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Variational principles for nonlinear partial differential equations have come to play an important
role in mathematics and physics. However, it is well known that not every nonlinear partial
differential equation admits a variational formula. In this paper, He’s semi-inverse method is used
to construct a family of variational principles for the long water-wave problem.
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1. Introduction

In this paper we apply He’s semi-inverse method [1-12] to establish a family of variational
formulations for the following higher-order long water-wave equations:

U — UyU — Dy + AUy =0, (1.1)

v — (Uv),, — avyy = 0. (1.2)

When a = 1/2, equations (1.1) and (1.2) were investigated in [13], but the generalized
variational approach for the discussed problem has not been dealt with.

2. Variational Formulation

We rewrite (1.1) and (1.2) in conservation forms:

1
U + <——u2—v+aux> =0, (2.1)
2 X
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v+ (—uv —avy), =0. (2.2)
According to (1.1) or (2.1) we can introduce a special function ¥ defined as

Y, = —%uz — U+ Aly, (2.3)

Y, =—-u (2.4)
Similarly from (1.2) or (2.2) we can introduce another special function @ defined as

D; = —uv — avy,
(2.5)
d, =-o.

Our aim in this paper is to establish some variational formulations whose stationary
conditions satisfy (1.1), (2.5), or (1.2), (2.3), and (2.4). To this end, we will apply He’s semi-
inverse method to construct a trial functional:

J (u,0,¥) = JJ Ldxdt, (2.6)

where L is a trial Lagrangian defined as

L=v¥ + (-uv—avy) ¥, + F (u,v), (2.7)

where F is an unknown function of u, v and/or their derivatives. The advantage of the above
trial Lagrangian is that the stationary condition with respect to ¥ is one of the governing
equations (2.2) or (1.2).

Calculating the above functional equation (2.6) stationary with respect to u and v, we
obtain the followimg Euler-Lagrange equations:

0¥, + 6—F =0, (2.8)
ou
Y, —u¥, +a¥,, + 6—1: =0, (2.9)

6v

where 6F/6u is called He’s variational derivative [14-17] with respect to u, which was first
sugested by He in [2], defined as

6F OF o0 /OF 15} OF
a-a—u‘ﬂa—m)‘a—x(aux)*““ (210)
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We search for such an F so that (2.8) is equivalent to (2.3), and (2.9) is equivalent to (2.4). So
in view of (2.3) and (2.4), we set

F
6— =o¥, = —uv,
ou
(2.11)
L N
50 t T ULy = AT xx = 2“ o,
from (2.11), the unknown F can be determined as
F (u,v) = —1uzv + 1vz (2.12)
2 27 '
Finally we obtain the following needed variational formulation:
Lo, 1,
J (u,v,%¥) = oW + (—uv — avy) Py — Eu U+ Ev . (2.13)

Proof. Making the above functional equation (2.13) stationary with respect to ¥, 1, and v, we
obtain the following Euler-Lagrange equations:

—v— (—uv —avy), =0, (2.14)
-o¥, —uv =0, (2.15)
Y, -y, + aWyy — %uz +v=0. (2.16)

Equation (2.14) is equivalent to (1.2), and (2.15) is equivalent to (2.4); in view of (2.4), (2.16)
becomes (2.3). O

Similary we can also begin with the following trial Lagrangian:
Li(u,v,®) = ud; + <—%u2 -0+ aux> D, +G (u,v). (2.17)

It is obvious that the stationary condition with respect to @ is equivalent to (2.1) or (1.1). Now
the Euler-Lagrange equations with respect to u and v are

6G

O —ud, —a®,, + — =0,
ou
5C (2.18)
D, + — =
+ 5o 0
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In view of (2.5), we have

Z—(j =@ + ud, + a®yy =0,
(2.19)
6—G =0, =-0v
v YT 7
From (2.19), the unknown function G(u, v) can be determined as
1,
G(u,v) = —50% (2.20)
Therefore, we obtain another needed variational formulation:
1, 1,
Ji(u,0,®) = u®d; + —Eu —v+au, ) O, — EU dx dt. (2.21)

3. Conclusion

We establish a family of variational formulations for the long water-wave problem using
He’s semi-inverse method. It is shown that the method is a powerful tool to the search for
variational principles for nonlinear physical problems directly from field equations without
using Lagrange multiplier. The result obtained in this paper might find some potential
applications in future.
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