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1 INTRODUCTION

In the seminal paper 10] Hardyand Littlewood introduced the inequality

(/0 /0 /0If’l 2 dx < 4 Ifl 2 dx If"l2 dx (1)

which is required to hold for all functionsfsuch that the right-hand side
of(1) is finite. Equality is attained when, for any p > 0 and for 0 < x < o,

f(x) A exp(-px/2) sin(px/2 7r/3).

* Corresponding author.
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58 B.M. BROWN et al.

No less than three proofs of (1) may be found in the book of Hardy
et al. [11].

Everitt in [9] introduced the inequality

2

{p(x)lf’(x)[2 + (q(x) TW(X))lf(x)[} dx

fa 12fa< K(r) w(x)lf(x) dx w(x)lA/l[f](x rf(x)[2 dx (2)

where is the second-order Sturm-Liouville operator

1
kd[f] :=- (-(pf)’ + qf)

w

with b > a > cx, w(x) > 0, p(x) > 0, q(x) E with 1/p, q locally
integrable and r a real parameter. In [9] it is assumed that J4 is regular
at a and singular at b and satisfies the so-called strong-limit-point
condition. Under these conditions Everitt showed that the existence or
otherwise of K(r) in (2) depends on the spectral properties of A[f] and
the existence criteria for (2) can be determined in terms ofthe behaviour
ofthe Titchmarsh-Weyl m-function associated with .M. Everitt’s proof
in [9] is modelled on the calculus ofvariations proof given in 11 for (1).
However an operator theoretic proof is given by Evans and Zettl in [8]
and both proofs are reproduced in the article [6] of Evans and Everitt in
which a neat characterisation ofthe criteria for a valid inequality is given
in terms of the Titchmarsh-Weyl m-function: it is this latter approach
that will serve as a model for the work reported on in this paper. The
inequality (2) has been extended [7] to the case when b is a regular point or
k4 is in the limit-circle case at b. The theory associated with the existence
of an analogous inequality, in which A//is now the formally symmetric
2Nth order expression

N

:=
W

j=0

is proved by Dias in [5] (see also [2]). In this latter inequality the criteria
for the existence of a valid inequality can again be determined by the
spectral properties of the self-adjoint operator generated by A in
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L2w(a,b) but this time it is formulated in terms of the associated
Titchmarsh-Weyl Mmatrix.

In examples ofthe inequality, the problem ofproving the existence and
also of determining the best constant is often a hard analytic problem,
depending as it does on knowledge of the closed form expression for
them function orMmatrix. Acomplete catalogue ofall known examples
to the present time is to be found in [3]. In view ofthe analytic difficulties
in obtaining information about the best constant in particular examples,
a numerical approach to the problem has been undertaken by Brown
et al. This is reported in, for example, [4].

This paper reports on the development of a HELP-type inequality
associated with the linear Hamiltonian system

(AA + (3)

where Y is a 2n vector and Jt and B are 2n x 2n real matrices with
.A* Jt > 0 and/3* B. J is the 2n x 2n matrix 0 -i) and I the n x n

identity matrix. It is shown in [16] that the 2nth order formally symmetric
differential equation

A//[f] :=- (pj(x) y
W

j=0

may be written as a Hamiltonian system, and in [1] it is shown that the
matrix-vector Sturm-Liouville problem

(P(x) Y’)’ + Q(x) Y ,k Y

where P and Q are n x n matrices and Y is an n vector may also be
embedded in a Hamiltonian system. This currentwork is notjust a simple
extension of the work of Dias [5], since as A is semi-definite and not
definite, we are unable to use the Hilbert space setting for the problem
that he was able to exploit and are forced to work without this abstract
structure. However the general approach of the second proof in [6] can
be made to work to yield a HELP-type theory for linear Hamiltonian
systems. Also examples can be found that are not covered by any
previous work.
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2 THE HAMILTONIAN SYSTEM AND THE DIRICHLET INTEGRAL

Let C(x) and B(x) be real symmetric n x n matrices, and A(x) an n x n
real matrix, such that the elements of A, B and C are locally integrable
over an interval [a, o). Let Kbe an n x n diagonal matrix of the form

K diag(kl (x),..., km(x), O, 0,..., 0), (4)

where rn < n and where the diagonal elements kj have locally integrable
reciprocals, together with the properties

ess inf(kj) > O, j 1,..., m.

We denote by K the 2n x 2n diagonal matrix whose first rn diagonal
elements are the kjand whose remaining 2n rn diagonal elements are all
zero; we denote byK and/ the pseudo-inverses ofKand/respectively.
Thus, for example,

K diag(1/kl (x),..., 1/km(x), O, 0,..., 0). (6)

For absolutely continuous n-vector functions u and v we define the
operators L1 and L2 by

[u, v] -v’ + C(x)u (x)v, Z:[u, v] := ’- (x)u (x)v.
(7)

For 2n-vector functions y, partitioned in an obvious notation as

Y-- (UYvy )
we define

[, v])z(y) := L:[y, Vy] (8)

We define a bilinear form (., .) by

If, g) rg ax u}u dx, (9)
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for any 2n-vector functionsfand g for which the integral converges. We
also define the set of admissible functions 4 to be the set of absolutely
continuous 2n-vector functionsfsuch that

I(f,f)l < +c, (10)

L2[uf, vf] O E ]n, (11)

(I-- KK)L1 [uf, f] 0 ]1n. (12)

We make the following crucial assumption.

ASSUMPTION The bilinear form (., .) is positive definite on the setAof
admissible functions y which are solutions ofL(y) AKy for any 6 C.

Following Reid [15] we define the Dirichletform associated with two n-
vector funetionsfand g:

O(f, g):-- fa [vnvg-+- ufug]dx.
Now suppose thatf, g 4. We have

(f,/tL(g)) ug(IZl [Ug, llg]) dx

u)Ll[Ug, Vg] dx (using (12) for g)

_ATUf(-- Vg + Cug lg) dx

[-u}g] + (Auf + Bf)*vf + u}Cug u}Ag dx

(a [z, z] ol
[-}1 + e(f,g.

Thus we have proved the integration-by-parts formula

(f,/tL(g)) [-uvg] + D(f, g) (13)

forf, g A.



62 B.M. BROWN et al.

3 THE HINTON-SHAW-TITCHMARSH-WEYL M-MATRIX

In this section we review very briefly some results from the paper of
Hinton and Shaw [12]. These will be very important in the rest of the
paper.
The paper of Hinton and Shaw deals with solutions of Hamiltonian

systems of differential equations of the form

L(y) AK(x)y, A E C. (14)

In general, not all solutions y of this equation will satisfy (y, y) < +.
Those which do will lie in the set .A of admissible functions because the
structure of ensures that (11) and (12) are satisfied by Uy, Vy when y
solves (14).

In addition to Assumption 1, Hinton and Shaw require the following.

ASSUMPTION 2 (’Limit-point assumption’) Supposef, g E Jr. Then

(15)

Here denotes Hermitian conjugation.

THEOREM 3.1 (Hinton and Shaw) Suppose that A-0, and that
Assumptions and 2 both hold. Then the differential equation (14)
possesses n linearly independent solutions bl(x, A),..., bn(X, A) such that

(bj,j) < +o, j 1,...,n.

Moreover, these solutionsmay be normalisedso that/f(x, A) is the 2n x n
matrix whose columns are b](x, A),..., bn(X, A) then

(a, A) (-M(A) )I

where M(A) is an analytic n n matrix function of A (called the
Titehmarsh- Weyl matrix). This matrix has the property that M(A) is a

Nevanlinnafunetion, in the sense that

is
positive definite for A > 0,M(A) negative definite for < O. (16)
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Moreover,

4 CRITERIA FOR A VALID HELP INEQUALITY

In this section we reproduce the results ofDias [5] on existence ofaHELP
inequality, but in the more general context of a Hamiltonian system

L(y) AK(x)y, (18)

or equivalently

L1 [u, v] AK(x)u, L2[u, v] 0. (19)

We assume that the following strong limit point property holds.

ASSUMPTION 3 For allfunctionsf, g E A,

lim uf(x)*vg(X) 0 ]1n.
X----O

(20)

Note that Assumption 3 implies Assumption 2. We define the space A0
to consist of those functionsf A such that

uf(a) 0 n, vf(a) 0 ]tn. (21)

For A # + iv, v 0, we define the deficiency spaces N+ (A) and N_ ()
by

N+(A) {f AlL(f) ARf), N_(A) {f E AlL(f) Rf}.
(22)

As the matrices A, B and C occurring in the definitions ofL1 and L2 are
all real-valued, and as is real-valued, it is easy to see that

y E N+(A) = 37 N_(A).

In particular, therefore, dimN+(A)= dimN_(A). Recall that the matrix
(x; A) introduced in Section 3 has columns which form a basis ofN+(A).
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Thus any function h in N+(A)maybe expressed as a linear combination of
the columns of 0(.; A),

h 0(.; A)a,

where a is an n-vector of constants depending only on A.
We shall establish HELP inequalities for functionsfin the set

/x .= zx0, N/(a), N_ (23)

The first result we require is that, despite the appearance ofA on the right
hand side of (23), A does not depend on A.

LEMMA 4.1 A =.,4.

Proof It is clear that A C_ A so we just need to prove the opposite
inclusion.

Following the notation of Section 3, we form the 2n x n matrix
whose columns are solutions of L(y)= AKy, subject to the initial
conditions

(a;) (-M())I (24)

It is not difficult to see that the columns of 0(.; A) span N+(A) and the
columns of 0(.; A) span N_(A). From Theorem 3.1 we also know that
M(A) M(A) and hence

Thus

(x;

((a;A),(a;X)) -()I i 0

Hence the 2n x 2n matrix ((a; A), (a; A)) is of full rank if and only if
3M(A) is nonsingular. From Hinton and Shaw [12] we actually know
that M(A) is positive definite for A > 0 and negative definite for
A < 0, which certainly therefore implies that ((a; A), (a; A)) is offull
rank. Thus given any functionfE Awe can choose a 2n-vector

e=(cl)c2
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such that

uf(a)) ((a; A) (a;/))c (a; A)Cl + (a; )c2.f(a)= vf(a)

Defining

g(x) =f(x) (x;/)Cl I/(x; )C2,

it is clear that g is an element of.A such that

ug(a) vg(a) 0 E

Thus g E A0. Also, (.; )k)C N+(,)k) and (x;/)C2 N_(). Hence

f A, which completes the proof.

Remark This result is essentially the Von Neumann decomposition
formula see [13, Lemma 10.2.5]. We have been forced to prove it in this
very direct way by the fact that there does not appear to be a natural
Hilbert space setting for these problems, except in special cases.
Lemma 4.1 establishes the decomposition

e4 Ao @ N+ (/) @ N_ (). (25)

We shall use this extensively in the sequel.

LnMMA 4.2 The direct sum appearing in (25) is an orthogonal sum with

respect to the sesquilinearform

(f,g) (t (L(/) #f),t(L(g) #g)) + u2(f,g). (26)

Proof Suppose thatf Ao and g E N+(,k), so that L(g) #Kg + iuKg.
Then

(f, g), (/t (L(f) lzf), ivg) + u2 (f, g)

iu (L1 [uf, vf])*KtKKtKug -i#u u)KKtKKtKug
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We now use (12) to simplify the first integral, and the result KK K K
to simplify the second. These yield

fa fa(f g)A it,, L [uf, vf]*Ug iAu uKug. (27)

Using the integration-by-parts formula (13) twice, together with (20)
and (21) to eliminate the boundary terms, we obtain

(28)

Now L(g) AKg implies that Ll[Ug Vg]--,,Kug; substituting this back
into (28) gives

Ll [uf, vf]*Ug uKug. (29)

Substituting (29) into (27) yields

(f,g) =0,

as required.
Similarly one may prove that (f, g)= 0 for fE A0 and g E N_(A). It

remains to show that (f, g) 0 forf N+(A) and g N_(A). This case is
easy: we have L(f) Afand L(g) A[fg, so that

(f,g), (iutf, iutg) + v2 (f,g)

u2 u}KIdKKIOUg + u2 u}Kug O,

since KKtK= K. This completes the proof.

LEMMA 4.3

<I,, ff) 2u@(M(A)). (30)
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Proof Using the definition of (., .)a we have

(,) (t(L() #),/t(L() #)) + v2(, ).

Now we use the fact that L(9) (# + iv)K9 to obtain

(9, 9) u (t/9)*KR(t/9) + u2(9, 9).

From the identity RRtR Rthis simplifies to give

(9, 9),\ 2v2 (9, 9). (31)

But now

1
9"L(9)- {u,(a)v,(a) + D(9, 9)},

the last identity following from the integration-by-parts formula (13).
From the initial conditions on 9, we have u(a) M(A) and v(a) I,
yielding

1
{-M*(A) + D(9, 9)}(,I,, ,I,)

Multiplying both sides by A and taking the imaginary parts yields

v(9, 9) -(M*(A)) .(M(A)), (32)

the last equality on the right following from the well known fact thatMis
a symmetric matrix [12]. Combining (31) and (32) gives the required
result.

LEMMA 4.4 Let fE.A be a real-valued function, and suppose that

f fo + h + h, wherefo Ao and h N+(A), h E N_ (A). Suppose that

h 9a, (33)
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where a (al, an) is a constant vector. Then

(f,f),x (J,J),x + 4va*(M(A))a. (34)

Proof From Lemma 4.2 we know that the sum + h + h is orthogonal
with respect to (., "/. Thus we have

(f,f)a (fo,fo) + (h,h) + (h,h) (J,3)a + 2(h,h). (35)

From (33), it is clear that

a*( )aa.(h,h)

Using (30) yields

(h, h), 2ua*(M(A))a. (36)

Combining (35) and (36) gives the required result.

For real-valuedfE A consider (f,f). From (26) we have

(f,f), ([(tL(f), [(tL(f)) 2#(RtRf, RtL(f))
+ #2 ([(t[(f, [(tiff) + u(f,f)
(gL(f), gL(f)) 2/z(f, gL(f)) + IAI2 (f,f),

where we have used the identity* several times. Now we apply
the integration-by-parts formula (13) to the term (f, L(f)) to obtain

(f, f) ([tL(f), ’tL(f)) 2#D(f, f) + I 12 (f,f 2#uf(a)*vf(a).
(37)

We define the form

J(f) <’tL(f), ilL(f)) 2#D(f, f) + IAI2 (f,f). (38)

Then (37) immediately yields

J(f) (f, f), + 2#uf(a)*vf(a). (39)
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As f=fo + h + h with f0 E A0, Eq. (21) yields uf(a)= 2N(uh(a)) and

vf(a) 2N(vh(a)). Equations (24) and (33) give

uh(a) -M(A)a, vh(a) a. (40)

Substituting into (39) we obtain

J(f) (f, f)A 8#((a))X(M(A)a). (41)

Combining this with (34) yields

J(f) (J, f0) + 4ua*.(M())a 8#((a))(M()a). (42)

We now separate M(A) and a into real and imaginary parts, denoted by

M(A) MR q- iMi, a aR 4- iai.

Some simple algebra shows that (42) may be rearranged in the form

4 4
J(f) (fo, fo), +- (uai +/ZaR)TMI(uaI + paR)+-- at.(-A:ZM(/))aR.

(43)

In order to make further progress we must introduce a further
assumption about the set 4 of admissible functions.

ASSUMPTION 4 For all non-zerofE A,

(f,f) > O.

With this assumption we can rewrite the expression (38) as a quadratic
form in p := 1)1. Let pei so that/z pcos4. Then some simple algebra
shows that

J(f) &(f) := (f, f) (P D(f, f) cos 0’ 2

(f,f)

+ (L(f) L(f)) D(f, f) cos2 b
(f,f)

(44)
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Similarly, whenever A pei(+ r), we obtain

D(f,f) cos)
2

J(f) Jo+r(f) := (f,f) P + (f,f

+ (tL(f) tL(f)) D(f,f)cos2 b
(f,f)

(45)

Given any non-zerofand any b E [0, 7r/2) one may always choose

D(f,f) cos
(46)

This eliminates the first term on the right hand side ofone of(44, 45). The
remaining term will b non-negative if and only if

D(f,f) < sec2 (f,f)(tL(f), tL(f)). (47)

This is clearly a HELP inequality, provided 0 < b < 7r/2. We are now in a
position to prove the following theorem.

THEOREM 4.5 Let S be the set ofall values of4 E (0, 7r/2] such that the
following two conditions hold:

(-A2M(A))>0 (A=pei0) } Vp>0. (48)
(A2M(A)) >_ 0 (A pei(o+r))

Then 7r/2 $. Let 00 inf(S). Then a HELP inequality

D(f,f) <_ t(f,f)([ftL(f),tL(f)) (49)

holdsfor allf A ifand only ifOo < 7r/2. Moreover, the best constant in

the inequality is given by t sec20o.
Proof Suppose that 00 < 7r/2. Choose b=00. Given f, choose p
according to (46), eliminating the first term on the right hand side of
one of (44, 45). The conditions (48) then imply that (47) holds, giving a
HELPinequality with sec200. Thus the condition 00 < r/2 is sufficient
for a HELP inequality.
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To see that sec2 00 is the best constant, suppose we look for a
smaller constant 2 sec2 q for some b E (0, 00). By definition of 00 there
will exist some p > 0 such that at least one of the following conditions
fails:

(-)2M(,)) >_ 0, ,k-- pei, (50)

(A2M(A)) _> 0, A pei(o+r). (51)

Suppose the first condition fails. Then we can find a real vector aR such
that

With #=pcos0, v= p sin0, we choose a real vector a =-/z/PaR.
Next we define h (aR+ iai) andf h / h so that from (43) we have
J(f) < 0. From (44) this shows that the HELP inequality fails with

=sec2b. This covers the case where (50) does not hold. A similar
argument deals with the case where (51) does not hold, so the choice

secZ0 is clearly best-possible. This also proves that the condition

00 < 7r/2 is necessary for a HELP inequality to hold.

5 GENERALISATIONS

It would be nice to remove Assumption 4, and indeedwe can do this for at
least part of the result in Theorem 4.5. If Assumption 4 is removed then
the condition 00 < 7r/2 ofTheorem 4.5 still implies a HELP inequalityfor
those nonzerofunctionsfE .At such that (f,f) > O.
Whathappens iffis a nonzero function such that (f,f) 0? In this case

(38) loses the term IAI2 (f,f) on the right hand side. Equation (43) still
holds, and so the condition 00 < 7r/2 implies positive-definiteness of

j(f) (tL(f), L(f)) 2/zD(f,f).

We can take/z to be arbitrarily large and ofeither sign in (38) and so we
deduce that, when 00 < 7r/2,

(f,f) 0 = D(f,f) O.

Thus we still have a HELP inequality in this case, albeit a trivial one.
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6 EXAMPLES

We present three examples of HELP inequalities associated with
Hamiltonian systems. Two of these may be derived from HELP
inequalities for even-order differential operators; one, however, is
completely new. First, however, we require a technical lemma.

LEMMA 6.1 (Compactness Lemma) Suppose that there exists

b E (0, 7r/2) such that the conditions

(-A2M(A)) > 0, A pei, (52)

(A2M(A)) > 0, A -pei (53)

holdfor all 0 [, 7r/21, for all sufficiently large p andfor all sufficiently
small p. Then, in the notation of Theorem 4.5, 00 < 7r/2, and so a HELP
inequality holds.

Proof The Nevanlinna property of M(A) ensures that (52) holds for
0 7r/2. Hence by continuity, for each p > 0 there exists Cp (0, 7r/2) such
that (52) holds for any 0 E [bp, 7r/2]. We can choose Cp as a continuous
function ofp. Thus given any set [Pmin, Pmax], we can choose b. (0, 7r/2)
such that (- A2M(A)) > 0 for A pei0, for 0 [b., 7r/2] and

P E [Pmin, Pmax]. However, by hypothesis, we can choose Pmin sufficiently
small and Pmax sufficiently large to ensure that (52) holds for all 0
[b, Tr/2], for all p(O, Pmin]l,.J[Pmax,X3). Hence (52) holds for all
0 [min(b,, ), 7r/2] for all p > 0.
A similar argument deals with (53).

6.1 Example I

We consider the Hamiltonian system with n 2 for which, in our earlier
notation,

(0 0) A=(0 1)C=
0 0 0

(1 0) B__(2 0)K=
0 0 0

(54)
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In order to determine the square-integrable solutions of this system we
require the eigenvalues and eigenvectors of the matrix

The eigenvalues are readily seen to be 4- # +, where

#+/- (1 A 4- v/A- A) 1/2. (56)

Here we adopt the convention that the square root has positive real part.
The eigenvector associated with an eigenvalue # is given by

V-- (]Z(lZ2 -]- 1), ]Z
2 t_ _]_ 1, -/]2,/)T. (57)

Given an eigenvalue # and eigenvector v the associated solution of the
Hamiltonian system is v exp(#x). It is easy to check that the positive-
definiteness condition in Assumption holds for any linear combination
of our four solutions here.
For A in the first quadrant ofthe complex plane with IA[ large, it is easy

to see that the eigenvalues with negative real part are -/+ and #_.

The associated solutions yl(x) and y2(x) of the Hamiltonian system are
given by

#_ (#2_ + 1) exp(#_x)
(#2 + A + 1)exp(#_x)(Yl (x)y2(x)) --A#2 exp(#_x)

A#_ exp(#_x)

_#+(#2+ + 1)exp(-#+x)
(#+ + A +1)exp(-#+x)

_p,2+ exp(-#+x)
-A#2+ exp(-/z+x)

From Theorem 3.1 we know that

v(yl (0)y2 (0)) i

for some non-singular n n matrix V. This allows us to deduce that

{ (u-
-(1 -I- #_/z+)/

-(1 -+-/z_U+)/A )(U- -/z+)(A + 1)/A (58)
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Putting A p exp(i0), 0 < 0 < 7r/2, p > 0, it is easy to see that #+ 1/
and #_ ix/x/exp(i0/2) for large p. This allows us to deduce that

(-,,2ml ()) -x/p3/2 cos(30/2), (59)

(-,2m22())) -xp5/2 cos(50/2), (60)

(_2m12() p3/2 cos(30/2). (61)

It is therefore easy to check that for all sufficiently large p, there exists a
sector surrounding 0 7r/2 in which (-A2M(A)) is positive definite.
Next we check the case where is small. It is easy to check that when
is small, the eigenvalues ofthe matrix S in (55) with negative real part

are # + and # Also,

#+ ,,-1 #_2’ 2

The M-matrix is obtained by replacing #_ by #_ in (58), and hence

(-2 .2/2)’k2M(A) ,k2/2-2,X

Putting p exp(i0) we get

_,k2M(A) ( 2psinO
p2/2 sin 20\

_p2/2 sin 20 ’2p sin 0 J
Again it is easy to check that for all sufficiently small p, there exists a
sector surrounding 0 7r/2 in which this matrix is positive definite.
We must now check the case where A p exp(i(0 + 7r)), 0 < 0 < 7r/2:

again we must consider separately the cases oflarge and small p. We have

/z+ (1 + pei 4- V/p2e2io + peio) 1/2,

and it is easy to check that, both in the case of small p and in the case of
large p, -#+ and -#_ are the eigenvalues of S with negative real part.
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Thus, changing #_ to -#_ in (58),

+ v-)/.M(,) -(1 -v+v-)/,
-( +-/) ’-[( + )/](+ + -) )

For large p we have

#+ x/v/-fiexp(i0),

while for small p

q- 4- 21-V/-pei0/2.

Hence it is easily shown that for large p,

sin(30/2)9(2M()) x/’p3/2
sin(30/2)

sin(30/2) )-psin(50/2)

It is easily checked that for all sufficiently large p there exists a sector
surrounding 0 7r/2 in which this is positive definite.
For small p we obtain

M(,k) 2p sin 0 21 P cos 0 1/2PCOS0)
and for all sufficiently small p there exists a sector surrounding 0 7r/2 in
which this is positive definite.
By the compactness lemma (Lemma 6.1) we therefore have a HELP

inequality for this problem, valid for all functionsffor which (f,f) > 0.
It is interesting to observe that for this Hamiltonian system,

Assumption 4 fails. The function

0
e-X/

f(x) _(1/2)e_X/C
(1/x/’ e X v5

is an admissible function with (f,f) 0.



76 B.M. BROWN et al.

6.2 Example 2

For our second example we consider the Hamiltonian system associated
with the second order matrix-vector Sturm-Liouville equation

_y,,+(Xo -xO ) Y=AY’ x(Oc)., (62)

Here Yis a 2-vector. The system can be cast in the Hamiltonian form

-V’= AU+
0

U’= V.

It is easy to check that our Dirichlet form D(f,f) is the same as the usual
Dirichlet integral for such a problem:

D(f,f) Y’ll 2 +Y* x 0 Y dx, wheref= y,0 -x

It is also easy to check that Assumptions 1-4 all hold.
For fixed A with (A) : 0 letyl(x) denote a nontrivialL2 solution ofthe

scalar equation y" + xy Ay and letY2 denote a nontrivial L2 solution
of the scalar equation y" xy Ay. Then

(y,) (0)0 Y= y

are L2 solutions of (62). We form the matrices

U(x)= (yl(x) 0 ) V(x)--(yx) 0 )0 y2(x) y(x)

and observe that (W) specifies an admissible matrix solution of the
Hamiltonian system. The M-matrix is therefore given by

M(,X) v(o) r(o) -yl(O)/y[(O) 0
0 -y2(O)/yi(O
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We now recognise that

M(A) diag(ml (A), m2(A))

where ml and m2 are, respectively, the scalar m-functions associated
with the Sturm-Liouville equations

-y" + xy Ay, -y"-xy Ay,

The conditions for a HELP inequality reduce to the corresponding
conditions for each of these two scalar equations.
For the first equation there is only point spectrum. The first few

eigenvalues, subject to the Neumann boundary condition y’(O)= 0, are
given approximately by

A0 1.01879297, A1 10.5507875, A2 23.2333564.

(These were obtained using the code SL02F [14].) The equation
y" + xy Ay has an associated ’shifted’ HELP inequality of the form

(2) for 7- Ak, k 0, 1,2, For the second equation, the whole real line
consists of continuous spectrum, and there is a HELP inequality [6,
Example 5] of the form (2) for any value of 7-. Thus for the equation (62)
there is no HELP inequality, but there are HELP inequalities associated
with each of the ’shifted’ equations

x(O, oo), k=O, 1,2,...

As an aside we observe that for (62) there is continuous spectrum on the
whole real line with discontinuities of the spectral function at the
eigenvalues of the equation -y"+ xy Ay with boundary condition
y’(0) 0.

6.3 Example 3

We consider a fourth-order matrix-vector Sturm-Liouville problem

y(iv)+ (ql(x) 0 )0 q.(x) Y= AY, x (0, o). (63)
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We convert this into a Hamiltonian system by defining

(,) (-,,,,)U y V y.

so that

A-q(x) 0 0 0 0 0 0 0

-V’-- 0 A-qv.(x) 0 0
U+

0 0 0 0

0 0 0 0 0 0 0
V,

0 0 0 0 0 0 0
0 0 0 0 0 0 0

U’
0 0 0 0 0 0 0

U+ V.
0 0 0 0 0 0 0

0 0 0 0 0 0 0

Once again it is easy to check Assumptions 1-4 and it is also easy to see
that D(f,f) is equivalent to the usual Dirichlet form associated with (63).

Clearly the original fourth order equation (63) can be decoupled into
two scalar fourth order equations. Under suitable limit-point hypoth-
eses, let yl and Zl denote linearly independent L2 solutions of

y(iV) + ql (x)y Ay,

and let y2 and z2 denote linearly independent L2 solutions of

y(iV) + q2(x)y Ay.

We can then form four admissible solutions for our Hamiltonian system:

f (x)a" (y (x). O.y (x). O. y’ (x). O.y(x). 0).
f2(x)T (Zl (x), 0, zl (x), 0, z"(x), O,zt(x), 0),
f3 (x)T (0, Y2 (x), 0, Yl (x), 0, y’(x), 0,y(x)),
f4(x)T (0, z2(x) O, zi(x O,- zm[x,, O, zo.x...
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The 4 x 4 M-matrix is thus given by

M()
ylO) zl(O) 0 0

0 y2(O) z2(O)
|y(O) z (0) 0 0

\o 0 y(O) (0)
-y]"(0) -z]" (0) 0

0 0 -y’(0)
y’(o) z’(o) o
0 0 y(O)

-1

-’(0)
0

(o)

This gives

()M(A) P[ 0\

where 0 denotes the 2 x 2 zero matrix, M(A) (j 1,2) denote the 2 x 2
Titchmarsh-Weyl matrices

zZ l l)(
and P is the 4 x 4 permutation matrix

0 0 0
0 0 0
0 0 0
0 0 0

The matrices M1 and M2 are Titchmarsh-Weyl matrices for the fourth
order problems

y(iv) + ql (x)y Ay, y(iV) + q2(x)y Ay. (64)

Thus, as in the case of Example 2, the conditions for a HELP
inequality in Theorem 4.5 become equivalent to the conditions for both
of the scalar equations in (64) to have associated HELP inequalities.
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The coefficient matrix

Q(x) ( ql (x) 0 )0 q2(x)

in (63) can be replaced by any matrix of the form RQ(x)RT where R is
orthogonal and constant, and the same result will hold: the conditions for
a HELPinequality for the matrix-vector system reduce to the conditions
for HELP inequalities for the associated scalar problems.

7 CONCLUDING REMARKS

In this paper we have generalised the work of Dias to Hamiltonian
systems. In so doing, we have been forced to abandon the natural
Hilbert-space settingwhich Dias uses for the 2nth order scalar selfadjoint
case; in particular, therefore, our formula for the so-called Von
Neumann decomposition has had to be proved in a very direct way.
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