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ABSTRACT

In the paper we study the existence of solutions of the random differential in-
clusion
&, € G(t,z,) P.1,te[0,T]a.e.
()

d
To =t

where G is a given set-valued mapping value in the space K™ of all nonempty,
compact and convex subsets of the space R", and p is some probability measure
on the Borel o-algebra in R™. Under certain restrictions imposed on F and p, we
obtain weak solutions of problem (I), where the initial condition requires that the
solution of (I) has a given distribution at time ¢ = 0.
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1. Preliminaries

Problems of existence of solutions of differential inclusions were studied by many. In particu-
lar, random cases were considered in [3], [5], [7]. This work deals with the inclusion with a purely
stochastic initial condition. First, we recall several notions and results needed in the sequel. Let
K (S) be the space of all nonempty compact and convex subsets of a metric space S equipped
with the Hausdorff metric H (see e.g., [1], [4]): H(A,B) = max(H (A, B),H(B,A)); A,B € K (S),
where H(A, B) 28161[:4 bing p(a,b). By ||A|| we denote the distance H(A,0). For S being a

a

separable Banach space, (K (S), H) is a polish metric space.

Let I =[0,T], T >0. For a given multifunction G:I—K (S) by DyG(t,), we denote its
Hukuchara derivative at the point t; € I (see e.g., [2], [9]) by the limits (if they exist in K (5))

F(ty+ h)—F(t F(ty) — —h
i Flot )= Fll)  Flig) = F(i=1)
h—ot h—ot h
both equal to the same set Dy F(t,) € K (S).
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For § =R" and K" = K (R™), we denote by C; = C(I,K") the space of all H-continuous set-
valued mappings. In C; we consider a metric p of uniform convergence

p(F,G): =sup H(X(t),Y(t)), for X,Y € Cp.
0<t<T

Then C; is a polish metric space.

Let (2, %, P) be a given complete probability space. We recall now the notion of a multival-
ued stochastic process. The family of set-valued mappings X = (X,), 5 o is said to be a multival-
ued stochastic process if for every t > 0, the mapping X,:Q—K™" is measurable, i.e., X,(U): = {w:
X, (w)NU # 0} € F, for every open set U CR™ (see e.g., [1, 4]). It can be noted that U can be
also chosen as closed or Borel subset. We restrict our interest to the case when 0 <t < T, T > 0.
If the mapping t—X,(w) is continuous (H-continuous) with probability on (P.1), then we say
that the process X has continuous “paths.”

Let us notice that the set-valued stochastic process X can be though as a random element X:
Q—C;. Indeed, it follows immediately from [3] and from the fact that the topology of the
uniform convergence and the compact-open topology in C are the same.

Definition 1: A probability measure f (on Cy) is a distribution of the set-valued process
X = (X})g < ¢ < 7 if one has u(A) = P(X(A)) for every Borel subset A from C.

A distribution of X will be denoted by PX.

Definition 2: A set-valued mapping F:I x K" —K" is said to be an integrably bounded of the
Caratheodory type if: T
1) there exists a measurable function m:I—-R, such that [m(t)dt<oco and
[| F(t,A) || <m(t) t-ae., A€ K™ 0
2) F(t, -) is H-continuous t-a.e.
3) F(-,A) is a measurable multifunction for every 4 € K".

Let us consider now the multivalued random differential equation:

DHXt:F(t’Xt) P-l,tE[O,T]-a.e. (II)

d
Xog=p

where the initial condition requires that the set-valued solution process X = (X,), ¢ 1 has a given
distribution p at the time t=0. By a weak solution of (II) we understand a system
(92,F,P(X,), ¢ 1) where (X,), c ; is a set-valued process on some probability space (2, ¥F, P) such
that (I7) is met.

We state the following theorem (see e.g. [6]).
Theorem 1: Let F:Ix K"—K"™ be an integrably bounded set-valued function of the Caratheo-

dory type and let p be an arbitrary probability measure on the space K™. Then there ezists a
weak solution of (I1I).

2. Weak Solutions of Random Differential Inclusions

As an application of Theorem 1, we show the existence of a weak solution of the random
differential inclusion

&, =G(t,z,) P.1,t€[0,T]ae.

d

2o % . (1)
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The weak solution of (I) is understood similarly as above, where u is now a given probability mea-
sure on R™.

Let 9, denote the family of nonempty open subsets of R", and let C' = {C;V € 9}, where
Cy={Ke€ K" KNV #0}. Then we have that B" = ¢(C) (see e.g. Proposition 3.1 [4]), where
%B" is a Borel o-field induced by the metric space (K", H).

Lemma 1: The following hold true:
i) K"eC, 0o
i7) if Aj,A,,...€C then |J A, €C,
n=1

Proof: The property i) is obvious. Let V,V,,..., € T, be such that A, =Cy, for n= 1,
00 n
2,.... To establish i), let us observe that |J A, =C

n=1
n
n=1

Let us suppose that iii) does not hold. Then for some k> 1, V; € V., ;. Hence there exists
a point z €V} such that 2 ¢V, , ;. But then {z}€ CVk and {z} ¢ CVk+1 contradicts to

Cy CC .
Vie= Vi1
To obtain our main result we need the following lemma:

Lemma 2: If p is a probability measure on the Borel o-algebra B(R™), then there ezists a
probability measure i on the space K™ such that i(Cy) = u(V), V € T,

Proof: Let C be the family generating Borel o-field B". We define a set-function v on C by
v(Cy)=p(V). Let us observe that v is well-defined. Indeed, if Cy, = C’V and p(V,) # p(Vy)
then V; #V,. Hence V,\V, #0 or V,\V,; #0. Without loss of gerllerallty we may assume the
first case. Then there exists € V, such that « ¢ V. But then {z} € CV2 and {z} ¢ CV1 which

contradicts with an equality Cvl = CV2' Similarly, it can be shown that if the sets Cvl and
CV2 are disjoint, then the sets V,, V, have the same property too. Hence we get V(CVIU
Cvz) = V(Cvl) + V(CV2) for disjoint C'Vl and CV2. From Lemma 1 we conclude that, if C'V1 C

Cy C..., then
2 UCV EC’andV(U Cy ) =limu(Cy ).

n=1 n=1

Moreover, v(K™) = 1. Finally let us observe that v is o-subadditive. Next we define another set

function ¥ as follows:

v(A): =inf{v(D):ACD,DeC}, ACK".

Standard calculations show that ¥ is an outer measure on K™. Thus from the Caratheodory
Theorem, ¥ is a probability measure on the o-field of U-measurable subsets in K™. Setting g =
U qny We obtain a desired probability measure.

We now present the following existence theorem.

Theorem 2: Let us suppose that G:I x R"—K™ is an integrably bounded multifunction of the

Caratheodory type. Then for any probability measure p on R", there ezists a weak solution of
problem (I).

Proof: Lemma 2 yields the existence of a probability measure i on the metric space (K™, H)
with the property: fi(Cy) = u(V), V€T, Let F:IxK"—>K" be a multifunction defined by
F(t,A) =coG(t,A), for A€ K". Hence from Lemma 1.1 [9], the set-valued mapping F is
integrably bounded of the Caratheodory type too. Consequently, by Theorem 1, there exists a
probability space (22, %, P) and the set-valued stochastic process X = (X,)g << (on it) with
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continuous “paths” and with values in K™ which is a weak solution of the equation
DHXt = F(t’Xt) P.l,te [O,T]—a.e.

d ~
Xo=p.

From Kuratowski and Ryll-Nardzewski Selection Theorem [4] we can choose £:Q—R" as a
measurable selection of X;. Then by Theorem 4 [5] (see also [3]), there exists a stochastic process

=(2,)g <t <7 as a selection of X that is a solution (in strong sense) of the random differential
inclusion: ™
&, € G(t,z,) P.1,te0,T]a.e.

xer P.l,

where U(w) = {é(w)} for w € Q.

To complete the proof, it is sufficient to show that z, 4 p. Let us notice that {w:zy(w) €
Vi={w:é(w)eV}C{w: X NV #£0}, V€T, Because of X 4 4 and B(Cy) = p(V) we have

PO(V) < w(V). (*)

Using regularity properties of probability measures (on a separable metric space) (see e.g., Th. 1.2
[8]), we have that

P*O(B) = inf{P*O(V): BC V,V € T}

and pu(B) =inf{u(V):BCV,V € T} for every Borel subset B of R". Hence from inequality (*)

we get PzO(B) < u(B). But P and p are probability measures. Therefore they have to be
equal.

References

(1] Himmelberg, C.J. and Van Vleck, F.S., The Hausdorff metric and measurable selections,
Topol. and its Appl. 20 (1985), 121-133.

(2] Hukuchara, M., Sur 1 application semicontinue dont la valeur est un compact convexe,
Funkcial. Ekwac. 10 (1967), 43-66.

(3] Kandilakis, D.A. and Papageorgiou, N.S., On the existence of solutions of random differen-
tial inclusions in Banach spaces, J. Math. Anal. Appl. 126 (1987), 11-23.

(4] Kisielewicz, M., Differential Inclusions and Optimal Control, Kluwer 1991.

(5] Michta, M., Set-valued random differential equations in Banach space, Discussines Math.
(1994), (submitted).

(6] Michta, M., Weak solutions of set-valued random differential equations, Demonstratio
Mathematica (1994), (submitted).

(7] Nowak, A., Random differential inclusions: measurable selection approach, Ann. Pol.

Math. XLIX (1989), 291-296.

(8] Parthasarathy, K.R., Probability Measures on Metric Spaces, Academic Press, New York
1967.

9] Tolstonogov, A., Differential Inclusions in Banach Spaces, Nauka, Moscow 1986 (Russian).



