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The polynomial of degree n which is the best approximation of the sinc function on the interval (0,
π/2] with the square norm is considered. By using Lagrange’s method of multipliers, we construct
the polynomial explicitly. This method is also generalized to the continuous function on the closed
interval [a, b]. Numerical examples are given to show the effectiveness.

1. Introduction

Let sin c(x) = (sin x)/x be the sinc function; the following result is known as Jordan
inequality [1]:

2
π
≤ sin c(x) < 1, 0 < x ≤ π

2
, (1.1)

where the left-handed equality holds if and only if x = π/2. This inequality has been further
refined by many scholars in the past few years [2–30]. Özban [12] presented a new lower
bound for the sinc function and obtained the following inequality:

2
π
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1
π3
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π2 − 4x2

)
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π3

(
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2

)2
≤ sin c(x). (1.2)

The above inequality was generalized to an upper bound by Zhu [26]:
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. (1.3)
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Later, Agarwal and his collaborators [2] proposed a more refined two-sided inequality:
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π4
x3
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4
(
−75 + 49π − 8π2)

π2
x +

4
(
−142 + 95π − 16π2)

π3
x2 − 4(12 − 4π)

π4
x3,

(1.4)

where the two-sided equalities hold if x tends to zero or x = π/2.
Note that the bounds of the sinc function sinc(x) listed above are estimated by the

given polynomials with the boundary constraints; the smaller the residual between the
polynomial and the sinc function is, the more refined the estimation will be. Hence, our aim is
to seek a polynomial of degree n, pn(x), which is the best approximation of the sinc function
with the square norm. In view of that, the sinc function is defined on (0, π/2] and two
boundary constrained conditions are imposed. So we want to solve the following minimum
problem:

min
pn(x)∈Pn

(∫π/2

0

(
sin c(x) − pn(x)

)2dx

)1/2

s.t. lim
x→ 0+

pn(x) = lim
x→ 0+

sin c(x), lim
x→π/2

pn(x) = lim
x→π/2

sin c(x),

(1.5)

where Pn is the set of the polynomial of degree n and it is denoted by

Pn =
{
pn | pn(x) = a0 + a1x + · · · + anxn, ai ∈ R, i = 1, 2, . . . , n

}
(1.6)

In this paper, an explicit representation for the approximating polynomial of sinc(x) is
presented by using Lagrange’s method of multipliers, and numerical examples are given to
show the effectiveness. Moreover, this method can be generalized to the continuous function
g(x) on the closed interval [a, b]. However, the residual error between the approximating
polynomial pn(x) and g(x) is concussive, that is, it cannot keep positive or negative always.

The rest of paper is organized as follows. In Section 2, we solve the problem (5) by
Lagrange’s method of multipliers and this method is generalized to a continuous function on
[a, b] in Section 3. Numerical examples are given in Section 4 to display the effectiveness of
our estimations.

2. The Best Approximation of the Sinc Function by
a Polynomial of Degree n on (0, π/2]

Obviously, the constraints of (1.5) imply

a0 = 1, pn
(π

2

)
=

2
π
. (2.1)
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Note that

∫π/2

0

(
sin c(x) − pn(x)

)2dx =
∫π/2
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(2.2)

Denote

G(a1, . . . , an) = h +
∑

1≤i<j≤n

2aiaj
i + j + 1

(π
2

)i+j+1
+
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i=1

a2
i

2i + 1

(π
2
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(2.3)

with

h =
∫π/2

0

(
−2
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i=1

aix
i−1 sinx

)
dx +

n∑
i=1

2ai
i + 1

(π
2

)i+1
, (2.4)

where ai ∈ R, i = 1, 2, . . . , n. So (1.5) is equivalent to solving the following minimum problem:

min
ai∈R

G(a1, . . . , an)

s.t. a1
π

2
+ · · · + an

(π
2

)n
=

2
π
− 1.

(2.5)

This can be solved by using Lagrange’s method of multipliers. We construct the Lagrange
function by

L(a1, a2, . . . , an, λ) = G(a1, . . . , an) + λ
(
a1
π

2
+ · · · + an

(π
2

)n
− 2
π

+ 1
)

(2.6)
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with Lagragian multiplier λ. Thus we need to equate to zero the partial derivatives of L with
respect to each aj(j = 1, 2, . . . , n) and λ, that is,

∂L

∂aj
= 0, j = 1, . . . , n,

a1
π

2
+ · · · + an

(π
2

)n
− 2
π

+ 1 = 0.
(2.7)

It gives a system of linear equations

Au = f, (2.8)

where
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, (2.9)

u =

⎛
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...
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λ

⎞
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, f = −

⎛
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. (2.10)
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To consider the consistence of the equations (2.8), we introduce the following lemma for the
square matrix A of order n + 1.

Lemma 2.1. The square matrix A of order n + 1 defined by (2.9) is nonsingular.

Proof. We want to prove that det(A)/= 0. Note that
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where

Hn =
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1
1
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...
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. (2.12)

Since Hn is one n-order principal square submatrix of (n + 2)-order Hilbert matrix, together
with Hilbert matrix being positive definite [31, volume 1, page 401], then Hn is also positive
definite. Hence, H−1

n exists and it is positive definite, which implies eTH−1
n e /= 0. Moreover,

det
(

2Hn e
eT 0

)
= det

⎛
⎝2Hn e

0 −1
2
eTH−1

n e

⎞
⎠. (2.13)

So, det
(

2Hn e
eT 0

)
/= 0, that is, A is nonsingular.

Because A is nonsingular, the solution of the equations (2.8) exists and is unique, as
well as the best approximation of sin c(x) by a polynomial of degree n. Therefore, we obtain
the following theorem.

Theorem 2.2. Let 0 < x ≤ π/2; suppose the matrix A and vector f are denoted by (2.9). Then the
best approximation of sin c(x) by a polynomial of degree n on interval (0, π/2] with the square norm
is given by

pn(x) = 1 + a1x + · · · + an−1x
n−1 + anxn, (2.14)

where a1, . . . , an is the 1,2, . . . n-th components of the vector A−1f .

3. The Best Approximation of the Continuous Function g(x) by
a Polynomial of Degree n on [a, b]

In this section, we generalize the above conclusion to the continuous function g(x) on interval
[a, b], that is, we want to consider the following minimum problem:

min
pn(x)∈Pn

(∫b
a

(
g(x) − pn(x)

)2dx

)1/2

(3.1)
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with the constraints

pn(a) = g(a), pn(b) = g(b), (3.2)

where the polynomial pn(x) is rewritten as

pn(x) = a0 + a1(x − a) + · · · + an(x − a)n (3.3)

and Pn is defined by (1.6). If we set t = x − a, problem (3.1) is equivalent to

min
p̃n(t)∈Pn

(∫b−a
0

(
g(t + a) − p̃n(t)

)2dt

)1/2

(3.4)

with

a0 = g(a), p̃n(b − a) = g(b), (3.5)

where

p̃n(t) = a0 + a1t + · · · + antn. (3.6)

If we replace a0 = 1, π/2, sin c(x), pn(x) in Section 2 by a0 = g(a), b − a, g(x), and p̃n(t),
respectively, then (2.4) is rewritten as

h =
∫b
a

(
−2

n∑
i=1

aig(x)(x − a)i
)

dx +
n∑
i=1

2aig(a)
i + 1

(b − a)i+1, (3.7)

A =

⎛
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5
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6
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...
... . . .

...
...
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n + 2
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. . .

2(b − a)2n+1

2n + 1
(b − a)n

(b − a) (b − a)2 . . . (b − a)n 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂h

∂a1

∂h

∂a2

...

∂h

∂an

g(a) − g(b)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.8)

So we have the following theorem.
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Theorem 3.1. Let g(x) be continuous on [a, b], and we denote the matrix A and f by (3.8). Then
the best approximation of g(x) by the polynomial of degree n on [a, b] with the square norm is given
by

pn(x) = g(a) + a1(x − a) + · · · + an−1(x − a)n−1 + an(x − a)n, (3.9)

where a1, . . . , an is the 1,2, . . . n-th components of the vector A−1f .

Remark 3.2. The interval [a, b] in Theorem 3.1 can be generalized to (a, b), where

lim
x→a+

g(x), lim
x→ b−

g(x) both exist. (3.10)

4. Numerical Examples

In this section, we present some numerical examples to illustrate the effectiveness of our
methods based on Theorems 2.2 and 3.1. For any function g(x), two kinds of errors are used
as measures of accuracy. One is the residual error

εg(x)−pn = g(x) − pn(x). (4.1)

The other is the integration error

εint
g(x)−pn =

(∫b
a

(
g(x) − pn(x)

)2dx

)1/2

. (4.2)

Example 4.1. Let a = 0, b = π/2, and g(x) = sin c(x); we compare the approximation
effectiveness between the approximating polynomial of degree 3 and sin c(x) by Theorem 2.2
and that in [2]. Denote the left-handed polynomial in inequality (1.4) by pl3(x), and the right-
handed one by pr3(x), that is,

pl3(x) = 1 −
4
(
−66 + 43π − 7π2)

π2
x −

4
(
124 − 83π + 14π2)

π3
x2 − 4(12 − 4π)

π4
x3,

pr3(x) = 1 −
4
(
−75 + 49π − 8π2)

π2
x +

4
(
−142 + 95π − 16π2)

π3
x2 − 48 − 16π

π4
x3.

(4.3)

With Theorem 2.2, it is easy to compute that

p3(x) = 1 −
2
(
13440 − 1440π − 960π2 − 4π3 + 7π4)

π5
x

+
4
(
40320 − 4800π − 2640π2 − 16π3 + 13π4)

π6
x2

−
56
(
3840 − 480π − 240π2 − 2π3 + π4)

π7
x3.

(4.4)



Journal of Inequalities and Applications 9

1.510.5

x

−0.0025

−0.002

−0.0015

−0.001

−0.0005

0

0.0005

Figure 1: The residual errors between the approximating polynomial of degree 3 and sin c(x) with the
square norm, where we denote the yellow dotted line by εsin c(x)−pl3

, green dash line by εsin c(x)−pr3(x), and red
line by εsin c(x)−p3 .

Table 1: The residual error εsin c(x)−pn and integration error εintsin c(x)−pn between the approximating
polynomial of degree n and sin c(x) with the square norm on interval (0, π/2], where n = 2, 3, 4, 5.

n maximal εsin c(x)−pn minimal εsin c(x)−pn εint
sin c(x)−pn

2 4.12 ∗ 10−3 −4.73 ∗ 10−3 3.97 ∗ 10−3

3 3.51 ∗ 10−4 −4.68 ∗ 10−4 4.59 ∗ 10−4

4 3.28 ∗ 10−5 −2.16 ∗ 10−5 5.08 ∗ 10−4

5 1.72 ∗ 10−6 −1.16 ∗ 10−6 5.12 ∗ 10−4

We plot the residual error for pl3(x), p
r
3(x), and p3(x), respectively. In Figure 1, we will find

that the total error of p3(x) is smaller than that of pl3(x) and pr3(x). However, the curve of
εsin c(x)−p3 is concussive at y = 0.

Example 4.2. In this example, we consider the residual error εg(x)−pn and integration error
εint
g(x)−pn for n = 2, 3, 4, 5 with g(x) = sin c(x) and interval (0, π/2]. In Table 1, we will find

that the order of the residual errors εsin c(x)−pn will decrease with increasing n. However, the
precision of integration error εint

sin c(x)−pn can remain 10−4 when n = 3, 4, 5.

Example 4.3. In this example, let g(x) = cos x and the interval be [0, π]; we consider its
approximating polynomial of degree 3: p3(x). By Theorem 3.1, we have

p3(x) = 1 −
3
(
140π2 + 3π4 − 1680

)

π5
x −

21
(
60π2 + π4 − 720

)

π6
x2

+
14
(
60π2 + π4 − 720

)

π7
x3,

(4.5)
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x

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

Figure 2: The residual error εcos x−p3(x) between cos x and p3(x) on [0, π].

and the residual error εcos x−p3 can be represented by Figure 2 . Obviously, the curve is
concussive; however, the residual error can reach 10−3.

Example 4.4. Let g(x) = sinx and the interval be [π/2, π]; we consider its approximating
polynomial of degree 4 (p4(x)) by Theorem 3.1. It is easy to verify

p4(x) = 1 − 23π5 + 8400π3 − 127680π2 − 1532160π + 5806080
π6

(
x − π

2

)

+
14
(
11π5 + 6000π3 − 110400π2 − 1209600π + 4700160

)

π7

(
x − π

2

)2

−
56
(
7π5 + 4560π3 − 95040π2 − 979200π + 3870720

)

π8

(
x − π

2

)3

+
336
(
π5 + 720π3 − 16320π2 − 161280π + 645120

)

π9

(
x − π

2

)4
.

(4.6)

We plot the residual error εsin x−p4(x) in Figure 3, where we find it can reach 10−4.
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32.82.62.42.221.8
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−0.0001
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Figure 3: The residual error εsinx−p4(x) between sin x and p4(x) on [π/2, π].
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