 3/3 > 0 such that Vf, g Y

II T f Z g ll i
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(C3) T Iv is strongly monotone, i.e., Sa > 0 such that Vf, g E V

h v.
Theorem 2.1- Suppose V,T,h satisfy the conditions (C1)-(C4). Then there exists a unique

f0 E L2(, 5, P, K)N V with the property that, for w outside a null set A 05 and Vy K,

<T(w, f0(w)), y f0(w)>H > <h(w), y fo(W)>H. (1)
Before proving the theorem, we record the following well-known characterization of the

projection PK.
Lemma 2.1: If PK is the projection of the Hilbert space H onto the closed convex subset K,

then Vx H, z PKx if and only if

(z,y--z>H > (x,y--z>H /y @ K.

Proof of Theorem 2.1: Let p > 0. On account of (C1) and (C4) we can define an operator
S" VV by requiring

We shall choose p in such a way that S becomes a contraction on V.

Since PK is non-expansive, we have Vf, g V

Thus, by (C2) and (C3) we deduce that

II sf- Sg II < V/1 + p2f12 2pa II f g II . (2)

2ceChoosing 0 < p < -7 ensures that V/1 + p2f12 2pa < 1, and turns S into a contraction on V.

Let f H and set fn+ Sfn" The sequence (fn) converges in mean to a fixed point

fo F of S. On account of (C2), fn---, fo in V also. By arranging for a subsequence (if

necessary), we may assume f,fo and T f,<-+T fo almost surely. It thus follows that

f0 G V 3 .L2(, 05, P, K) and that there exists a null set A 05 such that Vw q A

fo(w) Sfo(w),

i.e., f0(w) PK[fo(W)- p[T fo(w)- h(w)]].

This, by Lemma 2.1, is equivalent to the requirement that Vy E K

(T(w, fo(w)), y fo(w)) _> (h(w), y fo(w)).
To verify uniqueness, let us suppose go L2(f2, 05, P,K) is such that, for outside a null set

F, we have Vy K
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-> (3)

Suppose w A t_J F. Then with y go(w), we have from (1) that

(T fo(w), go(w)- fo(w))

_
(h(w), go(w)- fo(w));

and with y- fo(w)in (3), we have

(T go(w), fo(w) go(W))H >_ (h(w), fo(w) go(W))H.

Consequently,

(T go(w) T fo(w), go(w) fo(w)) _< 0 Vw A , r.

Taking expectations, we get

(T go T fo, go fo) < 0.

(C3) now guarantees that go- fo in L2(, aS, P,H).
lmarks: 1. The conclusion of Theorem 2.1 is stronger than the mere existence of a solution

in I/ for Problem 1. However, the uniqueness argument presented is for this stronger type of
solution.

2. In many situations T may prove to be quite elusive and hard to describe which makes the
job of checking conditions (61)-(64) a tough task. If T possesses a natural extension T to a
closed subspace V of H, then we may content ourselves with a solution to a weaker formulation
of Problem 1.

Theorem 2.2: Suppose V is a closed subspace of i and :V---,V is such that Vx E H,
(Tx)(w)- T(w,x). If conditions (61)-(64) are satisfied with Z in place of T, then there exists
an fo V f-1L2(f, 4, P, K) such that, for w outside a null set A, we have

((Tf0)(w), y- f0(w)) > (f0(w), y- f0(w)), Vy K.

Pr(f: The proof is exactly the same as that of Theorem 2.1.

(4)

3. An Example

Let I-[0,1] and H-L2(I,%(I),g,R) with Lebesgue measure t. Suppose (ft,J,P,
(Wt)t e I, (t)t e I) is a standard Brownian motion. We denote by M2k(I) the space of all (St)
non-anticipative processes f: [0, 1] x f--R satisfying E f f(s,w)2kds < oc. We can and shall iden-

0
tify M2k as L2k([0,1]x,P,R,txP) for a suitable (r-algebra 2 or as a subspace of

L2k(, 5, P,H). For each x H, the process (t,w)--( f x(s)dWs)(W admits a continuous version,
0

and we can thus define an operator B:f x H--C(I) C H by

B(w,x)(t)= x(s)dWs (w).
0
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We verify first that an (5 (R) %(H), %(C(I))) version of B can be chosen. This is a consequence of
general theory developed by Cohn, Hoffmann and Jorgensen (see [3, 7, 8]). Indeed, for each
x C H, the process (t,w)-B(w,x)(t)is (I)(R) J-measurable, so that for any Borel measure # on

1
I, the function co-, f B(w,x)(t)d#(t)is q-measurable. Invoking the Riesz representation theorem,

0
we deduce that B(. ,x):ft-C(I)is weakly measurable. Since C(I)is separable, B(. ,x)is in fact
(,N(C(I)))-measurable, and we can therefore view B as a mapping from H into
L(f, 5, P, C(I)). If we denote by [1" [[ o the uniform norm on C(I), we have from the Martin-
gale property of the Ito integral that

E( II B( 112 2 (6)

This ensures the continuity (and therefore measurability) of B: H--L(,,P, C(I)). Since H is
complete, the existence of the said version follows from Cohn, Hoffman, and Jorgensen. We
assume this version has been chosen.

We make the following observations.

(O1) B is a strong random operator on H that cannot be considered as a family of bounded
linear operators on H parameterized by w C fl (see Skorohod [11]).

(02) Viewed as an H-valued stochastic process indexed by H, B doesn’t have continuous
sample paths. To see this, we let xn H be defined by

) n Clearly xn--.O in H. Were B towhere X is the indicator function and cn log log n"

have continuous sample paths, B(w, xn) IH would necessarily converge to zero almost
everywhere. But

cnW (w) if _>

1cnWt(w if < .
Thus B(w, x)l __> ()C2aWl(w).2

n

Employing the law of Iterated Logarithm, we deduce that with probability 1,
lim+sup]B(w, Xn) lH 1, which is the sought contradiction.

(03) Let f M2(I). Then f is defined by

(B f)(w)(t) B(w,f(w))(t) f(w,s)dWs (w).
0

It is tempting to confuse this with f(w(t)) -(f f(s)dWs)(W), the stochastic integral of the
0

process f. Equivalence of and is assured for step and C1(1) processes f but is at best conjec-
tural for general f M2(I).

Now suppose A: H---+H is Lipschitz (with constant 0) and strongly monotone (with constant
Define, for a > 7 > 0, the operator T: f x H---H by

T(w, x) Ax + 7B(w, (7)

Let K-{xH:x>Oa.e. (e) onI}. Then K is a closed convex subset of H.

According to observation (O2) T does not have continuous sample paths (wrt x) and
Problem 1 for T and K cannot be handled as in [9]. Observation (03) indicates the difficulties in
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capturing the properties of B and so we resign ourselves to obtaining the solution of the weaker
problem (as presented in Theorem 2.2).

Let Y M2(I) (considered as a subspace of ) and

(Tf)(w)(t) Af(w)(t) + 7Bf(w)(t).

V is clearly a closed subspace of H invariant under T.
follows that PKV C V. Thus (C) is satisfied.

Since PKx is easily seen to be x+, it

Vf, g e V, f() g() /< 2lAf(w)- Ag(w)[2H + 272 f( )- g(w) 2w /4

-< 2 f() g(w) 4 + 272 f() g() 2,

so that

II f g II L < 2(Z + 2)II f g IIH-- H

and satisfies (C3)(with Lipschitz constant V/2(/3g + 72) ). Furthermore,

((Tf Tg)(w), (y g)(w))H (Ay(w)- Ag(w), f(w)- g(w))H

+ 7(Bf(w)- Bg(w), f(w)- g(w))H,

so that

Now,

(: g, f g) > ce0 II : g II % + E(:-g f g)H.n

IE(f -g,f -g)nl 2 [f(w,t) g(w,t)] [B(f g)(w)(t)]d(P )
f [0,1]

< IIf-gll 2 fI" E [hf(t)- g(t)]dt
0

(9)

1

II f g II z" / E(f(t)- g(t))2dt
0

II f g II 2 j If(s)- g(s)]2dsdt
0

< Ilf-gll 4
H"

Thus (f g, f g) > (ao 7)II f g II 2 and (C4) is verified (with a ao 7).
From Theorem 2.2 we now conclude the existence an fo C U2(I)fq L2(f2, ,P,K) and a null

A such that, for w A, we have

(Tfo(w), fo(w)- y) >_ (fo(w), y- fo(w)), Vy C K.
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