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ABSTRACT

In this paper, we consider an identification problem for a system of partially
observed linear stochastic differential equations. We present a result whereby one
can determine all the system parameters including the covariance matrices of the
noise processes. We formulate the original identification problem as a determinis-
tic control problem and prove the equivalence of the two problems. The method
of simulated annealing is used to develop a computational algorithm for identify-
ing the unknown parameters from the available observation. The procedure is
then illustrated by some examples.
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1. Introduction

Over the last several years, considerable attention has been focused on an identification pro-
blem of stochastic systems governed by linear or nonlinear ItS equations [2, 3, 7, 8, 10]. In [10],
the identification problem for partially observed linear time-invariant systems was considered.
Using linear filter theory, maximum likelihood approach, and the smoothness of solutions of an
algebraic Riccati equation, sufficient conditions were obtained for the consistency of the likelihood
estimate.

In (8], Liptser and Shiryayev considered the identification problem for a class of completely
observed systems governed by a stochastic differential equation of the form

dX(t) = h(t, X(t))adt +dW(t), >0, (1)

where X is a real-valued stochastic process and « is some unknown parameter. Using the maxi-
mum likelihood approach, the authors [8] obtained an explicit expression for the maximum likeli-
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hood estimate @. An extension of this result to a multi-parameter problem o € R™ for stochastic
systems in R™ was considered by Ahmed [1]. In [7], Legland considered an identification problem
for a more general class of systems governed by stochastic differential equations of the form

dy(t) = h(e, X(O)dt +dW (1), 120, (2)

where « is an unknown parameter and X(t) is a diffusion process. Utilizing the maximum likeli-
hood approach along with forward and backward Zakai equations, a numerical scheme was develo-
ped for computing the parameter « given the output history y(s), s < t.

In [3], Dabbous and Ahmed considered the problem of identification of drift and dispersion
parameters for a general class of partially observed systems governed by the following system of
Ito equations

dX(t) = a(t, X(1), a)dt + b(t, X(£),a)dW(t), t€[0,T], X(0)= X,
dy(t) = h(X(t),a)dt + o(t, y(£))dW4(t), t€[0,T], y(0)=0. (3)

Using the pathwise description of Zakai equation, they formulated the original identification pro-
blem as a deterministic control problem in which the unnormalized conditional density (solution
of Zakai equation ) is treated as a state, the unknown parameters as control and the likelihood ra-
tio as an objective functional.

In [2], Bagchi considered a situation with an unknown observation covariance noise in which
case the likelihood functional cannot be apparently defined. Bagchi proposed a functional analo-
gous to the likelihood functional by giving an apriori guess of the observation covariance noise.
However, from the numerical point of view, an a priori guess should be close to the true value.

Newton’s method is the usual procedure for computing the maximum likelihood estimates
(MLE) [4] which involved recursive calculation of the gradient vector and Hessian matrix of the
(MLE) at a fixed valued of the parameter vector. The drawback of this method is that the con-
vergence to the desired optimum fails whenever Hessian matrix has some negative eigenvalues or
nearly singular.

In [7, 8, 9], identification of drift parameters for completely observed systems were considered.
In [3], which considers partially observed identification problem, the authors used the Zakai equa-
tion as the basic state equation which, of course, is a partial differential equation. For n-dimen-
sional problems, n > 2, the associated computational problem becomes nontrivial. It appears that
for partially observed nonlinear problems there is no escape from PDE. In this paper we consider
partially observed linear problems and develop techniques for identification of all the parameters
including the covariance matrices of the Wiener processes without resorting to PDE.

2. Identification Problem (IP)

To introduce the identification problem, we shall need some basic notations. For each pair of
integers n,m € N, let M(nxm) denote the space of nxm matrices with all real entries and let
M * (mxm), a subset of M(m xm), denote the class of all positive definite matrices, and I(d x d)

denote the space of d x d identity matrices. Let * denote the transpose of a matrix or a vector.
Define

My(pxq)={o € M(pxq):ao*e M T (pxp)},
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and
L=M(dxd)x M(dxm)x M(pxd)xMy(pxq).

We shall denote our identification problem by (IP) which is described as follows: We are given a
class of linear stochastic systems governed by

dX(t) = AX(t)dt + ocdW (1), X(0)=X

dy(t) = HX(t)dt + oqdW (1), y(0) =0, @

where X is an R%valued signal process, and y is an RP-valued observation process. The
processes {W, W} are {R™, R?}-valued independent standard Wiener processes. In general, each
™= {A,0,H,04} € X, determines a distinct linear stochastic system of form (4).

The (IP) is to estimate the unknown parameters m = {4,0, H,0,}, based on the observation
{y(t),0<t < T}, and the knowledge of the mean X, and covariance Py = E{(X,— Xy)(X,—
X)) Let 79 € ¥ denote the true system parameters. Our objective is to develop a method in-
cluding an algorithm for identification of the true parameter. We formulate this problem as a
deterministic control problem and use a simulated annealing algorithm to estimate the unknown
parameters.

3. Formulation of the Identification Problem as a Deterministic Control Problem

In this section, we shall show the (IP) is equivalent to an optimal control problem. This is
given in the following theorem.

Theorem 1: Consider the (IP) as stated above. This problem is equivalent to the following
optimal control problem:
estimate 7 = {A,0,H,0,} € ¥ that minimizes the objective functional

T
I, 1) = [ Tr{R 0+ K () = Po)(Ro(0) + K ()= Po(0))at,
subject to the dynamic constraints
de(t,m) = (A~ K, H*R™'H)e(t,n)dt + K_H*R ™ [dy — HX(t,7)dt], e(0,7)=0,
K (t)=AK_ + K _A*+ooc*~K _H*R™'HK,, K, 0)=K,=P,
X(t, )= AX(t,7), X(0,7) = EX,
P (t)= AP_+ P, A*+ 00" P(0,7) = P,

()

where R = 040 and K (t) = E(e(t,m)e(t,m)*).

Proof: Let m € ¥ constitute the system given by (4). Then by Kalman-Bucy filter theory,
the estimate is given by X(t m) = E(X(t,7)/F}) which satisfies the following stochastic
differential equation (SDE):

dX(t,7) = AX(t,7)dt + K_(t)H* R~ 'dv(t,7), X(0,7) = X,

t (6)
v(t,m) =y(t) — { HX(s,m)ds,
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where K _ is the state estimation error covariance and it satisfies the following matrix Riccati dif-
ferential equation

K, (t)=AK_ + K, A*+o0*—~ K H*R™'HK_,K_(0)=K,= P, (7

Here, FY is the filtering adapted to {y(s);t € [0,T']}, and v(t,) is a Wiener process. The latter is
a so-called innovations process, with

E{v(t,m)v*(s,m)} = Rmin(t,s). (8)

The mean of X = {X(t,),t > 0}, given by X(¢,7) = E(X(t,)), satisfies the following determini-
stic differential equation

X(t,7) = AX(t,7), X(0,7) = EX,,. 9)

Defining e(t, ) = X(¢,7) — X(t,7), we have from equations (6) and (9) that e satisfies the follow-
ing (SDE):

de(t,m) = (A~ K_H*R~1H)e(t,7)dt + K H*R ™~ '[dy — HX(t,7)dt],e(0,7) =0.  (10)
In terms of the innovations process, one can write system (10) as:
de(t,m) = Ae(t,7)dt + K_H*R~ 'dv(t,),e(0,7) = 0. (11)

Further, the process e = {e(t,7),t > 0} and the error covariance matrix K,_ are related through
the equation

(K (t)nym) = (P (t)n,n) — E(e(t,ﬂ'),n)z, for all n € R4, (12)

where P_ is the covariance of the process X = {X(¢,7),t >0} and it satisfies the following
differential equation:

P_(t)= AP_(t) = P_(t)A* +00*, P_(0)= P, (13)
This is justified as follows: by definition, for each n € Rd, we have
(Ko(Omn) = E(X(t,m) = X(t,7),1)°
= E(X(t,7) - X(t,7) + X (t,7) — X(t,7),n)?
= B(X(t,7) - X(t,m),n)* + E(X(t,7) — X(¢, 7),n)?
+2E((X(t,7) — X (t,m),n)(X(t,7) — )?(t, m),1M))- (14)
Since (X (t,7) — X(t,7)) is F¥-measurable, we have
E{(X(t, ) — X (t,7),n)(X(t,7) - X(t,7),n)} = — E(X(t,7) — X(t,7),n)% ¢ €[0,T]. (15)
Using this in the third term of the preceding equation, we obtain that

(K(Ommn) = (P(t)n,n)— E(e(t,7),n)?
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= (P(tn,n) — (K ,(tynn), (16)

for each ¢ € [0,T]. This validates equation (12). For the identification of the system parameters,
equations (11) and (16) are most crucial. Suppose the process {y°(t),¢ € [0,T]}, as observed from
laboratory (field) measurements, corresponds to the true system parameters, say 7. If one uses
the same observed process as an input to the model system (11) with the arbitrary choice of the
parameter , it is clear that one can not expect equality (16) to hold. On the other hand, (16)
must hold if the trial parameter 7 coincides with the true parameter 7°. Hence it is logical to ad-
just the parameter m to have this equality satisfied. This can be achieved by choosing for the cost
function, the functional given by

T

J(m,T) = / Tr{(K3(t) + K 1(t) = Po(0))(K3(t) + K (1) — PL(t))*}dt, (17)
0 ~
where K and P_ are solutions of equations (7) and (13), and K?r is the covariance of the process
eo(t,m) = e(t,m,y") given by the solution of equation (10) driven by the observed process y%. This
functional is to be minimized on ¥ subject to dynamic equations (5) as proposed in the theorem.
This proves that the (IP) is equivalent to the optimal control problem as stated. This completes
the proof.

Remark 1: (Uniqueness) Let X, be a subset of £. Define my = inf{J(,T), = € 53}. Given
that the actual physical system is governed by a linear It0 equation, in general we may expect
that my = 0. In any case, let M = {7 € X:J(m,T) = m,} denote the set of points in L at which
the infimum is attained. It is easy to verify that this set is closed. If the set M is singleton, the
system is uniquely defined. In general, for (IP’s), which are basically inverse problems, we may
not expect uniqueness since the same natural behavior may be realized by many different para-
meters.

Remark 2: (Weighted cost functional) The cost functional J(,T), given by equation (17),
can be generalized by introducing a positive semidefinite weighting matrix (valued function) I'(t)
in the cost integrand giving

T
J(n,T) = / Tr{L I't)L%}, L. =K% +K_—P,.
0

By choosing I' suitably, one can assign weights as required for any specific problem.

4. Measurement of Autocovariance Function of {e}

In the real world, we can never measure the actual covariance I'\{’?r = E(ey(t,m)eg(t,T))
because we can never have all sample functions of the process {ej}. One obtains only a sample
path {y°(t),t € [0,T]} corresponding to the true system parameters, 7°. Thus, our only recourse
is to determine time average based on observation of one sample path of finite length. The time
interval is taken large enough so that the ensemble average equals the time average. This is possi-
ble if the process is ergodic. In the following discussion we will establish sufficient conditions for
ergodicity of {e} which will be presented in Proposition 1.

We extend the Brownian motions W and W, over the entire real line by standard techniques,

that is, we introduce two independent Brownian motions W and W, which are also independent
of W and W, and define

W (t), t>0

W) = W( —t), t<0

(18)
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L owa, >0
Wol®) —{ Wo(—1), t<0. (19)

Therefore, for t; > 0, systems (4) and (11) can be rewritten as

X(t) = AX(t)dt +cdW(t), X(—ty)=X
(20)
dy(t) = HX(t)dt + oydW(t), y(—1y) =0,

and
de(t,m) = Ae(t,m)dt + K_H*R~dv(t, ), e(—tgm)=0. (21)

Suppose the following conditions hold:

Condition I: For every 7 = {A,0,H,0,} € &, A is a stable matrix, i.e., all eigenvalues of A
have negative real parts.

Condition II: For every = = {A,0,H 0'0} € X, the pair (A, H) is completely observable, that
is, the rank [H*, A*H*,. ,(A*)d_lH*]

Condition I implies that the initial condition of the state has no effect on the asymptotic beha-
vior of the system Conditions I and II imply that lim,_, K, (t) exists and is unique. We denote
this limit by K° - Which satisfies the algebraic Riccati equation

AK® + K%A* 4 90* ~KOH*R-IHK? = 0. (22)

Furthermore, the matrix A — KQH*R ~1H is stable [5, Theorem 4.11, p. 367].

Using the steady state version of Kalman-Bucy filter (6), that is, using KO instead of K_(t)
in equation (6), one can write K A(t) as

K () = E(X(t,)X*(t,7)) - X(t,7)X*(t,)

(23)
=V,(t) - GV(t)G* - X(t,m)X*(t, ),
where the matrices G, V, and V are given as follows:
The matrix G is a d x 2d with elements 9;i=1 9iiyq=—1 for 1<i<d, and 0 every-

where else. The matrix V,(t) = E(X(t,7)X* (t 7)) and it satisfies the matrix dlfferentlal equa-
tion

dle( ) = AV (t)+V,(t)A* + oo™ (24)

The matrix V() :[ BX(X7(6m) BT )

E(X(t, 7)X*(t, 7)) E(X(t,mX*(t,7)) ] and it satisfies the matrix differen-

tial equation

PO _ 4 v+ V()L + 00 (25)

T

where

A = A 0 c o 0
~~| KH*R™'H A-KH*R-'H| ~~~ 0 KSH*R ™ 1oy
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Under the conditions I and II, the matrices {A, A} are both stable for every = € &, and there-
fore, equations (24) and (25) have steady state solutions V(l) and V9, respectively. They are given
by the solution of the following algebraic Lyapunov equations

AVI+VIA* 4 o0* =0 (26)
and
A VO VoL +C CE =0, (27)

respectively. We shall show that the process e(t,7), given by equation (11), is ergodic. This is
presented in the following proposition.

Proposition 1: Suppose that Conditions I and II are satisfied, and the processes W and W,
are the extended Brownian motions in (18) and (19). Then for each m € X, the process {e(t, ),
t € R} is stationary and ergodic.

Proof: It is clear from equation (11) that the random process e( -, 7) is a zero mean Gaussian
process. It is stationary if we can show that the corresponding autocovariance matrix R(s,t) is
dependent only on the time difference. For this purpose define

R(s,t) = E(e(s,m)e*(t,m))
= E(X(s,7)X*(t, 7)) — X (s, m)X*(t,7)
=I,(s,t) — G I(s,t)G* — X (s,m) X *(t, ™), (28)

where the matrices I, and I, are given by

s t
Il(s,t) = E/ / CA(S_G)G'dW(a)dW*(’}’)U*eA*(t_’Y)
)
+ eA(s + to)vl( _ to)eA*(z + tO) (29)

and
8

t
Iy(s,t) = E / / A6 =0 _ap(0)dp*(y)orne =)
— tO it tO

4 Aty (- tO)eA,,(t +1g) (30)

for g = [W,W]*. Setting s —t = r, after some elementary calculations, we have
ATV (1), >0

I,(s,t) = (31)
1(&:1) Vi(s)e™ A*T, <0
1(s,1) e‘Aﬂ'TV(t), >0 (32)
s,t) = _q*
2 V(s)e .Aﬂ_r,
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Then, from (9), (28), (31), and (32), we have

ATV (1) = GeT TV ()G — AT (1, 1) X (8, 7), >0
R(s, t) = 4* —A*r Ar _ (33)
Vis)e™ A T=GV(s)e T G*—eTX(t,m)X*(t,7), T<LO0.
Since A and A are stable matrices, letting {y— 4 oo, we obtain
R ATVO _ Getn YOG, r>0 .
T) = . _g*
V(l)e —AT_GgvOe 'A"TG*, T <0.

The latter proves that the process {e(t,7),t € R} is stationary. It is well known that the zero
mean stationary Gaussian process is ergodic if the corresponding autocovariance matrix R(7)
satisfies [6, Theorem 7.6.1, p. 484]

o0

/ | R(r) || dr < oo. (35)

— 00
It is clear from (34) that R(7) = R*(—7) and hence

(oo} 00

[ ir@ar=2 [ 1r@) 1 (36)
J, )
For any 7 > 0, we have
A
IREI < 1A IV + TG 11V (")

Since, for every m € Xj, A and A, are stable matrices, it holds true that

AT < M7, et <M

where A; <0, A, < 0 are the real parts of the largest eigenvalues of the matrices A and A_, respec-
tively. Hence, it follows that

o0

/ || R(7) || dT < o0, (38)

0

and therefore (35) holds, proving the ergodicity of the process {e}.

Therefore, under conditions I and II and by taking the observation time T' large enough, one
can approximate the ensemble average of e(t,m)e*(t,7) by its time average. This is what has

been done in estimating the unknown parameters in our simulation experiments as given in sec-
tion 6.

If the stability and observability conditions are not satisfied, one must use Monte-Carlo
techniques to produce an ensemble average.
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5. Numerical Algorithm

In this paper we applied the method of simulated annealing to determine the optimal para-
meters that minimize the cost function. The method of simulated annealing is an iterative im-
provement technique that is suitable for large scale minimization problems. The method avoids
being trapped in local minima by using stochastic approach for making moves, based on Metropo-
lis optimization algorithm to minimize the cost function [9]. It works by analogy to the physical
annealing of molten material. In the physical situation, the material is cooled slowly, allowing it
to coalesce into the lowest possible energy state giving the strongest physical structure. If a liquid
metal is cooled quickly, it may end up in a polycrystalline state having a higher energy.

The main idea behind this algorithm is while being at a high temperature, 7 called the an-
nealing temperature, where most moves are accepted, then slowly reduce the temperature, while
reducing the cost function until only “good” moves are accepted. The pseudo-code of the algori-
thm is presented as follows:

Step 1: Generate an initial scheduling order randomly and set the temperature at high level.

Step 2: Randomly pick one of the elements of m = {c;,¢c,,...,¢,,} € Ey. A picked parameter
moves as

ci:ci-i-aUci (39)

where « is the maximal allowed displacement, which for the sake of this argument is arbitrary;
U, is a random number uniformly distributed in the interval [ — 1, + 1], and U, is independent

C
of U, , for i # j. !
J
Step 3: Calculate the change in the cost function, AJ, which is caused by the move of c; into
c;,+alU ¢

Step 4: If AJ <0 (i.e., the move would bring the system to a state of lower energy) we allow
the move.

Step 5: If AJ > 0 we allow the move with probability ezp(— AJ/7,); i.e., we take a random
number U uniformly distributed between 0 and 1, and if U < exp(— AJ/7,), we allow the move.
If U > exp(—AJ/T,), we return it to its old value.

Step 6: Go to step 2 until the cost function stabilizes.

Step 7: If 7, =0, then stop; otherwise reduce the temperature, and repeat steps 2-6.

6. Examples and Ilustrations

In this section we will present a two-dimensional example illustrating our results. We assume
that the observation data {y°(t),t € [0,T]} for the real system is generated by the true para-
meters 7° = {A°,0° H® o3} where

—2.0 2.0 1.0 0.1
A° = , o® , H°=[00 1.0], 0§ =[1.0].
05 —2.0 0.1 1.0

The basic procedure used to obtain the best estimate of the unknown parameters using the algori-
thm as proposed in section 4 is as follows: Let 7, be the initial choice for the true parameter 0.
Using the algorithm with this choice of 7, and starting the annealing temperature at 7, we arrive
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at m_, by decreasing 7, step by step (slowly) to zero. The distance between the computed para-
meter 7_, (using the algorithm) and the true parameter 70 is denoted by (7%, T,.,)- The simula-
tion was carried out with sampling interval é = 0.01sec., and the observation time T €
[0,120]sec., and the weighting matrix I'(t) = 10001.

Example 1: In general, the (system) dynamic noise and measurement noise are modelled as
Wiener processes but the noise power and hence the system and measurement noise covariance
matrices may be unknown. In the ItG equation, the martingale terms may then be modelled as
odW and o0,dW, where W and W, are standard Wiener processes and o and o are constant but
unknown matrices. We assume also that the matrices A and H are unknown. The problem is to
determine A, o, H and o, based on the observation data {°(t),t €[0,T]}. Then end results are
given in table 1 which are quite close to the true values. Figure 1 shows the estimation error

as a function, 'ra——+d(7r0, T,q), Of the starting annealing temperature 7,. For fixed observation

time T', three curves are plotted for three different initial choices 7, for the true parameter 70 It

is clear from this graph that the larger the discrepancy is between the true value and the initial
choice, the larger is the starting annealing temperature required to reach the true values.

Table 1

Starting Estimated Actual

value value value
a;; | -1.0 -1.994406 -2.0
a9 1.0 1.995625 2.0
agy 2.0 0.504037 0.5
agy | -3.0 -2.064103 -2.0
511 0.1 1.010031 1.01
519 0.5 0.2000456 0.2
599 0.1 1.010027 1.01
hy | -0.7 -0.000276 0.0
hyy 2.0 1.009440 1.0
o | 01 0.992090 1.0
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6.0

4.0

d(=° 7,,)

2.0

0.0

0.0 10.0 20.0 30.0 40.0 S0.0 60.0 70.0

Figure 6.1: The distance between the computed parameter 7_, and the true parameter
70, d(7ro,7rm), as a function of the starting annealing temperature 7, for
three different initial choices .

Figure 2 shows the estimated error as a function of the observation time T', T—d(x°, 1),
where 7 is the estimated value of 70 based on the observation {y°(t),0 <t < T} until time 7.
As expected, it is a nonincreasing function of T and tends to a limit (saturation) as T becomes
larger and w1 comes closer to 7%, The best starting annealing temperature required to obtain the
estimate 7, in this example, was found to be 25. In other words, the choice of a starting anneal-
ing temperature beyond 25 doesn’t improve the estimate; it only consumes more CPU time.

o
A

3.0

d(=° 71)
2.0

1.0

0.0

0.0 2.0 4.0 6.0 8.0 10.0 12.0
r

Figure 6.2: The distance between the computed parameter 7 and the true parameter

7, d(7r0, mp), as a function of observation time T'.



260 N.U. AHMED and S.M. RADAIDEH

Remark 3: Since it is well known that the probability law of any It0 process is determine by
oo™ rather than o itself, it is not possible to uniquely identify o or ¢, Therefore the results

shown in the table are those for co* and oy0(. In the table, s;; are the entries of the matrix
S =o0"

7. Summary and Conclusion

We have presented a formulation of the identification problem for partially observed linear
stochastic systems as a deterministic control problem. For this purpose, an appropriate and also
natural objective functional has been introduced for the first time in the literature. Using this
method, we successfully identified the system parameter 7 simultaneously, as shown in section 6.
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