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1. Introduction

With the rapid development of nonlinear sciences, many analytical and numerical techniques
have been developed by various scientists for solving singular and nonsingular initial and
boundary value problems which arise in the mathematical modeling of diversified physical
problems related to engineering and applied sciences. The application of these problems
involves physics, astrophysics, experimental and mathematical physics, nuclear charge in
heavy atoms, thermal behavior of a spherical cloud of gas, thermodynamics, population
models, chemical kinetics, and fluid mechanics see [1–68] and the references therein.
Several techniques [1–68] including decomposition, variational iteration, finite difference,
polynomial spline, differential transform, exp-function and homotopy perturbation have
been developed for solving such problems. Most of these methods have their inbuilt
deficiencies coupled with the major drawback of huge computational work. He [19–24]
developed the homotopy perturbation method (HPM) for solving linear, nonlinear, initial
and boundary value problems. The homotopy perturbation method was formulated by
merging the standard homotopy with perturbation. Recently, Ghorbani and Saberi-Nadjafi
[15, 16] introduced He’s polynomials by splitting the nonlinear term and also proved
that He’s polynomials are fully compatible with Adomian’s polynomials but are easier
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to calculate and are more user friendly. The basic motivation of this paper is to apply
He’s polynomials coupled with the diagonal Padé approximants for solving singular and
nonsingular boundary value problems. The Padé approximants are applied in order to make
the work more concise and for the better understanding of the solution behavior. The use of
Padé approximants shows real promise in solving boundary value problems in an infinite
domain; see [42, 50, 56–59]. It is well known in the literature that polynomials are used to
approximate the truncated power series. It was observed [42, 50, 56–59] that polynomials
tend to exhibit oscillations that may give an approximation error bounds. Moreover,
polynomials can never blow up in a finite plane and this makes the singularities not apparent.
To overcome these difficulties, the obtained series is best manipulated by Padé approximants
for numerical approximations. Using the power series, isolated from other concepts, is not
always useful because the radius of convergence of the series may not contain the two
boundaries. It is now well known that Padé approximants [42, 50, 56–59] have the advantage
ofmanipulating the polynomial approximation into rational functions of polynomials. By this
manipulation, we gain more information about the mathematical behavior of the solution. In
addition, the power series are not useful for large values of x. It is an established fact that
power series in isolation are not useful to handle boundary value problems. This can be
attributed to the possibility that the radius of convergence may not be sufficiently large to
contain the boundaries of the domain. It is therefore essential to combine the series solution
with the Padé approximants to provide an effective tool to handle boundary value problems
on an infinite or semi-infinite domain. We apply this powerful combination of series solution
and Padé approximants for solving a variety of boundary value problems. Precisely the
proposed combination is applied on boundary layer problem, unsteady flow of gas through
a porous medium, Thomas-Fermi equation, Flierl-Petviashivili (FP) equation, and Blasius
problem. It is worth mentioning that Flierl-Petviashivili equation has singularity behavior at
x = 0 which is a difficult element in this type of equations. We transform the FP equation to a
first-order initial value problem and He’s polynomials are applied to the reformulated first-
order initial value problem which leads the solution in terms of transformed variable. The
desired series solution is obtained by implementing the inverse transformation. The fact that
the proposed algorithm solves nonlinear problems without using Adomian’s polynomials is
a clear advantage of this technique over the decomposition method.

2. Homotopy Perturbation Method and He’s Polynomials

To explain the He’s homotopy perturbation method, we consider a general equation of the
type

L(u) = 0, (2.1)

where L is any integral or differential operator. We define a convex homotopy H(u, p) by

H
(
u, p
)
=
(
1 − p

)
F(u) + pL(u), (2.2)

where F(u) is a functional operator with known solutions v0, which can be obtained easily. It
is clear that, for

H
(
u, p
)
= 0, (2.3)
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we have

H(u, 0) = F(u), H(u, 1) = L(u). (2.4)

This shows thatH(u, p) continuously traces an implicitly defined curve from a starting point
H(v0, 0) to a solution function H(f, 1). The embedding parameter monotonically increases
from zero to unit as the trivial problem F(u) = 0, continuously deforms the original problem
L(u) = 0. The embedding parameter p ∈ (0, 1] can be considered as an expanding parameter
[15, 16, 19–24, 41–50, 60, 63–68]. The homotopy perturbation method uses the homotopy
parameter p as an expanding parameter [19–24] to obtain

u =
∞∑

i=0

piui = u0 + pu1 + p2u2 + p3u3 + · · · , (2.5)

if p → 1, then (2.5) corresponds to (2.2) and becomes the approximate solution of the form

f = lim
p→ 1

u =
∞∑

i=0

ui. (2.6)

It is well known that series (2.6) is convergent for most of the cases and also the rate of
convergence is dependent on L(u); see [19–24]. We assume that (3.2) has a unique solution.
The comparisons of like powers of p give solutions of various orders. In sum, according to
[15, 16], He’s HPM considers the nonlinear term N(u) as

N(u) =
∞∑

i=0

piHi = H0 + pH1 + p2H2 + · · · , (2.7)

where Hn’s are the so-called He’s polynomials [15, 16], which can be calculated by using the
formula

Hn(u0, . . . , un) =
1
n!

∂n

∂pn

(

N

(
n∑

i=0

piui

))

p=0

, n = 0, 1, 2, . . . (2.8)

of various orders.

3. Padé Approximants

A Padé approximant is the ratio of two polynomials constructed from the coefficients of the
Taylor series expansion of a function u(x). The [L/M] Padé approximants to a function y(x)
are given by [42, 50, 56–59]

[
L

M

]
=

PL(x)
QM(x)

, (3.1)
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where PL(x) is polynomial of degree at most L and QM(x) is a polynomial of degree at most
M. The formal power series

y(x) =
∞∑

i=1

aix
i, (3.2)

y(x) − PL(x)
QM(x)

= O
(
xL+M+1

)
(3.3)

determine the coefficients of PL(x) and QM(x) by the equation. Since we can clearly multiply
the numerator and denominator by a constant and leave [L/M] unchanged, we imposed the
normalization condition

QM(0) = 1.0. (3.4)

Finally, we require that PL(x) and QM(x) have noncommon factors. If wewrite the coefficient
of PL(x) and QM(x) as

PL(x) = p0 + p1x + p2x
2 + · · · + pLx

L,

QM(x) = q0 + q1x + q2x
2 + · · · + qMxM,

(3.5)

then by (3.6) and (3.7), we may multiply (3.3) by QM(x), which linearizes the coefficient
equations. We can write out (3.5) in more details as

aL+1 + aLq1 + · · · + aL−MqM = 0,

qL+2 + qL+1q1 + · · · + aL−M+2qM = 0,

...

aL+M + aL+M−1q1 + · · · + aLqM = 0,

(3.6)

a0 = p0,

a0 + a0q1 + · · ·+ = p1,

...

aL + aL−1q1 + · · · + a0qL = pL.

(3.7)

To solve these equations, we start with (3.6), which is a set of linear equations for all the
unknown q’s. Once the q’s are known, then (3.7) gives and explicit formula for the unknown
p’s, which complete the solution. If (3.6) and (3.7) are nonsingular, then we can solve them
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Table 1: Numerical values for α = f
′′
(0) for 0 < n < 1 by using diagonal Padé approximants [51, 59].

n [2/2] [3/3] [4/4] [5/5] [6/6]
0.2 −0.3872983347 −0.3821533832 −0.3819153845 −0.3819148088 −0.3819121854
1/3 −0.5773502692 −0.5615999244 −0.5614066588 −0.5614481405 −0.561441934
0.4 −0.6451506398 −0.6397000575 −0.6389732578 −0.6389892681 −0.6389734794
0.6 −0.8407967591 −0.8393603021 −0.8396060478 −0.8395875381 −0.8396056769
0.8 −1.007983207 −1.007796981 −1.007646828 −1.007646828 −1.007792100

directly and obtain (3.8) [42, 50, 56–59], where (3.8) holds, and if the lower index on a sum
exceeds the upper, the sum is replaced by zero:

[
L

M

]
=

det

⎡

⎢⎢⎢
⎣

aL−M+1 aL−M+2 ··· aL+1

...
. . .

...
aL aL+1 ··· aL+M

∑L
j=M aj−Mxj ∑L

j=M−1 aj−M+1x
j ··· ∑L

j=0 ajx
j

⎤

⎥⎥⎥
⎦

det

⎡

⎢⎢
⎣

aL−M+1 aL−M+2 ··· aL+1

...
...

. . .
aL aL+1 ··· aL+M

xM xM−1 ··· 1

⎤

⎥⎥
⎦

. (3.8)

To obtain diagonal Padé approximants of different order such as [2/2], [4/4], or [6/6], we
can use the symbolic calculus software Maple.

4. Numerical Applications

In this section, we apply He’s polynomials for solving boundary layer problem, unsteady
flow of gas through a porous medium, Thomas-Fermi equation, Flierl-Petviashivili equation,
and Blasius problem. The powerful Padé approximants are applied formaking theworkmore
concise and to get the better understanding of solution behavior.

Example 4.1 (see [51, 59]). Consider the following nonlinear third-order boundary layer
problemwhich appears mostly in the mathematical modeling of physical phenomena in fluid
mechanics [51, 59]

f ′′′(x) + (n − 1)f(x)f ′′(x) − 2n
(
f ′(x)

)2 = 0, n > 0, (4.1)

with boundary conditions

f(0) = 0, f ′(0) = 1, f ′(∞) = 0, n > 0 (4.2)
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By applying the convex homotopy, we have

f0 + pf1 + · · · = f0(x) − p

∫∫x

0

(
(n − 1)

(
f0 + pf1 + · · · )(f ′′

0 pf ′′
1 + · · · )

−2n (f ′
0 + pf ′

1 + · · · )2
)
dxdx, n > 0,

(4.3)

comparing the co-efficient of like powers of p, following approximants are made

p(0) : f0(x) = x,

p(1) : f1(x) =
1
2
αx2 +

1
3
x3,

p(2) : f2(x) =
1
24

α(3n + 1)x4 +
1
30

n(n + 1)x5,

p(3) : f3(x) =
1

120
α2(3n + 1)x5 +

1
720

α
(
19n2 + 18n + 3

)
x6 +

1
315

n
(
2n2 + 2n + 1

)
x7,

p(4) : f4(x) =
1

5040
α2
(
27n2 + 42n + 11

)
x7 +

1
40320

α
(
167n3 + 297n2 + 161n + 15

)
x8

+
1

22680
n
(
13n3 + 38n2 + 23n + 6

)
x9,

...

(4.4)

where f ′′(0) = α < 0 and pis are He’s polynomials. The series solution is given as

f(x) = x +
αx2

2
+
nx3

3
+
(
1
8
nα +

1
24

α

)
x4 +

(
1
30

n2 +
1
40

nα2 +
1
120

α2 +
1
30

n

)
x5

+
(

19
720

n2α +
1
240

α +
1
40

nα

)
x6

+
(

1
120

nα2 +
1
315

n +
2
315

n3 +
11
5040

α2 +
3

560
n2α2 +

2
315

n2
)

x7

+
(

11
40320

α3 +
33
4480

n2α +
3

4480
α3n2 +

23
5760

nα +
1

2688
α +

167
40320

n3α +
1

960
α3n

)
x8

+
(

1
3780

n +
527

362880
n3α2 +

19
11340

n3 +
709

362880
nα2 +

23
8064

n2α2 +
23

22680
n2

+
13

22680
n4 +

43
120960

α2
)
x9 + · · · .

(4.5)
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Table 2: Numerical values for α = f
′′
(0) for n < 1 by using diagonal Padé approximants [51, 59].

n α

4 −2.483954032
10 −4.026385103
100 −12.84334315
1000 −40.65538218
5000 −104.8420672

Example 4.2 (see [51, 57]). Consider the following nonlinear differential equation which
governsthe unsteady flow of gas through a porous medium

y′′(x) +
2x

√
1 − αy

y′(x) = 0, 0 < α < 1 (4.6)

with the following boundary conditions:

y(0) = 1, lim
x→∞

y(x) = 0. (4.7)

By applying the convex homotopy method we have

y0 + py1 + · · · = y0(x) − p

∫∫x

0

(
2x (1 − α)

(
y0 + py1 + p2y2 + · · ·

)−1/2)
dxdx. (4.8)

By comparing the coefficient of like powers of p, the following approximants are obtained:

p(0) : y0(x) = 1,

p(1) : y1(x) = Ax,

p(2) : y2(x) =
A

3
√
1 − α

x3,

p(3) : y3(x) = − αA2

12(1 − α)3/2
x4 +

A

10(1 − α)
x5,

p(4) : y4(x) = − 3α2A3

80(1 − α)5/2
x5 +

αA2

15(1 − α)2
x6 + · · · ,

...

(4.9)
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Table 3: [51, 57].

α B[2/2] = y′(0) B[3/3] = y′(0)
0.1 −3.556558821 −1.957208953
0.2 −2.441894334 −1.786475516
0.3 −1.928338405 −1.478270843
0.4 −1.606856838 −1.231801809
0.5 −1.373178096 −1.025529704
0.6 −1.185519607 −0.8400346085
0.7 −1.021411309 −0.6612047893
0.8 −0.8633400217 −0.4776697286
0.9 −0.6844600642 −0.2772628386

where A = y′(0) and pis are He’s polynomials. The series solution is given as

y(x) = 1 +Ax − A

3
√
1 − α

x3 − αA2

12(1 − α)3/2
x4 +

(
A

10(1 − α)
− 3α2A3

80(1 − α)5/2

)

x5

+

(
αA2

15(1 − α)2
− α3A4

48(1 − α)7/2

)

x6 + · · · .

(4.10)

The diagonal Padé approximants [51, 57] can be applied to analyze the physical behavior.
Based on this, the [2/2] Padé approximants produced the slope A to be

A = −2(1 − α)1/4√
3α

, (4.11)

and by using [3/3] Padé approximants we find

A = −

√
(−4674α + 8664)

√
1 − α − 144γ

57α
, (4.12)

where

γ =
√
5(1 − α)(1309α2 − 2280α + 1216). (4.13)

Using (4.11)–(4.13) gives the values of the initial slope A = y′(0) listed in Table 3. The
formulas (4.11) and (4.12) suggest that the initial slope A = y′(0) depends mainly on the
parameter α, where 0 < α < 1. Table 3 exhibits the initial slopes A = y′(0) for various values
of α. Table 4 exhibits the values of y(x) for α = 0.5 for x = 0.1 to 1.0.
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Table 4: [51, 57].

x ykidder y[2/2] y[3/3]

0.1 0.8816588283 0.8633060641 0.8979167028
0.2 0.7663076781 0.7301262261 0.7985228199
0.3 0.6565379995 0.6033054140 0.7041129703
0.4 0.5544024032 0.4848898717 0.6165037901
0.5 0.4613650295 0.3761603869 0.5370533796
0.6 0.3783109315 0.2777311628 0.4665625669
0.7 0.3055976546 0.1896843371 0.4062426033
0.8 0.2431325473 0.1117105165 0.3560801699
0.9 0.1904623681 0.04323673236 0.3179966614
1.0 0.1587689826 0.01646750847 0.2900255005

Example 4.3 (see [56]). Consider the following Thomas-Fermi (T-F) equation [6–13, 17, 31, 33,
34, 54]which arises in the mathematical modeling of various models in physics, astrophysics,
solid state physics, nuclear charge in heavy atoms, and applied sciences:

y′′(x) =
y3/2

x1/2
, (4.14)

with boundary conditions

y(0) = 1, lim
x→∞

y(x) = 0. (4.15)

By applying the convex homotopy,

y0 + py1 + p2y2 + · · · = y0(x) + p

∫∫x

0

(
x−1/2

(
y0 + py1 + p2y2 + · · ·

)3/2)
dxdx. (4.16)

Now, we apply a slight modification in the conventional initial value and take y0(x) = 1,
instead of y0(x) = 1 + Bx, where B = y′(0). By comparing the coefficient of like powers of p,
the following approximants are obtained

p(0) : y0(x) = 1,

p(1) : y1(x) = Bx +
4
3
x3/2,

p(2) : y2(x) =
2
5
Bx5/2 +

1
3
x3,

p(3) : y3(x) =
3
70

B2x7/2 +
2
15

Bx4 +
2
27

x9/2 +
1
3
x3,

p(4) : y4(x) =
3
70

B2x7/2 +
2
15

Bx4 +
2
27

x9/2 − 1
252

B3x9/2 +
1

175
B2x5

+
2
27

x9/2 +
3
70

B2x7/2.

(4.17)
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Table 5: Padé approximants and initial slopes y′(0) [56]

Padé approximants Initial slope y′(0) Error (%)
[2/2] −1.211413729 23.71
[4/4] −1.550525919 2.36
[7/7] −1.586021037 12.9 × 10−2

[8/8] −1.588076820 3.66 × 10−4

[10/10] −1.588076779 3.64 × 10−4

The series solution is given as

y(x) = 1 + Bx + Bx +
4
3
x3/2 +

2
5
Bx5/2 +

1
3
x3 +

3
70

B2x7/2 +
2
15

Bx4 +
2
27

x9/2 +
3
70

B2x7/2

− 1
252

B3x9/2 +
1

175
B2x5 +

2
27

x9/2 +
3
70

B2x7/2 +
1

1056
B4x11/2 +

4
1575

B3x6

+
557

100100
B2x13/2 +

4
693

Bx7 +
101
52650

x15/2 − 3
9152

B5x13/2 − 29
24255

B4x7

− 512
351000

B3x15/2 − 46
45045

B2x8 − 113
1178100

Bx17/2 +
23

473850
x9 · · · ,

...

(4.18)

Setting x1/2 = t, the series solution is obtained as

y(t) = 1 + Bt2 +
4
3
t3 +

2
5
Bt5 +

1
3
t6 +

3
70

B2t7 +
2
15

Bt8 +
(
− 1
252

B3 +
2
27

)
t9 +

1
175

B2t10

+
(

1
1056

B4 +
31

1485
B

)
t11 +

(
4

1575
B3 +

4
405

)
t12 +

(
− 3
9152

B5 +
557

100100
B2
)

t13

+
(
− 29
24255

B4 +
4
693

B

)
t14 +

(
7

499
B6 − 623

351000
B3 +

101
52650

)
t15

+
(

68
105105

B4 − 46
45045

B2
)

t16 +
(
− 3
43520

B7 +
153173

116424000
B4 − 113

1178100
B

)
t17 + · · · .

(4.19)

The diagonal Padé approximants can be applied [56] in order to study the mathematical
behavior of the potential y(x) and to determine the initial slope of the potential y′(0).

Example 4.4 (see [42]). Consider the generalized variant of the Flierl-Petviashivili equation
[37]

y′′ +
1
x
y′ − yn − yn+1 = 0, (4.20)
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with boundary conditions

y(0) = α, y′(0) = 0, y(∞) = 0. (4.21)

Using the transformation u(x) = xy′(x), the generalized FP equation can be converted to the
following first-order initial value problem:

u′(x) = x

(∫x

0

(
u(x)
x

)n

+
(
u(x)
x

)n +1

dx

)

, (4.22)

with initial conditions

u(0) = 0, u(0) = 0. (4.23)

By applying the convex homotopy, we have

u0 + pu1 + p2u2 + · · ·

= p

∫s

0

(

x

(∫s

0

(
1
x

(
u0 + pu1 + p2u2 + · · ·

))n

+
(
1
x

(
u0 + pu1 + p2u2 + · · ·

))n + 1

dx

))

dx.

(4.24)

The series solution after four iterations is given by

u(x) =

(
αn + αn+1)

2
x2 +

(
αn + αn+1)(nαn + (n + 1)αn+1)

16 α
x4

+

(
αn + αn+1)(2n(3n − 1)α2n + 2n(3n + 1)α2n+1 + (3n + 1)(n + 1)α2n+2)

384 α2
x6

+

(
αn + αn+1)(n

(
18n2 − 29n + 12

)
α3n + n

(
54n2 − 33n + 7

)
α3n+1 + A

)

18432 α3
x8

+ · · · ,

(4.25)

where A denote (18n2 + 7n + 1)(3nα3n+2 + (n + 1)α3n+3), and the inverse transformation will
yield

y(x) = α +

(
αn + αn+1)

4
x2 +

(
αn + αn+1)(nαn + (n + 1)αn+1)

64α
x4

+

(
αn + αn+1)(2n(3n − 1)α2n + 2n(3n + 1)α2n+1 + (3n + 1)(n + 1)α2n+2)

2304 α2
x6

+

(
αn + αn+1)(n

(
18n2 − 29n + 12

)
α3n + n

(
54n2 − 33n + 7

)
α3n+1 + A

)

147456 α3
x8

+ · · · ,

(4.26)
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Table 6: Roots of the Padé approximants monopole [42] α, n = 1.

Degree Roots
[2/2] −1.5
[4/4] −2.50746
[6/6] −2.390278
[8/8] −2.392214

Table 7: Roots of the Padé approximants monopole [42] α, n = 3.

Degree Roots
[2/2] −2.0
[4/4] −2.0
[6/6] −2.0
[8/8] −2.0

Table 8: Roots of the Padé approximants monopole [42] α.

Degree Roots
[2/2] 0.0
[4/4] −.2197575908
[6/6] −1.1918424398
[8/8] −1.848997181

Table 9: Roots [42] of the Padé approximants [8/8] monopole for several values of n.

n [8/8] roots n [8/8] roots
1 −2.392213866 7 −1.000708285
2 −2.0 8 −1.000601615
3 −1.848997181 9 −1.000523005
4 −1.286025892 10 −1.000462636
5 −1.001101141 11 −1.000262137
6 −1.000861533 n → ∞ −1.0

where A denote (18n2 + 7n + 1)(3nα3n+2 + (n + 1)α3n+3). Diagonal Padé approximants can be
applied [42] to find the roots of the FP monopole α for n ≥ 1.

Table 9 shows that the roots of the monopole α converge to −1 as n increases.

Example 4.5 (see [58, 59]). Consider the two-dimensional nonlinear inhomogeneous initial
boundary value problem for the integro-differential equation related to the Blasius problem

y′′(x) = α − 1
2

∫x

0
y(t)y′′(t)dt, −∞ < x < 0, (4.27)

with boundary conditions

y(0) = 0, y′(0) = 1,

lim
x→∞

y′(x) = 0,
(4.28)
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Table 10: Padé approximants and numerical value of α [53].

Padé approximant α

[2/2] 0.5778502691
[3/3] 0.5163977793
[4/4] 0.5227030798

where the constant α is positive and defined by

y′′(0) = α, α > 0. (4.29)

By applying the convex homotopy, we have

y0 + py1 + · · · = y0(x) − p

∫∫x

0

(∫x

0

(
y0 + py1 + · · · )

(
d2y0

dx2
+ p

d2y1

dx2
+ · · ·

))

dxdx. (4.30)

Proceeding as before, the series solution is given as

y(x) = x +
1
2
αx2 − 1

48
αx4 − 1

240
α2x5 +

1
960

αx6 +
11

20160
α2x7 +

(
11

161280
α3 +

1
960

α

)
x8

− 43
967680

α2x9 +
(

1
52960

α − 5
387072

α3
)
x10 +

(
587

212889600
α2 − 5

4257792
α4
)
x11

+
(
− 1
16220160

α +
1

7257792
α3
)
x12 + · · · ,

(4.31)

and consequently

y′(x) = 1 + αx − 1
12

αx3 − 1
48

α2x4 +
1

160
αx5 +

11
2880

α2x6
(

11
20160

α3 − 1
2688

α

)
x7

− 43
107520

α2x8 + 10
(

1
552960

α − 5
387072

α3
)
x9 + 11

(
587

212889600
α2 − 5

4257792
α4
)
x10

+ 12
(
− 1
16220160

α +
1

725760
α3
)
x11 + · · · .

(4.32)

Now, we apply the diagonal Padé approximants to determine a numerical value for the
constant α by using the given condition. Padé approximant of y′(x) usually converges on the
entire real axis [58, 59]. Moreover, y′(x) is free of singularities on the real axis. Substituting the
boundary conditions y′(−∞) = 0 in each Padé approximant which vanishes if the coefficient
of x with the highest power in the numerator vanishes. By solving the resulting polynomials
of these coefficients, we obtain the values of α listed in Table 10 [58, 59].
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5. Conclusion

In this paper, we applied a reliable combination of He’s polynomials and the diagonal
Padé approximants for obtaining approximate solutions of various singular and nonsingular
boundary value problems of diversified physical nature. The proposed algorithm is
employed without using linearization, discretization, transformation, or restrictive assump-
tions. The fact that the suggested technique solves nonlinear problems without using
Adomian’s polynomials is a clear advantage of this technique over the decomposition
method.
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