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ABSTRACT

Certain formal series of a most general nature are specialized so as to deduce
expansions in terms of a class of generalized hypergeometric functions. These
series generalize the Neumann and Kapteyn series in the theory of Bessel func-
tions, and their convergence is investigated. An example of a succinct expansion
is also given.
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1. Introduction

Certain formal series which generalize the Neumann and Kapteyn series have quite recently
been introduced by Exton [2]. These results are embodied in Lemmas 1 and 2 of the same study
and are now quoted for convenience.

Lemma 1: If C(#) is an arbitrary function of # and if
)c(+X.-
lr 1 r)

r 0 r!r( + r + 1)
then we have the formal result

c(1/2.) (" + )r(. + ),x
k! t + 2k"

k=O

Lemma 2: If C(#) is an arbitrary function of # and if

r E (- 1)rC(1/2 / r) + 2r

r=0 r.---F(; - - + 1)
then we have the formal result

1/2 oc()
( + 2) + 1 + 2.

In Lemma 1, we put
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r(ai + g)...r(% +C(,) r(h + )..r(, +
and Xu nXu(z) nXu(al, an; hi,... bn; z) nXu((a); (b); z)

(1.1)

The function given in (1.1) can be expressed as a generalized hypergeometric function as follows:
1r(a + )...I’(% + 1/2)(z)nXu((a);(b);z) r(bl+-7 1/2u)r(u 1))...r( + +

a1 +1/2,...,anhen + 1 bl + 1/2u,..., bn -!- 1/2, 1 + u;
(1.2)

If n- 0, this function reduces to the Bessel function J,(z). The series on the right of (1.2)
converges absolutely and uniformly for all finite values of zl. For a comprehensive treatment
of generalized hypergeometric series, the reader should consult Slater [3] for example.

2. A Generating Function and Recurrence Relations

The function
oo 1

V’ r(al. _+_)’" .r(a. +1 ,[z(t t 1-V V((a); (b)) _@or(bl + 1/2r) :b. +
is arranged in powers of t. As a simple consequence of the binomial theorem, we have

oo 1 1 )p qtq p

V E r(al + 1/2p + 1/2q)’" .r(a. + p + 7q)( 1 (1/2z)p +
1

p,q 0 r(b1 + 1/2p + -q). .r(bn + 1/2p + 1/2q)p!q!

Put q m + p and rearrange, so that

V E (- 1)P(1/2z)P F(a1 -t-1/2m -t- p)...F(an -4-1/2ml A- p)(1/2z)TM + p

p=O
p! m= -p r(b + 1/2m + p). .r(b, + 7m + p)(m + p)V.

tTM

m + )(1/2z)TM +TM 1)r(a + 1/2m + p)...r(% _1

=- v=0 r(bl+gm+p). +p)(m+

x((); (); z).

As in the case of the Bessel coefficients, it is clear that

(2.1)

nX_m((a);(b);z) (- 1)mnxm((a);(b);z).

The generating function (2.1) readily yields recurrence relations for the function nXm((a); (b); z)
which are exactly analogous to those which apply to the Bessel coefficient Jm(z).
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Take partial derivatives with respect to t of both members of (2.1). This gives

On equating the coefficients of successive powers of t to zero, it follows from (2.2) that

(2.2)

nXm l((a + 1/2); (b + 21-); z)+ nXm + l((a + 1/2); (b + 1/2);z)
2m nXm((a); (b); z)/z. (2.3)

Similarly, taking partial derivatives of (2.1) with respect to z, it is found that

and we have

nXm_l((a + 1/2); (b + 21-); z)- nXm +l((a + 1/2); (b + 21-); z)- nX’m((a); (b);z), (2.4)

where the primes denote differentiations with respect to z. On adding and subtracting (2.3) and
(2.4), we obtain

znX’m((a); (b); z) + mnXm((a); (b); z) znXm -1 ((a + 1/2); (b + 1/2); z)
and znX((a);(b);z)-mnXm((a);(b);z)- -znXm+l((a+1/2);(b+1/2);z). (2.6)

(2.5)

The expressions (2.5) and (2.6) may respectively be written in the form

z[zmnXm((a);(b);z)] zmnXm_l((a+1/2);(b+1/2);z) (2.7)

ff---[z mnXm((a); (b); z)] z mnxm + l((a + 1/2); (b + 1/2); z). (2.8)

Replace m by m-1 in (2.8) and eliminate nXm_l((a+1/2);(b+1/2);z) between the result and
(2.7)"

-{z1-2mdr mnXm((a);(b);z)]} zl-mnXm((a+ 1);(b+ 1);z)

That is,

mdnXm((a); (b); z) + mz m nXm((a); (b); z)][zx- dz

zl-mnXm((a + 1);(b + 1);z),

which on expansion becomes

d22 Zz nXm((a); (b); z) m2 nXm((a); (b);)z z2 nXm((a); (b); z) + z

+ z2nXm((a + 1);(b + 1);z) O. (2.9)

This differentio-difference equation (2.9) corresponds exactly with Bessel’s equation to which it
reduces when n- 0, see Watson [4].
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3. Expansions of Neumann Type

A result, formal at first, is obtained from Lemma 1 of Exton [2] with the forms of C(#) and
nXr, used in (1.1). This is

1 1/2.) + +r(al + ’)’"r(anl + (21-z)v E k’F(b1 + z)..P(bn + 1/2u) k 0
nX + 2k((a); (b); z), (3.1)

where the convergence of the series on the right of (3.1) remains to be established.

For large values of u,

1-I [F(aj + 1/2 +r)/P(bj+1/2 +r)]-, (21-)d,
j=l

where, for convenience, we have put d Y (aj- bj). It then follows that for large values of u,
j=l

nX,(a); (b); z) (1/2u)dJ(z). (3.2)

From an inequality given by Watson [4], page 44, it then follows that, for large values of
dl

nX+2k((a);(b);z) r(1 + + 2k)(1 +O),

1el < exp[ z 12/(41% + 1] )]- 1 and where 0 is the smallest of the numbers

Iv + 21, ] + 31, The general term of the series (3.1) is given by

(/ -+- 2k)F(’ q- k) ( q- 2k)r(/ +/)(z)l + 2k

Tk= k! nX+2k((a);(b);z)’" ]!P(1 + + 2k) (1 +0).

After a little algebra, it may be found that, for sufficiently large values of k that

Tk 1/Tk ,[( + 1)/k]d(-z)l+ ( + 2k)( + 2k + 1)(k + 1)"’k
+ 2

andli_+rn(T + 1/T)- O, so that the series (3.1) converges absolutely and uniformly within any

bounded region of the z-plane. A number of expansions in series of the functions nX + 2k may
thus be deduced from (a.1). For example, we give an expansion of a function of a similar type.
Now

(1/2kz)t gX,((a); (b); kz)

k"
1)’P(al + 1/2 + m)...r(% + 1/2 + m)(1/2z)t’ + ’k

The power of z on the right, tt + 2m,(Z) is replaced by its expansion (3.1), and we have

(1/2kz)t gX((a); (b); kz)

k"" (-- l-!-r-(a-1 + 1/2" + m)...r(aa + 1/2. + m)
z_ 7r---;-7 + 1)m!m 0F(bl + b’ q- m). m
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rn)k:.r( + 1/2 + ml...r( +. +
1r(a + 1/2 + m)...r(a’q + + m)

( + + )r(, + + )
p! qXt, + 2m + 2p((a’); (b’); z). (3.3)

p--O

Since the series concerned are absolutely convergent, the right-hand member of (3.3) can be re-
arranged in the form

[m (-1)mr(#+m+n)F(al+1/2+m)’"F(ag+1/2+rn)
=o om(n- m)F( + m + 1)F(bI+ + m)...F(bg++ m)

1 lp m)r(ai +p + ml...r(a; + 2 +
(# + 2n) qXtt + 2n(( ); (b’); z).

The inner summation in m can be interpreted as a generalized hypergeometric function, so that
we have, finally

(1/2kz) t* gX,((a); (b);

1 .r(;r(aI + 1/2.)...P(aa + 1/2.)I’(b + ).. + p)
1 .F(a; 1P(, + 1)F(b1 + ,)...F(bg + 1/2)F(at + #).. + #) n!

n--O

al
q..1 1/2b,, q- 1/2#, ., q- 1/2#, # q-- n, n; 1-u, ., ag + b1 bq

g+q+2Fg+q+l be --k1/2b’,...,bg+1/2b’,al q--1/2#,...,aq+1/2#,’-k 1;

ax. + .(( ); (’); z). (3.4)

If the parameters and variable of the inner hypergeometric function of (3.4) can be so chosen that
it is summable in a compact form, then a more elegant result follows in which only one
summation is involved. It will be seen that if g = q = 0, the formula (3) in Section 5.21 on page
140 of Watson [4] is recovered.

In (3.1), put q g, k 1, a- a + 1/2z, _#1 and bi’- b + 1/2-1/2#, 1 _<i _< g, so that the inner
hypergeometric function is reduced to a terminating function 2F of unit argument, summable by
Vandermonde’s theorem (Slater [3], page 243, for example). We then have the interesting result

(1/2z)u ,gXu((a);(b);z F(# + n)r(u + 1 #)(# + 2n)

gXw+2n((a+1/2’-1/21.t);(b+1/2’-1/21.t);z),
which is essentially not more complicated than the original formula for Bessel functions obtained
when g 0.

Other expressions of a similar character can be worked out using known summation formulae
for the generalized hypergeometric function after suitable specialization of the disposable
parameters.
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4. Series of Kapteyn Type

From Lemma 2 of Exton [2], quoted in Section 1 of this study, it is clear that with the same

form of C(#),

Y, r,X,((a);(b);z)

by comparison with (1.1). We then have the (initially formal) result
1 1F(aI + u)...r(% + u), 1 )1 z

r(bI + )..r(b +

= 2k__0( % 2k)+lk!F(u% k) nX +2k((a); (b); ( + 2k)z). (4.1)

If n 0, the expansion (4.1) becomes a well-known result in the theory of Kapteyn series, that is

r( + )(z)
( +)+,+(( +)),

see Watson [4], page 571.

The convergence of the series on the right of (4.1) must now be examined. Recall from (3.2)
that for large values of k

nX, + 2k((a); (b); ( + 2k)z) kdj, + 2k(( + 2k)z)

where d (aj- bj). We are then led to consider the convergence of the auxiliary series

)2

The test (5), in effect Raabe’s test, given in Section (12,2) page 40 of Bromwich [1], is now
applied. It is easily seen that

ut:/uk + (, + 2/)" + lk!r( +/ + 1)(k + 1)d

1 + (2 d)/k + 0(11k2).
By virtue of the test mentioned above, the series (4.2) converges if Re(2- d) > 1 and diverges

is Re(2- d) <_ 1. Hence, (4.2) is convergent if Re (d) < 1.

In turn, for sufficiently large values of k, we now discuss the convergence of the series

(4.a)

When z is real and - N, N- 0,1,2,..., JN + 2k((N + 2k)x)_< t, Watson [4], page 31. Hence,
(4.3) converges with (4.2), and under these circumstances, the expansion

1r(a + 1/2N)...r(a + N) N__ r(N + k)
F(bI + 1/2n)..F(bn + 1/2n) (1/2x)N

(N + 2])N +
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nXN + 2k((a); (b); (N + 2k)x)

converges absolutely and uniformly if Re(d) < 1, for all values of x.

For complex values of u and z, the series on the right of (4.1) converges if z lies within the
domain K, that is the interior of the region for which

/
z expx/(1 Z

2- <1,!
1 + if(1 2)

provided ha Re(d) < 1, see Watson [41, page 59. he seres on he rgh of (4.1) also converges
on he boundar of he region K wih he further proviso ha for he pons
necessar ha u should be real (Watson [4], page

As n he case of he eneraHed Neumann seres he correspondn enerafiaon of he
Kapen seres can n man cases gve rse o expansions n he form of double seres. However
n he laer case, s much less fikel ha a reduction o a sngle seres can be brough about.
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