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This note considers a periodic boundary value problem for a second-order functional differential
equation. We extend the concept of lower and upper solutions and obtain the existence of extreme
solutions by using upper and lower solution method.

1. Introduction

Upper and lower solution method plays an important role in studying boundary value
problems for nonlinear differential equations; see [1] and the references therein. Recently,
many authors are devoted to extend its applications to boundary value problems of
functional differential equations [2–5]. Suppose α is one upper solution or lower solution
of periodic boundary value problems for second-order differential equation; the condition
α(0) = α(T) is required. A neutral problem is that whether we can define upper and lower
solution without assuming α(0) = α(T). The aim of the present paper is to discuss the
following second order functional differential equation

−u′′(t) = f(t, u(t), u(θ(t))), t ∈ J,

u(0) = u(T), u′(0) = u′(T),
(1.1)

where J = [0, T], f ∈ C(J × R2, R), 0 ≤ θ(t) ≤ t, t ∈ J.
In this paper, we extended the concept of lower and upper solutions for (1.1). By using

the method of upper and lower solutions and monotone iterative technique, we obtained the
existence of extreme solutions for the boundary value problem (1.1).
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Through this paper, we assume thatM > 0, N ≥ 0, and

T2(M +N) ≤ 2, (1.2)

Λ1 =
{
u ∈ C2(J) : u(t) ≥ 0, 1 + u(0) = u(T), u′(0) ≥ u′(T)

}
,

Λ2 =
{
u ∈ C2(J) : u(t) ≥ 0, 1 + u(T) = u(0), u′(0) ≤ u′(T)

}
.

(1.3)

Definition 1.1. Functions α ∈ C2(J) and β ∈ C2(J) are called lower solution and upper solution
of the boundary value problem (1.1), respectively if

−α′′(t) ≤ f(t, α(t), α(θ(t))) −Hα(t), t ∈ J,

α′(0) ≥ α′(T),
(1.4)

−β′′(t) ≥ f
(
t, β(t), β(θ(t))

)
+ hβ(t), t ∈ J,

β′(0) ≤ β′(T),
(1.5)

where

Hα(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, α(0) = α(T),

(−c′′(t) +Mc(t) +Nc(θ(t)))(α(0) − α(T)), α(0) > α(T),

(−b′′(t) +Mb(t) +Nb(θ(t)))(α(T) − α(0)), α(0) < α(T),

(1.6)

hβ(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, β(0) = β(T),

(−c′′(t) +Mc(t) +Nc(θ(t)))
(
β(0) − β(T)

)
, β(0) < β(T),

(−b′′(t) +Mb(t) +Nb(θ(t)))
(
β(T) − β(0)

)
, β(0) > β(T)

(1.7)

and c ∈ Λ1, b ∈ Λ2.

Remark 1.2. Clearly, Λ1 /= ∅ and Λ2 = ∅. For example,

t

T
∈ Λ1, sin

πt

2T
∈ Λ1, 1 − t

T
∈ Λ2, sin

π

2

(
1 − t

T

)
∈ Λ2. (1.8)
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2. Comparison Results

We now present the main results of this section.

Lemma 2.1. Assume that u ∈ C2(J) satisfies

−u′′(t) +Mu(t) +Nu(θ(t)) ≤ 0, t ∈ J,

u(0) = u(T), u′(0) ≥ u′(T),
(2.1)

then u(t) ≤ 0 for all t ∈ J .

Proof. Suppose, to the contrary, that u(t) > 0 for some t ∈ J . We consider the following two
cases.

Case 1. u(t) ≥ 0, u(t)/= 0 on J . It is easy to obtain that u′′(t) ≥ 0 on J . Thus u(t) ≡ constant =
K > 0 from u′(0) ≥ u′(T). Consequently, we obtain that

(M +N)K = −u′′(t) +Mu(t) +Nu(θ(t)) ≤ 0, (2.2)

which contradicts K > 0.

Case 2. There exist t1, t2 ∈ J such that u(t1) > 0 and u(t2) < 0. Hence, two cases are possible.

Subcase 1. u(0) = u(T) < 0. There exists a t3 ∈ (0, T) such that

u(t3) = max
t∈J

u(t) > 0, u′(t3) = 0. (2.3)

Let u(t∗) = mint∈[0,t3)u(t) < 0. Then

u′′(t) ≥ (M +N)u(t∗), t ∈ [0, t3). (2.4)

Integrating the above inequality from s(t∗ ≤ s ≤ t3) to t3, we obtain

−u′(s) ≥ (t3 − s)(M +N)u(t∗), t∗ ≤ s ≤ t3, (2.5)

and then integrate from t∗ to t3 to obtain

−u(t∗) < u(t3) − u(t∗) ≤
∫ t3

t∗
(s − t3)(M +N)u(t∗)ds

≤ −M +N

2
u(t∗)(t3 − t∗)2 ≤ −M +N

2
u(t∗)T2

(2.6)

that implies 1 < (T2/2)(M +N). This is a contradiction.
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Subcase 2. u(0) = u(T) ≥ 0. There exists a t3 ∈ J such that

u(t3) = max
t∈J

u(t) > 0. (2.7)

If t3 ∈ (0, T), then u′(t3) = 0. If t3 = 0 or t3 = T , then u′(0) ≤ 0 ≤ u′(T). So u′(0) = u′(T) = 0.
Let u(t∗) = mint∈(0,T)u(t) < 0. Then

u′′(t) ≥ (M +N)u(t∗), t ∈ J. (2.8)

When t∗ < t3, same as Subcase 1, we obtain that 1 < T2(M +N)/2.

when t∗ > t3, integrating the inequality (2.8) from t3 to s(t3 ≤ s ≤ t∗), we obtain

u′(s) ≥ (s − t3)(M +N)u(t∗), (2.9)

and then integrate from t3 to t∗ to obtain

u(t∗) > u(t∗) − u(t3) ≥
∫ t∗

t3

(s − t3)(M +N)u(t∗)ds ≥ M +N

2
u(t∗)(t∗ − t3)2 ≥ M +N

2
u(t∗)T2

(2.10)

that implies 1 < (T2/2)(M +N). This is a contradiction. The proof is complete.

Lemma 2.2. Assume that u ∈ C2(J) satisfies

−u′′(t) +Mu(t) +Nu(θ(t)) +
(−c′′(t) +Mc(t) +Nc(θ(t))

)
(u(0) − u(T)) ≤ 0, t ∈ J,

u(0) > u(T), u′(0) ≥ u′(T).
(2.11)

Then u(t) ≤ 0 for all t ∈ J .

Proof. Put

y(t) = u(t) + c(t)(u(0) − u(T)), t ∈ J, (2.12)

then y ∈ E and u(t) ≤ y(t) for all t ∈ J and

y′(t) = u′(t) + c′(t)(u(0) − u(T)). (2.13)
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We have

−y′′(t) +My(t) +Ny(θ(t)) = −u′′(t) +Mu(t) +Nu(θ(t))

+
(−c′′(t) +Mc(t) +Nc(θ(t))

)
(u(0) − u(T)) ≤ 0,

y(0) = (1 + c(0))u(0) − c(0)u(T) = y(T),

y′(0) = u′(0) + c′(0)(u(0) − u(T)) ≥ y′(T).

(2.14)

Hence by Lemma 2.1, y(t) ≤ 0 for all t ∈ J , which implies that u(t) ≤ 0 for t ∈ J . This
completes the proof.

Lemma 2.3. Assume that u ∈ C2(J) satisfies

−u′′(t) +Mu(t) +Nu(θ(t)) +
(−b′′(t) +Mb(t) +Nb(θ(t))

)
(u(T) − u(0)) ≤ 0, t ∈ J,

u(0) < u(T), u′(0) ≥ u′(T).
(2.15)

Then u(t) ≤ 0 for all t ∈ J .

The proof of Lemma 2.3 is similar to that of Lemma 2.2, here we omit it.

Lemma 2.4. Assume that u ∈ C2(J) satisfies

−u′′(t) +Mu(t) +Nu(θ(t)) ≤ 0, t ∈ J,

u(0) ≤ 0, u(T) ≤ 0.
(2.16)

Then u(t) ≤ 0 for all t ∈ J .

Proof. Suppose that u(t) > 0 for some t ∈ J . Then from boundary conditions, we have that
there exists a t∗ ∈ (0, 1) such that

u(t∗) = max
t∈J

u(t) > 0, u′(t∗) = 0. (2.17)

Suppose that u(t) ≥ 0 for t ∈ J . It is easy to see that u(0) = 0 and u′′(t) ≥ 0 for t ∈ J .
From u(0) = 0 and u(t) ≥ 0 for t ∈ J , we obtain that u′(0) ≥ 0. Therefore, u′(t) ≥ u′(0) ≥ 0. It
follows that u(T) = maxt∈Ju(t) > 0, a contradiction.

Suppose that there exist t1, t2 ∈ J such that u(t1) > 0 and u(t2) < 0. Let t∗ ∈ [0, t∗) be
such that u(t∗) = mint∈[0,t∗)u(t) ≤ 0. From the first inequality of (2.16), we have

u′′(t) ≥ (M +N)u(t∗), t ∈ [0, t∗). (2.18)

Integrating the above inequality from s(t∗ ≤ s ≤ t∗) to t∗, we obtain

−u′(s) ≥ (t∗ − s)(M +N)u(t∗), t∗ ≤ s ≤ t∗, (2.19)
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and then integrate from t∗ to t∗ to obtain

−u(t∗) < u(t∗) − u(t∗) ≤
∫ t∗

t∗
(s − t∗)(M +N)u(t∗)ds

≤ −M +N

2
u(t∗)(t∗ − t∗)

2 ≤ −M +N

2
u(t∗)T2.

(2.20)

Hence, u(t∗)[2 − (M +N)T2] > 0, a contradiction. The proof is complete.

3. Linear Problem

In this section, we consider the boundary value problem

−u′′(t) +Mu(t) +Nu(θ(t)) = σ(t), t ∈ J,

u(0) = u(T), u′(0) = u′(T),
(3.1)

where σ ∈ C(J, R).

Theorem 3.1. Assume that there exist α, β which are lower and upper solutions of (3.1) and α ≤ β
on J . Then there exists one unique solution u to problem (3.1) and α ≤ u ≤ β on J .

Proof. We first show that the solution of (3.1) is unique. Let u1 and u2 be solutions of (3.1) and
set v = u1 − u2. Thus

−v′′(t) +Mv(t) +Nv(θ(t)) = 0, t ∈ J,

v(0) = v(T), v′(0) = v′(T).
(3.2)

By Lemma 2.1, we have that v ≤ 0 for t ∈ J , that is, u1 ≤ u2 on J . Similarly, one can obtain that
u2 ≤ u1 on J . Hence u1 = u2.

Next, we prove that if u is a solution of (3.1), then α ≤ u ≤ β.
Let m = α − u. If α(0) = α(T), thenHα(t) = 0 on J . So we have

−m′′(t) +Mm(t) +Nm(θ(t)) ≤ 0, t ∈ J,

m(0) = m(T), m′(0) ≥ m′(T).
(3.3)

By Lemma 2.1, we have that m = α − u ≤ 0 on J .
If α(0) > α(T), then Hα(t) = (−c′′(t) +Mc(t) +Nc(θ(t)))(α(0) − α(T)). Thus

−m′′(t) +Mm(t) +Nm(θ(t)) = −α′′(t) +Mα(t) +Nα(θ(t))

+ u′′(t) −Mu(t) −Nu(θ(t))

≤ σ(t) −Hα(t) − σ(t) = −Hα(t)

= −(−c′′(t) +Mc(t) +Nc(θ(t))
)
(m(0) −m(T)).

(3.4)
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It is easy to see that m′(0) ≥ m′(T). By Lemma 2.2, we have that m = α − u ≤ 0 on J .
Analogously, u ≤ β on J .

If α(0) < α(T), then Hα(t) = (−b′′(t) +Mb(t) +Nb(θ(t)))(α(T) − α(0)). Thus

−m′′(t) +Mm(t) +Nm(θ(t)) = −α′′(t) +Mα(t) +Nα(θ(t))

+ u′′(t) −Mu(t) −Nu(θ(t))

≤ σ(t) −Hα(t) − σ(t) = −Hα(t)

= −(−b′′(t) +Mb(t) +Nb(θ(t))
)
(m(T) −m(0)).

(3.5)

It is easy to see that m′(0) ≥ m′(T). By Lemma 2.2, we have that m = α − u ≤ 0 on J .
Analogously, u ≤ β on J .

Finally, we show that (3.1) has a solution by several steps.

Step 1. Consider the equation

−u′′(t) +Mu(t) +Nu(θ(t)) = σ(t), t ∈ J,

u(0) = u(T) = λ,
(3.6)

where M,N and σ are defined in (3.1). For any λ ∈ R, we show that (3.6) has a unique
solution u(t, λ).

It is easy to check that (3.6) is equivalent to the integral equation

u(t) = λ +
∫T

0
G(t, s)[σ(s) −Mu(s) −Nu(θ(s))]ds, (3.7)

where

G(t, s) =

⎧
⎪⎨
⎪⎩

t

T
(T − s), 0 ≤ t ≤ s ≤ T,

s

T
(T − t), 0 ≤ s ≤ t ≤ T.

(3.8)

Define a mapping Φ : C(J, R) → C(J, R) by

(Φu)(t) = λ +
∫T

0
G(t, s)[σ(s) −Mu(s) −Nu(θ(s))]ds. (3.9)

Obviously C(J, R) is a Banach space with norm ‖u‖ = supt∈J |u(t)|. For any x, y ∈ C(J, R),
we have

(Φx)(t) − (Φy
)
(t) =

∫T

0
G(t, s)

[
M
(
y(s) − x(s)

)
+N

(
y(θ(s)) − x(θ(s))

)]
ds. (3.10)
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Noting that maxt∈J
∫T
0G(t, s)ds = T2/8, condition (1.2) implies that Φ : C(J, R) → C(J, R) is

a contraction mapping. There exists unique u ∈ C(J, R) such that Φu = u. Thus (3.6) has a
unique solution u(t, λ).Moreover, u(t, λ) ∈ C2(J, R).

Step 2. We show that for any t ∈ J , u(t, λ) and ut(t, λ) are continuous in λ, where u(t, λ) is a
unique solution of the problem (3.6). Let u(t, λi), i = 1, 2, be the solution of

−u′′(t) +Mu(t) +Nu(θ(t)) = σ(t), t ∈ J,

u(0) = u(T) = λi, i = 1, 2.
(3.11)

Then

u(t, λi) = λi +
∫T

0
G(t, s)[σ(s) −Mu(s, λi) −Nu(θ(s), λi)]ds, i = 1, 2. (3.12)

From (3.12), we have that

‖u(t, λ1) − u(t, λ2)‖ ≤ |λ1 − λ2| + (M +N)‖u(t, λ1) − u(t, λ2)‖max
t∈J

∫T

0
G(t, s)ds

≤ |λ1 − λ2| + T2

8
(M +N)‖u(t, λ1) − u(t, λ2)‖.

(3.13)

Hence

‖u(t, λ1) − u(t, λ2)‖ ≤ 8
8 − T2(M +N)

|λ1 − λ2|. (3.14)

Since u(t, λ) ∈ C2(J, R), ut(t, λ) exists for any t ∈ J and λ ∈ R. From (3.12) and (3.14), we have

‖ut(t, λ1) − ut(t, λ2)‖ ≤ M +N

T
‖u(t, λ1) − u(t, λ2)‖max

t∈J

(∫ t

0
s ds +

∫T

t

(T − s)ds

)

≤ (M +N)T
2

‖u(t, λ1) − u(t, λ2)‖

≤ 4(M +N)T
8 − T2(M +N)

|λ1 − λ2|.

(3.15)
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Step 3. We show that there exists one λ such that ut(0, λ) = ut(T, λ), where u(t, λ) is the unique
solution of the problem (3.6).

Put

α(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

α(t), α(0) = α(T),

α(t) + c(t)(α(0) − α(T)), α(0) > α(T),

α(t) + b(t)(α(T) − α(0)), α(0) < α(T),

(3.16)

β(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

β(t), β(0) = β(T),

β(t) − c(t)
(
β(T) − β(0)

)
, β(0) < β(T),

β(t) − b(t)
(
β(0) − β(T)

)
, β(0) > β(T);

(3.17)

then α(t) ≤ α(t), β(t) ≤ β(t) for any t ∈ J and

−α′′(t) +Mα(t) +Nα(θ(t)) ≤ δ(t), t ∈ J,

α(0) = α(T), α′(0) ≥ α′(T),
(3.18)

−β′′(t) +Mβ(t) +Nβ(θ(t)) ≥ δ(t), t ∈ J,

β(0) = β(T), β
′
(0) ≤ β

′
(T).

(3.19)

Using (3.18) and (3.19), one easily obtains that α(t) ≤ β(t) for any t ∈ J .

Put λ ∈ [α(0), β(0)], then α(0) = α(T) ≤ u(0, λ) = u(T, λ) ≤ β(0) = β(T). Using
Lemma 2.3, we easily obtain that α(t) ≤ u(t, λ) ≤ β(t) on J . Hence

ut(0, α(0)) ≥ α′(0), ut(T, α(T)) ≤ α′(T), (3.20)

ut

(
0, β(0)

)
≤ β

′
(0), ut

(
T, β(T)

)
≥ β

′
(T). (3.21)

Define a function

P(λ) = ut(0, λ) − ut(T, λ), (3.22)

where u(t, λ) is the unique solution of the problem (3.6). Since P is continuous and

P(α(0))P
(
β(0)

)
≤ 0, (3.23)

there exists one λ0 ∈ [α(0), β(0)] such that P(λ0) = 0, that is, ut(0, λ0) = ut(T, λ0). Obviously,
u(t, λ0) is a unique solution of the problem (3.1). This completes the proof.
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4. Main Result

Theorem 4.1. Let the following conditions hold.

(H1) The functions α, β are lower and upper solutions of (1.1), respectively, and α ≤ β on J .

(H2) The constantsM, N in definition of upper and lower solutions satisfy

f
(
t, x, y

) − f
(
t, x, y

) ≥ −M(x − x) −N
(
y − y

)
(4.1)

for α(t) ≤ x ≤ x ≤ β(t), α(θ(t)) ≤ y ≤ y ≤ β(θ(t)), t ∈ J .
Then, there exist monotone sequences {αn}, {βn} with α0 = α, β0 = β such that

limn→∞αn(t) = ρ(t), limn→∞βn(t) = r(t) uniformly on J , and ρ, r are the minimal and the maximal
solutions of (1.1), respectively, such that

α0 ≤ α1 ≤ α2 ≤ · · · ≤ αn ≤ ρ ≤ x ≤ r ≤ βn ≤ · · · ≤ β2 ≤ β1 ≤ β0 (4.2)

on J , where x is any solution of (1.1) such that α(t) ≤ x(t) ≤ β(t) on J .

Proof. Let [α, β] = {u ∈ C2(J) : α(t) ≤ u(t) ≤ β(t), t ∈ J}. For any γ ∈ [α, β], we consider the
equation

−u′′(t) +Mu(t) +Nu(θ(t)) = f
(
t, γ(t), γ(θ(t))

)
+Mγ(t) +Nγ(θ(t)), t ∈ J,

u(0) = u(T), u′(0) = u′(T).
(4.3)

Theorem 3.1 implies that the problem (4.3) has a unique solution u ∈ C2(J). We define an
operator A by u = Aγ , then A is an operator from [α, β] to [α, β].

We shall show that

(a) α ≤ Aα, Aβ ≤ β;

(b) A is nondecreasing in [α, β].

From Aα ∈ [α, β] and Aβ ∈ [α, β], we have that (a) holds. To prove (b), we show that
Aμ1 ≤ Aμ2 if α ≤ μ1 ≤ μ2 ≤ β.

Let ρ∗1 = Aμ1, ρ
∗
2 = Aμ2, and p = ρ∗1 − ρ∗2; then by (H2), we have

−p′′(t) +Mp(t) +Np(θ(t))
)
= f
(
t, μ1(t), μ1(θ(t))

)
+Mμ1(t) +Nμ1(θ(t))

− f
(
t, μ2(t), μ2(θ(t))

) −Mμ2(t) −Nμ2(θ(t))

≤ 0,

(4.4)

and p(0) = p(T), p′(0) = p′(T). By Lemma 2.1, p(t) ≤ 0, which implies Aμ1 ≤ Aμ2.
Define the sequence {αn}, {βn} with α0 = α, β0 = β such that αn+1 = Aαn, βn+1 = Aβn

for n = 0, 1, 2, . . . . From (a) and (b), we have

α0 ≤ α1 ≤ α2 ≤ · · · ≤ αn ≤ βn ≤ · · · ≤ β2 ≤ β1 ≤ β0 (4.5)
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on t ∈ J . Therefore, there exist ρ, r such that limn→∞αn(t) = ρ(t), limn→∞βn(t) = r(t)
uniformly on J . Clearly, ρ, r are solutions of (1.1).

Finally, we prove that if x ∈ [α0, β0] is one solution of (1.1), then ρ(t) ≤ x(t) ≤ r(t) on
J . Since α0(t) ≤ x(t) ≤ β0(t) and Ax = x, by property (b), we obtain that α1(t) ≤ x(t) ≤ β1(t)
for t ∈ J . Using property (b) repeatedly, we have

αn(t) ≤ x(t) ≤ βn(t) (4.6)

for all n. Passing to the limit as n → ∞, we obtain ρ(t) ≤ x(t) ≤ r(t), t ∈ J. This completes
the proof.
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