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ABSTRACT

After establishing a comparison result by means of a new method, we obtain
the existence of maximal and minimal solutions for nonlinear, second order inte-
gro-differential equations of mixed type in Banach spaces.
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1. Introduction

In paper [1], we discussed establishing the existence of the extreme solutions of initial value
problems for first order, integro-differential equations of Volterra type in Banach spaces by means
of a comparison result. Now, in this paper, we consider the two-point boundary value problem

(BVP) for nonlinear, second order integro-differential equation of mixed type in real Banach space
E:

—u' = f(t,u,Tu,Su),t € J; au(0)—bu'(0) = ug,cu(1) +du'(1) = uy, (1)

where J =[0,1], fe C(Jx ExEx E,E),

t 1

(Tu)(t) = / k(t, s)u(s)ds, (Su)(t):/kl(t,s)u(s)ds (2)

0 0
ke C(D,R ), ky€e C(JxJ,R ), D={(t,s)€JxJ:t>s}, R, denotes the set of all non-
negative real numbers, and a >0, 5> 0, ¢ >0, d > 0 with p = ac+ ad + bc > 0, ug,u; € E. Since
f contains Su, the method for obtaining a comparison result in paper [1] cannot be applied in this
case. In this paper, we use a completely new method to establish a comparison result, and then
we obtain the existence of minimal and maximal solutions for BVP (1) by using lower and upper
solutions and a measure of noncompactness. As an application, an example of an infinite system
for scalar integro-differential equations of mixed type is given.
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2. Comparison Result

Let E be a real Banach space and P be a cone in E which defines a partial ordering in E by
z <y if and only if y—x € P. P is said to be normal if there exists a positive constant ¢ such
that 0 <z <y implies ||z || <c||y||, where 6 denotes the zero element of E, and P is said to be
regular if every nondecreasing and bounded in order sequence in E has a limit, i.e., z; <z, <...
<z,<...<y implies ||z, —z | —0 as n—oo for some z € E. The regularity of P implies the
normality of P. For details on cone theory, see [2]. In connection with (1), we consider the linear

BVP:

—u"= —Mu— NTu— N,Su+g(t), t € J; au(0) — bu'(0) = uy, cu(1l) + du'(1) = uy,

where M, N, N, are nonnegative constants and g € C(J, E). Let

k* = max{k(t,s): (t,s) € D}, kT = max{k,(t,s):(t,s) € J x J},

and p(4ac) 1, if ac # 0;
g={ p~Y(bc+bd), if a = 0;
p~ }(ad + bd), if ¢ = 0.

Lemma 1: If

M + Nk*+ Nk} <q~ 1,

then the linear BVP (3) has ezactly one solution u € Cz(J, E) given by

1 1
u(t)y=v(t)+ | Q(t,s)v(s)ds+ [ H(t,s)g(s)ds, te€J,
[ ot |
where
o(t) = p ™ (e(1 ~ t) + d)ug + (at + b)uy],

H(t,s) = G(t,s) + F(t,s),

-1 -5 3
a(t,s)z{”_l(““”)(c(l )+d), t<s
p~ (as+b)(c(1—1t)+d), t>s,

1

F(t,s):/ Q(t,r)G(r, s)dr,

0
Q) = ) kM(t,),
n=1
1 1
K)(t,) = / / ky(tyr )y (rys ) kol _ 1y8)drye-dr,,
0 0

and

-1

3)

(4)

(%)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)
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ky(t,s) = — MG(t,s) - N/ G(t,r)k(r,s)dr — N, / G(t,r)ky(r,s)dr. (14)

All functions G(t,s), ky(t,s), lc (t s), Q(t s), F(t,s), H(t,s) are continuous on J xJ and the
series on the right-hand side of(12) converges uniformly on J x J.

Proof: It is well known that u € C%(J,E) is a solution of the linear BVP (3) if and only if
u € C(J, E) is a solution of the following integral equation

u(t) = v(t) + / G(t,s)[g(s) — Mu(s) — N(Tu)(s) — N{(Su)(s)]ds, (15)

where G(t,s) is given by (10), i 1.e.,

1
u(t) = w(t) + / ko(t,s)u(s)ds, (16)
where k,(t,5) is given by (14) and ° 1
w(t) =v(t) + / G(t,s)9(s)ds. (17)
It is easy to see that °
0<p~d <G(t,s) <p~Hat+b)(c(1-t)+d) < g, t,s€J, (18)

where ¢ is defined by (5), and so, by virtue of (14) and (6), we have
| ko(tys)| <q(M+NEk*+N.k})=k3 <1, t,seJ. (19)
It follows from (19) and (13) that
|E(ts) | < (63", tised (n=1,2,3,..), (20)

and consequently, the series in the right-hand side of (12) converges uniformly on J xJ to Q(t,s)

and Q(t,s) is continuous on J xJ. Let
1

(Au)(t) = w(t) + / ko(t,s)u(s)ds.
Then A is an operator from C(J, E) into C’(J,E).0 By (19), we have
| Au=Az || <kjllu=7 |, w3 €CU,E).
Since k3 < 1, A is a contractive mapping, A has a unique fixed point u in C(J, E) given by
= u | =0 (n—c0) (21)

where

ug(t) = w(t),u,(t) = (Au, _,)(t), teJ (n=12,3,...). (22)
It is easy to see that (21) and (22) give

1
u(t) = w(t) + 21/ kg")(t,s)w(s)ds, telJ,
n= 0

i.e.,
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1
ut)=ut)+ [ Qtouls)ds, te. (23)

0
Substituting (17) into (23), we get (7) and the proof is complete. 0
Lemma 2: (Comparison result) Let inequality (6) be satisfied and

q(M + Nk* + NkD)(1 — ¢2(M + Nk* 4+ N, k})?) ~1
< min{p ~10d,(§+8)” ! d(§+d)‘1}. (24)
Suppose that u € C?(J, E) satisfies
—u'> —Mu—NTu—NSu, teJ;au(0)—bu'(0) >0, cu(l)+du'(1) > 6. (25)

Then u(t) >0 forte J.

Proof: Let g(t) = —u"+ Mu+ NTu+ N,;Su and uy = au(0)—bu'(0), u; = cu(l) +du'(1).
Then g € C(J,E),

9(t)>0,teJ, (26)
and
uy >0, u; >90. (27)

Ber Lemma 1, (7) holds. From {14) we see that k,(t,s) <0 for ¢,s € J, and so, (13) implies that
T (t 5)<0 and n is odd and lc2 (t §) > 0 when n is even. Consequently, by (12) and (20),

Qt,s) > 3 K™ U(ks) > — ki1 - ()DL, tsel. (28)
m=1
It follows from (9), (11), (18), (28) and (24) that
H(t,s)>p~lbd—qgk3(1—(k3)>) "1 >0, t,seJ. (29)

On the other hand, by virtue of (8), (28), (27) and (24), we have

1
v(t)+/ Q(t,s)v(s)ds
P~ (dug + buy) — K3(1 - (k3)2) ~1p ! / (e(1 = 5) + d)ug + (as + by, )ds

p~ Ydug + buy) — p = k(1 — (k3 )2)—1((%+d)u0+(%+b)u1)20, teld. (30)

Hence, from (7), (29), (26), and (30), we see that u(t) > 6 for ¢t € J, and the lemma is proved. 0O
We also need the following known lemma (see [3], Corollary 3.1(b)):

Lemma 3: Let H be a countable set of strongly measurable functions: z: J—E such that there
exists ¢ 2 € L(J,R ) satisfying || z(t)|| < 2(t) for a.e. t€J and all z € H. Then o(H(1)) €
L(J,R ) and



Extreme Solutions of Nonlinear, Second Order Integro-Differential Equations 323

o ({/w(t)dt::c € H}) < 2/a(H(t))dt, (31)
J

J

where H(t) = {z(t):z € H}(t € J) and o denotes the Kuratowski measure of noncompactness in
E.

Corollary 1: If HC C(J,E) is countable and bounded, then o(H(t)) € L(J,R ) and (31)
holds.

Remark 1: The following conclusion is well known: if H C C(J,E) is equicontinuous, then

a(H(t)) € C(J,R ;) and
o z(t)dt:z € H\ | < [ a(H(t))dt.
({froeerl)e]

J

3. Main Theorems

Let us list some conditions for convenience.
(H,) There exist vy, wy € C2(J, E) such that vy(t) < wy(t) for ¢t € J and

— vy < f(t,vg, Ty, Svg), t € J; avy(0) — bvg(0) < ug, cvg(1) + dvg(1) < uy,
= wg > f(t,wp, Twg, Swy), t € J; awg(0) — bwp(0) 2 ug, cwy(1) + dwp(1) = uy.
(Hy) There exist nonnegative constants M, N and N, such that
ftuv,w)—f(t,u,v,w)> —Mu—-u)-N(v—7)—N,(w—-o)
whenever t€J, vy(t) <u <u<wy(t), (Tyy)(t) <T <v<(Twp)(t) and (Svp)(t) <

W < w < (Swy)(t).
H There exist nonnegative constants c,,c, and ¢, such that
3 & 122 3

a(f(J,U4,Uy,Us)) < eya(Uy) + cqa(Us) + c30(U3)

for any bounded U, CE (i =1,2,3).

In the following, we define the conical segment [vy,wy] = {u € C(J,E):vy(t) < u(t) < wy(t)
for t € J}.

Theorem 1: Let cone P be normal and let conditions (H,), (H,) and (Hj3) be satisfied.
Assume that inequalities (6) and (24) hold and

2q(cq + cok™ + ekl + M + NE* + N k) < 1. (32)
Then there exist monotone sequences {v }, {w,} € C*J,E) which converge uniformly on J to
the minimal and mazimal solutions U, u* € C2(J E) of BVP (1) in [vy, wg), respectively. That 1s,
if u € C*(J,E) is any solution. of BVP (1) satisfying u € [vg, wy), then
wo(t) S 0y() S o S up() S ST Sult) SWH <

S wn() <o S wy(t) Swot), L€, (33)
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Proof: For any h € [vg,w], consider the linear BVP (3) with
9(t) = f(&,h(2), (Th)(2), (Sh)(t)) + MA(t) + N(Th)(t) + N1(Sh)()- (34)
By Lemma 1, BVP (3) has a unique solution u € C%(J,E) which is given by (7). Let u = Ah.
Then operator A:[vy, wy]—C(J,E) and we shall show that (a) vy < Avy, Awy < wy and (b) A is
nondecreasing on [vy,wy]. To prove (a), we set v; = Avg and w = v; —vy. By (3) and (34), we
have
—v] = — Mv; — NTv; — N,Sv; + f(t,vg, Tvg, Svy) + Mvg+ NTvg+ N, Sv,
= —Mw— NTw— N,Sw+ f(t,vy, Tvy, Svg), tE€J;

avy(0) — bvy(0) = ug, cvy(1) +dvi(1) = uy,

and so, from (H) we get
—w" > —Mw—-NTw—N,;Sw, te€J;aw(0)—-bw'(0)>0, cw(l)+dw'(l)>6.
Consequently, Lemma 2 implies that w(t) > 6 for t € J, i.e., Avy > v, Similarly, we can show
Awy < wy. To prove (b), let @ = uy—u,, where u; = Ahy, uy = Ahy, hy, hy € [vg,wq], hy < hy.
In the same way, we have, by (H,),
—w" = —Mw — NTw — N,S© + f(t,hy, Thy,Shy) — f(t,hy, Thy,Shy) + M(hy — hy)
+ N(Thy—Thy)+ N{(Shy—Sh;) > —Mw - NTw — N,Sw, te€J;
aw(0) - bw'(0) =6, cw(1l)+dw'(l) =46,

and hence, Lemma 2 implies that @ (t) > 0 for t € J, i.e., Ahy > Ah;, and (b) is proved.

Let v, = Av, _; and w,, = Aw, _; (n=1,2,3,...). By (a) and (b) just proved, we have
(1) S vy(t) < ... <o, (t) <. S wp(t) <. < wy(t) S wy(t), tEJ, (35)

and consequently, the normality of P implies that V = {v,:n =0,1,2,...} is a bounded set in
C(J,E). Hence, by (Hj), there is a positive constant ¢y such that

Il £ (v (), (T,)(£), (Svp)(1) + M, (t) + N(Tw,)(t) + N1(Sv,)(t) || < cq
teJ (n=0,1,2,...). (36)
By the definition of v,, and (7), (34), we have
v, (1) = v(t) + / G(t,s)v(s)ds
0

1

4 [ HO 600 1T (S0 1)(0)) + M, ()
0

+N(Tvn—l)(s)+N1(Svn—1)(s)]d3’ telJ (n=1a2’3a---)' (37)
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It follows from (36) and (37) that V is equicontinuous on J, and so, the function m(t) = (V (1))
is continuous on J, where V(t) = {v,(t): n=0,1,2,...} C E. Applying Corollary 1 and Remark

1 to (37) and employing (Hg), we get
1

m(t) <2 / [ H(t,s) | «(f(s,V(s),(TV)(s),(SV)(s)))ds

0

1
+ / | H(t,s) | (Ma(V(s)) + Na((TV)(s)) + N1a((SV)(s)))ds
0
1
< / | H(tys) | [(2¢; + M)a(V (s)) + (25 + N)a((TV)(s))
0

+(2¢3+ Ny)o((SV)(s))]ds, teJ.
On the other hand, by (9), (11), (12), (18) and (20), we have
| H(t,s)| <q+akz(1—k3) "' =q(1-k3)"", tised.

Moreover, by Remark 1,
t

a((TV)(t) =« {/k(t,s)vn(s)ds: n:0,1,2,...}
0

t t

1
< / a ({k(t, sy, (s):n= 0,1,2,...})(13 < k*/ a(V(s))ds < Ic*/ m(s)ds, t € J,
0 0 0
and similarly,
1

a((SV)(t)) < lcr/ m(s)ds, teJ.
It follows from (38)-(41) that °

1
m(t)Sq(l—k;)“l((ch+M)+lc*(2c2+N)+k;‘(2c3+N1))/ m(s)ds, t€J,
0

and so,
1

1
/ m(t)dt < q(1 — k%) ™ 1(2¢; + 2c0k™ + 2c5k} + M + Nk* + Nllc;)/ m(s)ds,
0 0

(38)

(39)

(40)

(41)

1
which implies by virtue of (32) that [ m(t)dt =0, and consequently, m(t) =0 for t € J. Thus,
0

by the Ascoli-Arzela theorem (see [4], Theorem 1.1.15), V is relatively compact in C(J,FE), and
so, there exists a subsequence of {v,,} which converges uniformly on J to some u € C(J,E).
Since, by (35), {v,,} is nondecreasing and P is normal, we see that {v, } itself converges uniformly

on J to u. Now, we have
F(svp _ 1y (Tog _1)(0), (Svy, Z1)(@)) + Moy, (1) + N(Tv,, _1)(8) + Ny(Sv, _1)(1)
— £ (8,1 (1), (T )(2), (S (1)) + M (£) + N(Ta)(t) + Ny (Sa (1), L€,

and, by (36),

(42)
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1 £(t 0 — 18 (T~ )(), (S )(1) + M, _ 3(8) + N(To,_)(¥) + Ny (Sv,, _1)(0)
— (6,7 (1), (T (1), (5% )(1)) — M (1) = N(T )() = Ny (S5 )(1) || < 2,
teJ (n=1,2,3,..). (43)

Observing (42) and (43) and taking limits as n—oo in (37), we get

1
a(t) =o(t)+ / G(t,s)v(s)ds
0

1
+ / H(t,s)[f(s,u(s),(Tu)(s),(Su)(s)) + Mu(s)+ N(Ta)(s) + N,(Su)(s)]ds,t € J,
which im}?lies by virtue of Lemma 1 that @ € C?(J,E) and % satisfies
-u' = f(t,u,T%,S%),t€J; au(0)—bw'(0) =wuy cu(l)+da'(l) =1y,
i.e., @ is a solution of BVP (1). In the same way, we can show that {w,} converges uniformly on

J to some u* and u* is a solution of BVP (1) in C%(J, E).

Finally, let u € C?(J, E) be any solution of BVP (1) satisfying vy(t) < u(t) < wy(t) for t € J.
Assume that vy _;(t) < u(t) <w _,(t) for t €J, and set T = u—v;. Then, on account of the
definition of v, and (H,), we have

—7"'= —-M% —NT% — NS + M(u—vg_q)+NT(u—vj_1)+N;S(u—vp_4)
+ f(t,u, Tu,Su) — f(t,vp _ 1, Tvp _1,Sv_1) > — M7 —NTv —N,S7, telJ;
av (0) - b7'(0) =0, cv(1)+dv'(l) =40,

which implies by virtue of Lemma 2 that v () > 6 for t € J, i.e., v4(t) < u(t) for t € J. Similarly,
we can show u(t) < wy(t) for t € J. Consequently, by induction, v, (t) < u(t) <w,(t) for t € J
(n=0,1,2,...), and by taking limits, we get @ (t) < u(t) < u*(t) for t € J. Hence, (33) holds and
the theorem is proved. a

Theorem 2: Let cone P be regular and conditions (H,) and (H,) be satisfied. Assume that
inequalities (6) and (24) holds. Then the conclusions of Theorem 1 hold.

Proof: The proof is almost the same as that of Theorem 1. The only difference is that
instead of using condition (H3) and inequality (32), the conclusion m(t) = a(V(t)) =0 (t € J) is
obtained directly by (35) and the regularity of P. 0

Remark 2: The condition that P is regular will be satisfied if E is weakly complete (reflexive,
in particular) and P is normal (see [2], Theorem 1.2.1 and Theorem 1.2.2, and [5], Theorem 2.2).

4. An Example

Consider the BVP of an infinite system for scalar, second order integro-differential equations
of mixed type:
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—ull = (1 —mu, —sinm(t +u,))> +

14 2
n 3607r n Son(n 3 32 U+ 1 F i2n—1)

0

t 2 1
—ts 2
-60(n1+1)( / ‘ t""(s)ds) +30(22+3)/ cos’m(t — 8ty (5)ds
1 0 (44)

cos’m(t — s)u, (s)ds)®, 0<t<1;

u,(0) =u, (0), u,(1)=0 (n=1,2,3,...).

\

Evidently, u,(t) =0 (n = 1,2,3,...) is not a solution of BVP (44).

Conclusion: BVP (44) has minimal and maximal continuous, twice differentiable solutions
satisfying 0 <u, <2for0<t<1(n=12,3,..).

Proof: Let E =0 = {u=(uy,...,u,,...):sup|u, | <oo} with norm ||u|| =sup|wu,| and

n n
P ={u=(uy..,u,,...) €L u, >0, n=1,2,3,...}. Then P is a normal cone in E and BVP
(44) can be regarded as a BVP of the form (1) in E. In this situation,a =b=d=1,¢c=0, yy =

uy = (0,...,0,...), k(t,s) =e~t*, kl(t,s)zcos27r(t—s), U= (UpyeenUpyens)y, V= (V5000 0p,..0),
W= (Wy,.o0yWye..) andf::(fl,...,fn,...), in which

t
fn(t’ u, v,w) 360 3 (1 — U -—-sm7r(t+u ))3 m(un_*_l +t“%n—1)
- 1 v2 + ? W, — 1 wl. (45)
80(n+1) " 302n+3) 2" Bt 1) "
It is clear that f € C(JxExExE E), where J =[0,1]. Let vy(t) =(0,...,0,...) and wy(t) =
(2,...,2,...). Then vy,wy € C%(J, E), vy(t) < wy(t) for t € J, and we have

vg(t) = wy(t) = (0,...,0,...),
p(0) = v5(0) = vp(1) = wp(0) = wy(1) = (0,...,0,...), wu(0)=(2,...,2,...),

F a(tyvg, Tvg, Svg) = 3 — (1 -sin7t)® >0,

60
fn(t, W, T’U)O, S'Ll)o) = m(l — 27 —sin W(t + 2)) + m(z + 4t)

t 2
-1 —ts t2 _ 1
15(n+1)( / ¢ ds) t30@n+3)  60(n+1)
0

(1-2m) ¢ ) 1 1
— <0.
Sn ( 360 1480 T80T 60D =0
Consequently, vy and wy satisfy condition (H l) On the other hand, for u = (uy,..,u,,...), & =
(Tpyerpyens)y 0= (V1,000 Vpyee)y T = (TpyeeyTpyeen)y W= (WeyeoyWy,...) and @ = (y,..., Wy,
.. satlsfymg teJ, vy(t) <u <u<wyt), (Tvo)(t) <T <v < (Twy)(t) and (Svp)(t) <w <
w < (Swy)(t), i.e., 0 <, <u, <2,
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¢ 1
2/e“t"ds§2and05@n<wn§2/ cos27r(t—s)ds=1fort€J

0 0

IN

(n=1,2,3,...), we have, by (45),

fa(tyu,v,w)— £, (t,a,5,0) > (1 - 7u, —sin7(t +u,))*

360 3n
= (U=, = sin (1 +8,))°) ~ gty (08 = 90) — oy — B (46)
Since
%(1 —7s —sinw(t+8))3 = —37(1 — s —sinw(t + 5))*(1 + cos 7(t + 5))
> — 2473, for0<t<1, 0<s<2,
% —s%)= —25> —4, for 0 <s<?2
and

-a%(—-ss)z —5s*> -5, for0<s<1,
it follows from (46) that

15n(“ Up) = 15(n1+ 1)(” Tn) = 12(n + 1)( = n)
> - 11_5(14" - ﬁn) - %(vn - 5n) - 21_4(wn - E)n)’ (n=1,2,3,...).

fn(t,u,v,w)——fn(t,ﬁ,i,ﬁ')) > -

This means that condition (H,) is satisfied for M = 15, N =35 and Ny =57 We now check

condition (Hj). Let #™) ¢ J and sequences {u(m)}, {v(m)}, {w(m)} be bounded in E =10, Let
ul™ = (ugm),. - uglm),. R o™ = (vgm),. - v&m),. R w(™ = (wgm),. - wglm) ), and 2™ =

gess)y

.

LRI

(z(m) z(m),_ : ) = f(t(m),u(m)’v(m),w(m))’ Le., Zslm) = fn(t(M)au(m)av(m)’ w(m))(n,m =123,

...). Then, there exists a positive constant r such that
lu™ <y 1oV < Y] < (m=1,23,.0)),

and, by (45),
1207 < r(l +r) 4 p
- 360 On(n+3)%  60(n+1) " 30(2n+3)

Consequently, {z&m)} is bounded, so, by the diagonal method, we can choose a subsequence {m,}
of {m} such that

T2+’ + + . (nm=1,2,3,..). (47)

zglmi)_,zn as 1—00 (n:1,2,3,...). (48)

From (47), we have

r+r) | r¥1+r®) r
360 3n (247r)° + 30n(n+3)*  60(n+1) + 30(2n+3) (*9)
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and therefore, z = (zq,...,2,,...) €€*° = E. For any € >0, by virtue of (47) and (49), we can
choose a positive integer n such that

1AM <6 lz,] <6 n>ng (i=1,23,...). (50)

On the other hand, (48) implies that there is a positive integer i, such that
(m,')

lz,, ¥V —z,| <€ i>iy (n=1,2,..,np). (51)
It follows from (50) and (51) that
Il A™) || =sup| zilm") —z,| <2, i>i,
n

(m,')

This means that ||z
€3 = 0.

—z|| =0 as i—oo, and hence, condition (Hj) is satisfied for ¢; = ¢, =

It is clear that p =1, ¢ =2, k™ = k] = 1, and so, it is easy to calculate

* * _ 17 -1
M4 Nk + Nk =2h < l=gt,
(M + NE™+ N1k7)(1 - 2(M+Nlc*+1\fllc*)2)"l=_30 1<3

1 1
= min{p_lq_lbd,b(%+b) ,d(%-i—d) }
and
2q(cy + cok™ + gkt + M + Nk* + N k) = % <1

Hence, inequalities (6), (24) and (32) are satisfied, and our conclusion follows from Theorem 1.
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