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ABSTRACT

The class of harmonizable fields is a natural extension of the class of station-
ary fields. This paper considers fields whose increments are harmonizable and iso-
tropic. Spectral representations are obtained for locally harmonizable isotropic
fields. A linear least squares prediction for locally harmonizable isotropic fields is
considered.
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1. Introduction

The wide applications of stationary stochastic processes and random fields in the engineering
and physical sciences has been well documented. The recent texts by Adler [1] and Yaglom [17],
contain nice expositions of these applications. However, there are applications under which the
assumption of stationarity is not physically realistic, e.g., detection of a phase modulated signal.
Harmonizable processes provide a natural extension to the class of stationary processes. Harmoni-
zable processes retain the powerful Fouricr analytic techniques inherent with stationary processes
while relaxing the assumption of stationarity. A detailed treatment is given in Rao [8].

Random fields admit a further property, termed isotropy. Isotropic random fields have cer-

tain characteristics invariant under rotation. In the recent works of Rao [10] and Swift [12], [13],
the theory of harmonizable isotropic random fields is developed. A useful addition to this theory
is given by considering a random field X(t) which is not necessarily harmonizable, but whose in-
crement field

L.x(t) x(t + ,-)- x(t)

is harmonizable. The theory of processes with harmonizable increments is developed in the paper
by Swift [14]. Section 2 outlines the basic theory of harmonizable processes and fields. The spec-
tral representations for the locally harmonizable isotropic random fields are obtained in sections 3
and 4. Section 4 also contains a construction of an example of a locally harmonizable isotropic
random field. Section 5 develops a linear model for locally harmonizable isotropic fields.
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2. Prehminaries

To begin with, several ideas are briefly recalled here, which will be made use of later. First
there is always an underlying probability space, (f, E, P).

In this paper, second order random fields are considered. More specifically, a map X:I
L(P), where I( C ’) an index set, and L(P) is the space of all complex valued f E L such
that f f(w)dP(w) O.

A random field X(. is termed stationary if its covariance function r(.,. is continuous and
r(s, t)= (s-t). It can be represented as

’ (r) [ ei’" rdF(), (1)

for a unique non-negative bounded Borel measure F(. on n. The representation follows from a

classical theorem of Bochner’s [5] and is the motivation for the following definition.

Definition 2.1:
is expressible as

A random field X:nL(P)is weakly harmonizable if its covariance r(.,.

r(s, t) f f (2)

where F"n ,n___,C is a positive semi-definite bimeasure, hence of finite Fr6chet variation.

The integrals in (2) are strict Morse-Transue, [8]. A random field, X(.), is strongly
harmonizable if the bi-measure F(.,.) in (2) extends to a complex measure and hence is of
bounded Vitali variation. In either case, F(.,.) is termed the spectral bi-measure (or spectral
measure) of the harmonizable field.

Comparison of equation (2) with equation (1) shows that when F(.,-) concentrates on the
diagonal - ’, both the weak and strong harmonizability concepts reduce to the stationary con-

cept.

A subclass of stationary random fields satisfy an additional condition termed isotropy. Isotro-
pic random fields X(. ), can have covariance (. which are invariant under rotation and reflec-
tion in addition to translation. Isotropic fields play an important role in the statistical theory of
turbulence, where direction in space is unimportant, Yaglom [18].

The representation of covariance (.) for an isotropic homogeneous field was established by
S. Bochner, [5] and is

Ju(1r)r(s, t) 7 (s- t) 2"r() (a,).
dP (a), (3)

0
n- 2 andwhere r 1 s- t ll. Here Ju(.) is the Bessel function (of the first kind) of order u

is a (unique) bounded Borel measure.

Following the idea in (2), a more general concept for isotropic random fields (which are not
translation invariant) can be introduced, with the aid of strict Morse-Transue integration, Swift

Definition 2.2: A random field X’NLg(P) is weakly harmonizable isotropic if its covariance
r" Nn x NnC is expressible as:

’) (4)J
0 0
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where u- ’ -2 2 and F(. is a complex function of bounded Frfichet variation. (Here and in all
such places later on, the integrals of (4) are understood in the strict Morse-Transue sense as in
[].)

If F(.,. concentrates on the diagonal , ,V, so that r(s, t)= (s-t), equation (4) reduces
to Bochner’s representation (3). The integrals in (4) are strict Morse-Transue, [2]. As in defini-
tion 2.1, a random field, X(. ), is strongly harmonizable isotropic if the bimeasure F(.,. )in (4)
extends to a complex measure and hence is of bounded Vitali variation. A detailed treatment of
harmonizability can be found in Rao [8]. Harmonizable isotropic random fields are considered in
extensive detail in Rao [10] and Swift [12], [13].

3. Locally Harmonizable Isotropic Random Fields

The concept of a locally harmonizable isotropic random field was introduced earlier and is
formally given by

Definition 3.1: A random field X:n-Lo(P is locally weakly harmonizable if for each
7 E n, the increment field

IrX(t X(t + r)- X(t)

is weakly harmonizable.

Locally weakly harmonizable random fields are also known as random fields with weakly har-
monizable increments. Rao [9] considered the spectral representation and structure functions of
these fields. Rao showed the representations are obtained by considering the concept of a generali-
zed random field. For local processes and fields, generalized processes and fields are natural to
consider since they provide the required differentiability concepts. The following is a brief outline
of the development of generalized processes from Gelfand and Vilenkin [4] and Yaglom [17].

Consider the space 2; of infinitely differentiable functions h(t) having compact supports,
which with compact convergence becomes a locally convex linear topological space. A generalized
random field X is a linear functional X’%C such that if {n}n C %, Cn---0 in the topology
of %, then X(n)0 in probability, as no.

The mean of a generalized random field is the linear functional

rn(h) E(X(h)), h G %

and similarly its covariance is the bilinear functions (m 0)

r(h1,h2) E(X(h1)X(h2) ), h G To, i= 1,2.

Ordinary fields generate the corresponding generalized fields by the relation

[ X(t)h(t)dt for h e %.X(h)

The converse is not true unless an additional condition is assumed. That is, if a generalized field

X(. has point values (also called "of function space type") then the reverse implication holds.

Using this, and results from the theory of generalized functions, one defines the derivative
X(ml mn)(h) of a generalized field X(h)as
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X(ml mn)(h) (- 1)Mx(h(ml ran)), M mI -+-... + mn.
T1)en it, follows that if X(h) has point values X(t) and if X(t)is harmonizable then
X[ml mn(h) also has point values coinciding with X(ml mn)(t). Hence, an ordinary field
X(t) may be regarded as having a weak derivative, in the above sense, i.e., by allowing this deri-
vative to be a generalized field. This condition is used to develop further the results on fields
with harmonizable increments. A generalized field X(. )is weakly harmonizable if

and r(., admits a representation

r(hl, h2) h (,)h2(’)dF(, ’),

where F(.,-) is a positive definite function which defines a "tempered" bi-measure (measure in
the strongly harmonizable case) with the integral interpreted as strict Morse-Transue in the weak
case. It may be shown that such an X(. admits a representation

/" ()dZ()X(h)

where Z" %L2(P) is a vector measure such that

A B

(Rao [9], for the strongly harmonizable case, and the result extends to the weakly harmonizable
case also.)

In the present development, the additional concept of isotropy for these fields is considered.
For locally stationary isotropic random fields, Yaglom [18] proved the following:

Theorem 3.1: If X’%--,L2(p) is a generalized locally stationary isotropic random field then
the mean functional re(h) is zero and the covariance functional has representation

r(hl’h2)-2vF()/ / /
+ o IRn Nn

hl(s)h2(t)Jv( ll s_ t
s-- t l!dsdtd()

s th (s)h2(t)dsdt (6)

where (. is a nondecreasing function which satisfies

(1 + A2)p +
+o

and a is a non-negative constant, and p > O.

Theorem 3.1 motivates, (in the same fashion as Bochner’s theorem motivated definition 2.1),
the following definition:
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Definition 3.2: A generalized random field X:%---,L2(p) is locally weakly harmonizable iso-
tropic if it has mean function re(h) zero, and a covariance functional representable as

r(hl’ h2)- 2uF()/ / //hl(S)h2(t)J As11As-A’t_A’t II )ull )dsdtdF(A, A’)
-t-O +0 [nn

+ a2/ Is. thl(s)h2(t)dsdt (7)

where F(.,. is a function of locally bounded Fr&het variation satisfying

/ A A’dF(A, A’)p + 1- {0} - {0}(1 + A21 + (A’)2) 2

(8)

and a is a non-negative constant, p > 0, the integrals relative to F being in the strict MT sense
for the weak harmonizable as usual.

Spectral bi-measures F(.,. which satisfy equation (8) are known as tempered. Observe that
if F(.,. concentrates on the diagonal A A’, equation (7) reduces to equation (6), so the locally
stationary isotropic concept is subsumed in this definition. The following theorem is a useful char-
acterization of the covariance functionals of generalized locally harmonizable isotropic fields. The
proof of which depends upon the following lemma:

Lemma 3.1: With the above notation, one has
x3 h(m,n) gm t(Arl)gm t,(A’r2) J,(AR(A,+ +

m--O /=1

1

’ ) d coswhere (A,A’) (r + ()2r 2()rlr2 cosO an 0 (u, v).
The proof of this lemma follows from standard arguments and may be found in Swift [12].
Threm 3.2: A generalized random field X:L2(P) is locally weakly harmonizable isoro-

pic if and only if it covariance functional is representable as:
h(, )

r(h1, h:) %
nn +0 +0

m=O I=1

+Sm(U)Sm(v)Jm ,(A II ,, II )Jm + ,(A’ II tll)
(; llsll Iltll dr(A,A’)dsdt

+af fs.thl(S)h (t)dsdt (10)

where F(.,.) is a tempered function of locally bounded Frchet variation and a is a non-negative
constant.

Proof: In one direction, if X(. is a generalized weakly harmonizable isotropic random field,
the definition implies

r(hl, h2 dsdtdF(A,A’)
+0 +0 nn
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But, by the law of cosines

+a2j j s" thl(s)h2(t)dsdt.

1

II s- ’t II (11 s II 2 -4- II ’t II = 2<s,

so that by lemma 3.1
(,)

r(h1, h2) an
m-O /=1

x
( II s II ) II t II )" )dsdt

+o +o

+a j IS. thl(s)h2(t)dsdt

since the series is absolutely convergent and the interchange of the integrals and summations is
justified. This establishes one implication. For the converse, it is only necessary to reverse the
above steps. This completes the proof of the theorem.

This theorem will be used to obtain the spectral representations of the generalized and ordin-
ary fields, as well as for the increment field.

4. Spectral Representations

Theorem 4.1" A generalized random field X:%L2(P) is locally weakly harmonizable
isotropic if and only if it has a spectral representation

o h .,
x() j h(t) s(,,)

m=0 /=1

(111 )v )dZlm()df + x1. dfh(f)df (11)

where E( )Z2,(B2 mm,Sll,F a n of locally bound-Zm(B1 )) 6 B1, B2) with F(’," tempered funclio
ed Frchet variation, and X1 (Xll, X12,...,Xln iS a random vector which satisfies

E(XlkZlm(B)) O, k 1,..., n

and
[

_J 0 for k # j
E(XlkXlj)

a fork--j.

Proof." Suppose x(.) is a generalized locally harmonizable isotropic random field, then by
theorem 3.2, the covariance functional is expressible as equation (10),
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ioo iooj u(; II s II )Jm (’ II t
x "+ +

)u ’)dsdt(; II. II )"(a’ II t II
+o +o

+ a i i s. thl(s)h2(t)dsdt
n

where the series converges absolutely. Using the classical Karhunen type theorem, cf. Yaglom [18]
for such a series, the spectral representation is obtained as

x(h) .f h() s()
m----0 /--1

i’’Sm "(’li’llI1’),, II)<s iX Ztm(,)<U+ X. ()<U
+o In

where X1 (Xll X12,... Xln is a random vector which satisfies

E(XlkZIm(B))--O, k-1,...,n

and
#,

0 for k 5 j
E(Xlk, Xlj)

a for k- j.

The converse statement follows directly from the definition of a covariance and applying theorem
3.2. The assertion is complete, r!

Using this theorem, the spectral representations of the field X(.), the increment field

IrX ), and the structure function B(.,., .,. may now be obtained.

Theorem 4.2: A locally weakly harmonizable isotropic random field x:Rn--+L(P) has spec-
tral representation

oo h(,)
f ( II II)

X(t) 0/.nE E Slm(It) J
xarn +

) dZlm(/) q- Xa 7t, (12)
m--O /=1 (’lltll

+O

and the increment field IrX has the structure function

B(,s, t#, ,,s-J--7-1, #--t-T2)- 2"F(-)/ i (J’(ll ,(811’’(s’-P-"rl)..p.TI)_
--/’(tJ-T2))t,(;--P- 7"2)

+o +o

a,,( II (,, + )- ;’t II) Ju( II a- ’(t + 2)

-t-
J,,( II s- ’t II ))dF(,xII ;s- ’t II ’ -4- a’rl "r2, (13)
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where F(-,. is a tempered function of bounded Vitali variation, related to the Zlm( )-measure,
and X1 (Xll,X12,...,Xln) is a random vector which satisfies

E(XlkZIm(B))- O, k- 1,...,n, VB G E

and

0 forkkj
E(Xlk’Xlj)-

a for k- j

and a, a nonnegative constant.

Proof: Using the relationship

x() / (t)x(t)dt

with the spectral representation of the previous theorem one has (since X(. is point valued),
oo h(rn, n) oo

+o

This representation gives the increment field,

IrX(t) OnE O/m(tll Jm +._( ( lit / II dZm()lt+:)m=0 /=1
+0

II t II 1 + XI’T"
+o

Now since E(Z ()) 0 the structure function ism

(14)

B(s, t, s + rl, ! + r2) E(IrlX(S)Ir2X(t))

h(m, n) ffJm -t-u( II . -]- 11 II ) + (a’ Iltll )dF(a.a’E S/m(’l)S/rn(t2)
JJ (3’ II "+ ’r’l II )"(,v I111 )"l- +0 +0

m--0

h m,n)2,m(t2 /m(tl ]]rrJ+ ((II II. 11 II)(,) lit+(’+:lltll +) II F(. ’l- 1 +0 +0
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+a -’r2. (15)

Hence, using lemma 3.1, equation (15) becomes

B(s, t, s -[- -l,t
+o +o

-,’r()/ i ’’( II :x(, "-t-"i"1)- ,)t’I# II )aF(,’)II a(. + "1)- a’ II"
+0 +0

-,’r()j S .’(11 .x,ll.x,,-_:’(’"(’+ +,-,),.,)II ’il ),aF(,’)
+0 +0

+ u,l_,()S j. J,( ii .:,-:x,, ii ).<F(,, :x’)-t-a’rI .’r2.II .- ’ II"
+0 +0

Thus, writing equation (16) as one integral

a,,( II J,(, + "rl)- ,’t II)
II ( + "i’1) -P ,,’I# II

(16)

J,( II ,,,- ,’t II )’dF(,,)+ II ’- ,’t II " ’) + aT1 T2

which completes the proof.

The proof of this theorem contained a useful fact about B(.,., .,. stated here as corollary
for later reference.

Corollary 4.1: The structure function B(.,.,.,-) of a locally strongly harmonizable isotro-
pic random field has a spherical polar representation as equation (15).

Consider the form of equation (13) for s- t and ’1 ’2 v, that is

.(t, t, t +,-,t +,-)- 2v()//(g(ll(il (.-_.’)(t,’)(t+ )+")1111),
+0 +0

Ju( II ( ’)t + II)

a( II ( ’)t II ))dF(A,A’) + a’. -. (17)+ II (- ’)t II
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Observe here that if’ F(.,. )concentrates on the diagonal - ,V, using

1

equation (17) becomes

B(t, t, t + r, t + r) (D( II II ), sy)

2 1-2q"
} (all.ll ,

+0

(18)

which is the form obtained by Yaglom ([17], pp. 310), for the structure function of a locally sta-
tationary isotropic random field. Thus equation (17) is an extension to the locally stationary
case.

As was done for harmonizable isotropic fields (see Swift [12]), it is possible to obtain the
spectral representation of a locally isotropic random field which is not necessarily locally harmoniz-
able.

Theorem 4.3: A locally isotropic random field X:n--L(P) has spectral representation
oo h(m, n)

X(t) Z Z Slm(u)Ylm( II 11)+ Xl" f, (19)
m=O /=1

and the increment field, IrX ), has the structure function
h(m, n) )bm(ll * + rl II I1+ r2 II)B(s’t’s+ rl’f + r2) "-’m,-tY-w[1) (Cn(cs01m--O

C(co,02)bm( II s + 7" ]l, II t II)

--Cn(csO3)bm( II s II, II + -2 II)

+ Cn(csO4)bm( II s II, I111) + arl"r2 (20)

where Ylm(. is a sequence of stochastic processes which satisfy

E(Ylm(s)Y’(t)) mm,ll,bm(s

with bm( satisfying

and

Z h(m’n)bm(rl’ r2) < cx:)

m--O

,,(o, ) o fo . o.

Here CUre( are the ultraspherical polynomials. Further, X a fixed random vector satisfying

E(XlkZIm(B))-O, k--1,...,n

and
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t"

_J 0 for j : j
E(XlkXlj)

a fork--j,

Ok, k 1,..., 4 the angles between the pairs of vectors s + rl, t + r2, s, t, and a, a non-nega-
tive constant.

Proof: Letting

one has

cxJm + ()tr)dzl (
0

E(Ytm(r)) 0

and

E(Ylm(rl)Y’(r2)) --5mm’ll’F(rl, r2)

using a form of Fubini’s theorem. In fact, first apply x* e (Lg(P))* to both sides, then moving x*
inside the integral which is permissible and since x Zm(. is a scalar measure, the classical Fubini
theorem applies, cf. Dunford and Schwartz [3]. The structure function is obtained using the
definition. E]

Thus the above representation can be extended for all locally isotropic random fields which
need not be locally harmonizable. It is now possible to obtain an example of a structure function
for a locally strongly harmonizable isotropic random field which is locally nonstationary. Thus
consider the structure function B(.,., .,. ), of a locally isotropic random field, by the previous
theorem

B(8, t, 8 + 7"1, t + 7"2) rl( II + T1, II t + 2 II, 01) + r2( II s + 7-1 II, II t II, 02)

+ a( I[ II, II t + r2 II, %) + r4( II II, II t II, 04) -]- al 2 (21)

where ri(. .), 1,...,4 is of the form

h(m’n-)n (csOi)bm( II s II It t II )-( II II, II t II ,0)
m= o C(1)"-’m

Suppose the spectral distribution function F(.,.) is absolutely continuous, with density f,
and has the specific form, which is clearly positive definite"

f(A, A’) CnuAm + 2u + l(.,)rn + 2u + !e (A2 + (A,)2))
(.+ )

where as before, wn is the surface area of the unit sphere and u- n- 2
2

(see Swift [12]), that ri(. ), i- 1,..., 4, has the form
Then it can be shown

.(- (, + ,))ri(Pl,P2,0i) [1 2pl,p2cosOi + PlP2]

where Pl and P2 are the specified lengths of the factors s, t,s+ 7-1, t + 7-2, as given in the
definition of B(.,.,., ). Thus, the structure function of a locally strongly harmonizable isotro-

pie random field which is locally nonstationary is

B(s,t,s+7-1,t+7-2)-[1-211s+7-111 II t+r2 IISl +(lls+a II lit+r211)2] -
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5. Prediction for Local Fields

Let Sr denote a sphere in Nn, of radius r, centered at the origin. Suppose that one observes
X(t), a locally harmonizable isotropic random field, at a countable number I[ t I[ -ri, i>_ 1 of
points. These are some "instances", and could be taken as 0 < r1 < r2 <

In this formulation, the problem is to obtain the best linear predictor in L2o(P) of X(to) for
[[ t [[ -r( # ri, i>_ 1). In the following work, it is assumed that the tempered spectral bimea-
sure, F(.,. of X(. is strictly positive definite.

Rao [10] solved the linear prediction problem for harmonizable isotropic fields, the work in
this section is an extension of his work to the local case.

Let M -p{X(t): [[ t [[ ri, > 1}, then M C L(P) and for [[ to [[ r > O, X(to) M.
The linear prediction problem is to find a unique Y in M such that

II X(to)- Y 112 inf { II X(to)- w II 2" w e M}.

Using a classical result of F. Riesz, there is a unique Y in M satisfying

(X(to -Y)) _1_ M.

That is, Y is a solution of the infinite system of linear equations

E(X(to)X(t)) E(YX(t)) for all II t II r, 1.

This produces the desired solution once a representation of elements of M is obtained. This repre-
sentation can be obtained from an isometric identification of M with an appropriate sequence
space with respect to a positive definite weight function F(., ). This is given by:

Proposition 5.1" Each element Y of M, the subspace of L(P) introduced above is represent-
able as:

Y- E E E a(1, m,k)v(k,t)
k=l m=0 /=1

where

(A Ilt[I )’ )dZlm(Ak) + xl t

+o
and Z (.) is the stochastic measure representing the random field X(.) and the sequencem

{a(1, m, k)" m >_ O, 1 <_ <_ h(m, n), k >_ 1} satisfies the condition:

h(,,,)

n--O l--1 +0 +0 k--1 k=l
a(1, m,k)a(1, m,k’)v(k, sk)v(k’,tk, <
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2

Proof: The proof of this proposition follows from standard arguments and is similar to that
of Rao [10]. The details are outlined here. Let ej F be the vector space of scalar sequences a-

{a(l,m,k):m >_ 0,1 <_ <_ h(m,n),k >_ 1} such that II-II 2,j2 is given by

c h(m, n) o

2 E E a(1, m, k)a(1, rn, k’)v(k, s)v(k’, t) < cxz
m--O I=1 +0 +0 k-1 k--1

so that [I 112 Ju, F is a norm. For a,b E ij F the inner product is defined by the same expres-

sion with a(l,m,k) replaced with b(1, m,k). Using this, it follows that (ij F, I1" II 2 J F)is a

Hilbert sequence space and taking a(l,m,k)- Sire(u), the spherical harmonic, for k- II tk II and
0 for k 11 tk 11, one gets i:X(t)-,a with t- (11 t II,u) which satisfies E(IX(t)] 2)

]]alI2, Ju,F_2--E(liX(t)[ 2). Thus /is an isometry and can be extended by linearity and

polarization to all of M onto lj F" It thus follows from standard arguments that there is a

unique a E lj F so that Y ia, but this is the desired result in explicit form. gl

Let Y0 M be the unique element that is closest to X(t0). Since Y0 satisfies a system of
equations as mentioned above, the desired solution is obtained if the vector a is found such that

E(X(to)X(t))- E(YoX(t)).

Using the proposition, along with the spectral representation of X(.) in spherical-polar coordi-
nates, one multiplies by Stm(V) then integrates over Sn, the unit sphere in Nn, which gives

E a(1, m, k)( [Itll’ilII )" fo f j. + .(a 11
(aa’)
)Jm+u(A’ [[ tl II )dF(A, A’)

k 1 +0 +0

+o +o

by the orthonormality of the Sire(v) relative to the surface measure on Sn. Further simplification
gives:

Theorem 5.1: Let {X( II t II ,=k)’-1,2,...} be an observed sequence of a locally weakly
harmonizable isotropic random field x:Nn-L2o(P). Then the best linear least squares predicator

Yo of X(to) to ([[ to [[, Uo) 0 < [[ to l] - II t II, 1, 2,... is given by
o h(, )

Y- a(1, m,k)v(k, tk)
k=l m=O /=1

with coefficients

a- {a(1, m,k): 1 <_ <_ h(m,n),m >_ O,k >_ 1}

as a unique solution to the equation"

k=l +f+J + II q II )Jm + (’ II tz 11)
(,)

+0 +0

df(a,a’)
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