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THE EXISTENCE AND UNIQUENESS OF
SOLUTIONS OF EQUATIONS FOR IDEAL
COMPRESSIBLE POLYTROPIC FLUIDS

K. KANTIEM AND W. M. ZAJACZKOWSKI

Abstract. The local existence of classical solutions for a characteristic
initial boundary value problem for the equations of ideal compressible poly-
tropic fluids is proved. The problem is replaced by a system of well-posed
problems and then the method of successive approximations is used.

1. Introduction. In this paper we prove the existence and uniqueness
of solutions of an initial-boundary value problem for equations of ideal
compressible polytropic fluids in a bounded domain with an impermeable
boundary.

In the particular case of the barotropic fluid motion the problem was
considered in [1], [8].

Since, as in our case, a boundary condition with vanishing normal velocity
component, is characteristic for the Euler equations we are not able to use
the general methods [4], [7], [9] for first order hyperbolic systems.

The proof presented here is close to the method in [8] and is strictly
connected with the form of the Euler equations. Only the local existence of
classical solutions can be shown.
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Neither classical nor weak global solutions are known. However, the ex-
istence of measure-valued solutions of the Euler equations was proved in
[5].

2. Statement of the problem. Let us consider the problem [3], [6]

pt + div (pv) =0 in QF' =Qx(0,7),

pvs +pv-Vo+ Vp=pf in QF, (2.1)
et +div(v(e+p))=pf-v in O,

plt=0 = po , vlt=0 =v0 , €li=0 = €o in Q,

v-n=>0 on ST =5x(0,T),

where 2 C R", n = 2,3, is a bounded domain with boundary S, p = p(x,t)
is the density, v = v(x,t) the velocity vector, p = p(z,t) the pressure,
e = e(z,t) the total energy, 71 is the unit outward vector normal to S and
f = f(z,t) is the external force field, py > p* > 0, p* = const. The total
energy has the form

1
e= §pv2 + pe, (2.2)

where ¢ is the specific internal energy.
For the ideal gas we have the following equation of state

p = pRY, (2.3)

where R is the gas constant and ¥ = ¥(z,t) is the absolute temperature.
Our considerations are restricted to polytropic gases which satisfy

€=V, (2.4)

where ¢, is the specific heat at constant volume.
Then we have (see [3], Ch. 1)

p= A(S)p’y ’ (25)
where
S—Sp
A(S)=(y—1)e e = Ape’. (2.6)
Here S is the density of the entropy, s = S ~ is the adiabatic exponent,

cy’

_5
vy>1,¢ = 7—§1 and Ag = (y — 1)e” = is constant.
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Therefore, instead of (2.1) we get using the entropy

pt + div (pv) =0 in Q7

pvt + pv - Vo + Vp =pf in QF, (2.7)
st+v-Vs=0 in Q7

pli=0 = po , vlt=0 =0 , Slt=0 = S0 in Q,

v-n=20 on ST,

Problem (2.7) has a characteristic boundary as described in [4], [7], [9].
Since we do not know how to solve it directly we replace the problem by a
system of uniquely solvable problems.

Let p,v, s,p be as smooth as we need. From (2.5) and (2.6) follows

p = Age’p’ (2.8)
and with (2.7)3 we obtain
atp—l-v-Vp*%(pt-Fv-Vp):O. (2.9)
Using the continuity equation (2.7); we have
Op+v-Vp+ypdive =0. (2.10)
Let 6 = Inp. Then
divv—%(@t—}—v-V)(S. (2.11)

Applying the operator div to (2.7)2 we get

(dive)s +v - V (dive) + div (%Vp) = (2.12)

= —0y,;v; Oy, v; + div % .
Using (2.11) in (2.12) yields
Q% — div (’y %V{S) =7 (&rjvi Og;vj — div f) , (2.13)
where

Q=0 +v-V. (2.14)

Multiplying (2.7)2 by 7 and projecting the result on S we get with (2.7)5
the boundary condition
09 p(viv; Op;nj + f - 1)

— = . 2.15
on ST 65 ST ( )
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Furthermore the initial conditions are
dlt=0 = In (Age™py) . (2.16)
St|t=0 = —vo - V5o — % (vo - Vpo + podivg) ,

where we used (2.7); and (2.7)3.
Hence from (2.13), (2.15), (2.16) for given v and p we obtain the following
problem for §

)
Q% — div (%va) =7 (Bayvj Ouyvi — div f)

Slimo = 0 (Age™p]) (0
Ot|t—0 = —wo - Visg — % (vo - Vpo + po divg) ,

@
on

p(Vivj Mg, + f - 71)
o0

ST

ST
Applying the operator rot to (2.7)2 we obtain the problem for the vorticity
vector w =rotv

1
wi+v-Vw—w-Vo+divow+ V= x Ve’ =rot f, (b)
p

Wlt=p = wp = rot vy,

where p, 0 and v are treated as given functions.
Now for given w and p we have the elliptic problem for v

rotv =w,

1
diVU:__va (C)
P
v - ﬁ|s =0.
Finally, s is a solution of the problem
st+v-Vs=0, (d)
slt=0 = so0,
where v is given.

Let us emphasize that we calculate p from (2.8) for given s and § by the
relation

p= (Aioe‘se_s>% =z(9,s). (e)

The next sections are organized in the following way. After providing the
notation used in the paper we present in Section 4 the method of successive



THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF EQUATIONS 51

approximations in order to solve the problems (a)—(d). In Section 5 we prove
the boundedness of the sequence constructed in Section 4, and in Section 6
we show its convergence. The existence and uniqueness of the solution of
problem (2.7) are shown in Section 7.

3. Notation. In this paper we consider a simply—connected domain
Q C R", n = 2,3, with the boundary S of class C°. We assume that in a
neighbourhood of the boundary there exists a vector field a(z) € C* such
that n(z)|zes is the unit outward vector normal to S.

We denote the norms of the spaces L,(€2), p € [1,00] and the Sobolev
spaces H'(Q), 1 e NU{0}, by | - |,.0 and || - ||.q, respectively.

Let B be a Banach space with the norm || - ||g, & € N U {0} and
T some positive constant. Then Lf(O,T ; B) denotes a Banach space of
functions f(t) on [0, 7] with values in B for every fixed t € [0,7], whose k—

1
th derivative with recpect to ¢ has a bounded norm ( fOT - s dt) ", where
T=000rT =2.
. ; » ,
Moreover, let us introduce the spaces wa,(QT) =iy LI7H0,T; H ()
with the norm
1
. 1

T r
=
ulgrar = 3 ( JREa dt)

i=k
and 't (Q) with the norm

|u

!
Lo =Y 10 u lia -
ik

4. The method of successive approximations. We prove the ex-
istence of solutions of the problem (a,b,c,d,e) by the following method of
succesive approximation. Let v,—1,0m—1,Sm—1 be given. Then §,, is a
solution of the problem

Qs () =

=7 (8:(;ivm—1,j Oz;Um—1,; — div f) ; (am)
Omlt=0 = In (Ape™p]) .

Om,tlt=0 = —v0 - Vg — % (vo - Vpo + po divuy) ,

00,

2(0m—1,8m-1)(Vm—1,iVm—1,j Niz; + [+ 1)
on

ST e‘smfl

)

ST
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where Q1 = 0 + Vyp_1 - V.
For given v,,_1,d,,—1, S;m—1 the function w,, is a solution of the problem

Wit T Vm—1 - Vwy, — Wy - VUg—1 + div oy, wp, +

1 Sm—1 _
+ VZ(5m—1,Sm—1) x Ve =rot f, (bm)

Win|t=0 = wo -
For v, we obtain the elliptic problem
rot vy, = wy, ,

1
divoy, = — Qum-1In2(dp, $Sm) + —/ Qm—11n2(0p,, 8 dz |
19 Ja (cm)

vm-ﬁ|5:0,

where wy,, Si,, 0, are given.
Finally, s, is determined for a given v, 1 from

Sm,t +Um_1-Vsy = 0’ (dm)
Smlt=0 = 50
and p,,, from
pm = 2(Om; Sm) - (em)

The additional term on the right hand side of (¢,,)2 is necessary in order
to satisfy the compatibility condition for problem (c).
Let

Fi=| po llz,0 + [l s0 [0 + [ vo
Fo =| po lls,0 + [ s0 [[3.0 + [ vo
Fy = f(0) I, + [ ot £(0) [[1.0,
Fy =|| div f(O) 1,0

Fy = [rot fly01.07

Fg = |div fla1 00,07 5

Fr=|f 0310007 -

2,0
3.0, (4.1)

In the following lemmas g;, h;, f;, G; will be different positive, increasing
functions of its arguments. Different constants are denoted by C.

LEMMA 4.1. Let so, po,vo € H*(2), rot f € TI§ 1(QF), rot f(0) € H'(Q),
f0) € HYQ) and vm_1,0m—1,5m-1 € H:I’M(QT). Then there exists a
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unique solution of the problem (by,) such that wy, € 1§, (QF) and the
estimate

|wm
+ |Sm—1|3,2,oo,QT) +F)(1+ |5m—1|§,1,oo,QT + (4.2)
+ [8m-1l31 poqr)T + Fs + ha(F2)(F + Fs)}

20,0 < eLmtloymar . [hl(T(|5m—1|3,2,oo,QT +

holds.
Moreover, wy, € C(0,T;T3()).

Proof. The existence of the solution w,, follows from the method of charac-
teristics.
Let us show estimate (4.2). From

Z \/QD#@ (Wm,t +Vm—1-Vwym —wpm - Vg1 +
<2

+ divvg—1 - wm +V X Ve‘s’”—l) Défx wmdr =

Z(ém_l, Sm—l)

= Z/ Dl .(vot f)D}, wpdz,
Q k) b

n<2
where
oo gh o'
DZI: Z atioail"'aig’
io4i1t...+iz<p Ty T3
we get using formula (e,,)
d
Elwmb,o,ﬁ < |vm-1l31,0 |wml2,00 + (4.3)

+ 91 (|sm=12.2,0, [0m—1]2,2,0) -

NOm=1l31,2 (|Sm=1l3,1,0 + [0m—-1]31,0) -

(14 Jsm1B a0 + om-131.0) + Irot floog-

From the relation
t
u(t) :/ wr (7)dr + u(0)
0
we obtain

|u|2,s,oo,Qf <t |u|3,s,oo,Qt +C |u(0)|2,S,Q 5 (4'4)
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for s < 2. Integrating (4.3) with respect to time and applying (4.4) to the
arguments of g1 we get

lwm|2,0,0 < etlvm=1l3,1,00,02 (91 (t10m—1l3,2,00,0t + F1,
t|sm—13,2,00,0t + F1) T (1 + ‘5m_1‘§,1,oo,ﬂt + (4.5)
+ I5m 1141 0,00) + 10t Fl201.0¢ + lwm (0)200] -

Estimating wy, |t=0, W, t/t=0. Wm,tt|t=0 using (by,) for t = 0 it can be shown
that

wm(0)l200 < C [ v 30 (1+ [ vo [l30) -

(L4 g2(ll po llz., [ 50 ll2.0) [ vo ll3.0) - (4.6)

(Il s0 lls.2 + Il po lls.0)(1+ [l s0 50 + 1| po [15.0) +

+C(1+ [ o [l3.0) - (I rot £(0) [lLa + [ £(0) L)
Substituting (4.6) into (4.5), using the notation (4.1) we obtain (4.2).

The continuity of |wy,|2,0,0 With respect to time follows from (4.3). This
concludes the proof. O

LEMMA 4.2.  Let 6y, 00—1,5m—1 € I} (QT), vpo1,wn € 11§ (QF),
Um—1,2t € Loo(0,T;L4(2)), divfy € Loo(0,T5L2(R2)), then there exists a
unique solution of the problem (cy,) such that vy, € Hioo(QT) and

[Vml3.1 00,07 < Clwmlo coor +

+ h3(T|vm—1 31,0007 T hy(F1)Fy + F3, (4.7)
T|6m-113,1,00,0r + hs(F1)F1

T(sm—1l31,00,07 + h6(F1)F1) [0m31,00,07 +

+ C(Tvm-1l31,00,0r + h7(F1)F1 + F3) sup [Vm—1,ta1,0 +

+ CFs.
Proof. Using (d,) and (ey,) we obtain
Qm—1In2(0m, sm) = % Qm—10m -
Then (¢p,) simplifies to
rot vy, = Wiy

. 1 11
div v, = _; Qrm—10m + —

— — 4.
], Qoo (43)

vm-ﬁ|520.
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The existence of the solution of (4.8) follows from [2] and we have the
estimate

[Vml3,2,00,0t < C{|wml21,00,0t + (4.9)
+ (|vmf1|2,1,oo,ﬂt +1) |5m|3,1,00,9t}-

In order to estimate |vp, 1t]1,1,00,0¢t We differentiate (4.8)2 twice with respect
to time and replace the third time derivative of d,, by (a,)1. We obtain

. 1 11
div g, 4 = — ? 0t (0 Qm—10m) + ; @ /Q 0t (0 Qm—10m)dr =

1
= L@ o V@) +

11
+ - — / at (Q?nfl 5m — Um—1" va—lém) dr =
719 Ja

1 . yedm—1
= — =9 (div [ L V5, | +
Y ! ( v <z(5m—lasm—1) )

+ ’Yamivmfl,j a'rjvmfl,i - 'Ydlvf —Um—1- va716m> +

11 'ye‘sm*1
+ == O [div | ———V¢ +
Y |Q| Q ¢ ( (Z(ém—la Sm—l) m)
+ 'Yaxﬂ)mfl,j arjvmfl,i —div f — v - vaflé‘m) dr =
=H.
Then the problem for vy, ;s has the form

rot U tt = W tt
div Um,tt = H, (410)

Ut - Ti|lg =0
and we get the estimate

[Um,tt]1,1,00,0t < 91 (|0m—1]2,2,00,0t» [Sm—1l2,2,00,0t) -

10ml32,00,0t (14 10m—1l2,1,00,0t + |Sm—1l2,1,00,0t) +
(4.11)

+ |Um*1|2,2,oo,Qt sSup [vpm—1,2¢(7)|,0 +
T<t

+ ([vm-1l2,1,00,0t + 1) [Vm-1l2,1,00, 02t 10m 31,00, 00 +

+ |div fi]0,0,00,0¢ -
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Combining (4.9), (4.11) and using (4.4) we obtain

[V l3.1 00,0t < Clwml21,00,0t +

+ 96(tlvm-1l31,00.0t + g2(F1)F1 + F3) - (4.12)
1031000t + 93(t[0m—1]32.00,0t + F1,t|Sm—1l31,00,0t +

+ F1) - (1 + t|6m-1(3,1,00,0t + tISm—13,1,00,0t +

+ F1 - 4(F1))[0m3,2,00,00 +

+ (tvm—1l31,00,0t + 95(F1)F1 + F3) -

- sup |Um_17xt(T)|47Q + |diV ft|0’07oo7Qt .
<t

Simplifying (4.12) we get (4.7). This concludes the proof. O

LEMMA 4.3. Assume that S € C°, vg-7|s = 0, sg, po,vo € H3(Q), div f €
H%’Q(QT), Sm—1:0m—1,Um—1 € H%’OO(QT), f-ne€ H?,OO(QT). Then there
exists a unique solution of the problem (a,) such that ép, € H‘ioo(QT) and
it holds

10ml3,1,00,07 < hs(T(|0m-1l31,0007 + [Sm-1l31,00,07 +
+ [vm-1l31,00,07) + ho(F1)F1 + F3, F2,T) - (4.13)
. (FQ + I3+ Fy + Fg + F7 + Ta|vm—1|3,1,oo,QT) )

where a > 0.

Proof. In order to apply Proposition 8.2 from [1], we have to show that

1
ol i ¥ 1
vAje dm—temsm—l > 050,

where (), = const. This follows from the assumption that s,,_1,8,-1 €
I} o (QF).
Then we have (see formula (8.4) in [1])
[0ml3,1,00,00 < Po (1 6(0) ll3.0 + [ 6:(0) lae +
+ 9B e + |l div £(0) [10) e + (4.14)

1 .
+ Petf2ee [\Um—1|§,2,oo,9t + [div fl2,1,00,0t +

2.2.00.0t) -
: (1 + |6m_1|§,1,oo,§2t + |Sm—1|§,1,oo,9t> (|Um—1

+ |- 731.00.0t)]

+ 0 (|5m—1|2,2,oo,ﬂta |3m—1

2
3,1,00,0t T
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where
Py =P (|vm=12.1,00,0t [0m—1]2.1,00,0t [Sm—1]2,1,00,0¢»

ec|5m—1|2,2,oo,m , eC|5m—1|2,2,oo,Qf) ,

b =P (|vm—1|3,2,oo,ﬂtv |5m—1|3,2,oo,(2t7 |Sm—1|3,2,oo,ﬂta

ec|6m71|2*2’°°’9t,eC|Sm71|272v°°th) ;

Py =P (‘Um—l‘S,l,oo,Qta |3m—1|3,1,oo,ma |6m—1‘3,1,oo,9t7

6C|5m71|2,2,oo,m , eC|5m71|2,2,oo,Qt)
are polynomials. From the relation (4.4) follows for s = 1
[vm—1l2,1,00,0t < tlVm—1l31,000t +92(F1)F1 +C - F3,

2,1,00,0¢ < t0m—1[31,00,00 + 93(F1)F1, (4.15)
91,000t < tSm1l31 00,0t + 94(F1)F1 .

| 5m— 1

|Sm—1
Using (4.15) in (4.14) we see that for a certain a > 0 the expression t is a

coefficient of [vm_1[31,00,0t [Sm—1[3,1,00,0t5 [0m—1]3,1,00,0¢-
Moreover,

1 6(0) lls,0 < g5(F1)Fa,
| 6:(0) ll2.0 < g6(F1)F>.

From the above considerations it follows that

10m3.1,00.0t < 97 (t0m—1l31,00.0t + 93(F1)F1
tlsm—1l3,1,00,0t + ga(F1)F1, t{vm 131,000t + (4.16)
+ gs(F1)F1 + F3, t%(0m-1[3,1,00,0t5
t"5m-1]3.1,00,0t» t%[Vm—1l31,00,0t, F2, 1) -
(Fo4 Fs 4 Fy+ Fo + Fr + 1 vm_1]31 00.0t) -
Simplifying (4.16) we get (4.13). This concludes the proof. O
LEMMA 4.4 Let v,y € 11§ (Q7), so € H?(Q), po € H*(Q). f(0) €

HY(Q). Then there exists a unique solution of (dm,) such that s,, € 11§ (QF)
and

|Sml3.1 00,07 < oCTlom=1l3 1 o 0T . (h1o(F1) + F3) Fy. (4.17)

Proof. The existence follows from the method of characteristics.
As in the proof of Lemma 4.1 we obtain

d
%|5m|3,1,§2 < Cvm=1l3,1,0 [Sml3,1,0- (4.18)
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The integration of (4.18) yields

Ismlsiq < €€ Jo lomm1@lanads | o gy o (4.19)
where
Ism(0)|3,1,0 < C' [ so 3,0 <1+ I vo 30 + (4.20)
+ g1([ s0 ll2,0: I po llz,.0) )+ [ £(0) ln,ell so s -

Inserting (4.20) into (4.19) using the notation in (4.1) we get (4.17). This
concludes the proof. O

5.The boundedness of the sequence. Let us define

m = [0ml3.1,00.07 + [Vml31.00.07 + |5ml3.1,00.07 » (5.1)

/Bm = sup |Um,mt|4,ﬂ
+<T

and
F=F+Fs+ Fy+ F5 + I + F~. (5.3)

First we show

LEMMA 5.1. The sequences {ay,}, {Bm} satisfy the following inequalities
am < G(Tpm_1, F)(T" + F) + (5.4)
+ C(Tapm—1+ F)Bm-1 = K1(T)
and
B < eG(T 1, F)(TY + F) + (5.5)

C
+ C&?ﬂm_l(TOzm_l + F) + z [T (G (Taam_l, F) .

AT + F) + CBpm1(Tam—1 + F)) + hi(F)F] = Ko(T)

where £ € (0,1), a,a’ > 0, G is a positive increasing function of its argu-
ments and T < 0.

Proof. From Lemma 4.1 we obtain
wiml2,00 < G1(T 1, F2)(TY + Fs + Fy + F3). (5.6)
Lemma 4.2 implies, using (5.6)
Vml3 100,07 < G1(T %1, o) (T + Fy + F3 + F5) +
+ Ga(Toum—1 + g1(F1)F1 + F3) [Om3 1 0 07 + (5.7)
+ C(Tam—1+ g2(F1)F1 + F3)Bm-1+ CFp .
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From Lemma 4.3 and Lemma 4.4 follow the relations

10m 31,0007 < G3(T" a1+ g3(F1)F1 + F3, F2,T) - (5.8)
. (F + Ta()émfl)
and
18ml31,00,07 < Ga (Tam-1, ga(F1) + F3) I, (5.9)

where F is as in (5.3) and a,a’ > 0. Simplifying (5.6)—(5.9) we get

[0ml3,1,00,07 < G5(T" 1, F, T)(F + T"0t—1) , (5.10)
15ml3.1.00.07 < Go(Tam—1, F)F, (5.11)
[Vm 31,0007 < G (T, F)(T + F) + (5.12)

+ Gg(TaOém_l,F, T)(F—I—T"’ozm_l) +
+ C(Tam—l + F)ﬁm—l .

The combination of these inqualities leads to (5.4).
In view of the interpolation inequality we get

C
‘Um,mt‘4,ﬂ <e H Um,zaxt 10,0 +g H Um,t (J,QS (513)

C
< € || vmaat [lo,0 +—(T'sup || vmu [loo +
€ t<T

+ [ v, (0) flo,0)
and therefore
C
B < ety + - (Tam + g5(F)F) . (5.14)
From (5.14) follows (5.5) using (5.4). This concludes the proof. O

To show the boundedness of the sequences {«;,} and {f,,} we need the
following

LEMMA 5.2. There exist ¢ > 0 and sufficiently large M = M(g), M' =
M'(g) such that if -1 < M and Bp—1 < M’ it follows that c,, < M and
Bm < M' for T < T., where Ty is sufficiently small.
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Proof. Let T =0 in K;(T) and Ko(T) defined in (5.4) and (5.5). We are
looking for M, M’,e > 0 such that

Ki1(0) <G, F)F+CFM' < -M, (5.15)

DN | =

K5(0) <eG(0,F)F +CeM'F + ghl(F)F <

M.

IN
o= ™

Let e C F = . Then (5.15), implies
1 2 1 /
— < -M'. :
ICF G(0, F) F + 4CF* Iy (F) < 7M (5.16)

We define M’ by (5.16). Inserting it into (5.15); we obtain M.

Since K and K> in (5.4) and (5.5), respectively, are increasing functions
of T, which at T' = 0 satisfy the relations (5.15), there exists T such that
for T <T,

K\(T)< M, (5.17)

This concludes the proof. ]

Finally, we have

CONCLUSION 5.3. Let sg,po,vg € H*(2), S € C°, f e II (Q7), v-
n|s = 0. We choose the sequence {0y, U, Sm} in such a way that 8y, |m=o =

o = In(Aoe* pg), Vmlm=0 = vo. Smlm=0 = so.
Let

ap = | v .0 + || 3w(0) 20 + || 7v(0) [l1,0 +
+ | s0 la,0 + [| 3:s(0) [lo,0 + || 97s(0) l1.0 +
+ 1160 lIs.e + | 3:6(0) |l2,0 + || 876(0) [l1,0

and By = |vzt(0)|4,0, where the time—derivates are calculated from equations
(1.1) at t = 0. We assume that ag < M and Sy < M'. Then Lemma 5.2
implies that

am <M, m=0,1,.... (5.18)

6. Convergence of the sequence. In this section we show that the se-
quence {0y, Uy, S } converges strongly in H%’OO(QT) X HiOO(QT) X Hioo(QT)
and weakly in II§ _ (Q) x II§ (Q") x II§ (7).
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Let us introduce the following differences D,,, = 6, — 0p—1, Qi = Wi —
Win—1, Vi = Um — Um—1, Ry = pm — pm—1 and Sy, = 8y, — Spu—1, where
m=1,2,....

From (a,,) we obtain for D,,

9 7€6m71
Dy, —div |— 2" _vp,|=F, .,
Qm—l v Z((Sm—lv Sm—l)V !
Dm‘t:O = 0, (Am)
Dm,t|t:0 = 0’
oD,
Ton 157 = Gmt

where

Fm—l = - ‘/m—lv(Qm—ldm—l) - Q7n—2(v:rn—1v‘5m—1) +
1 1 4
+ Agdiv {<5m16§m1(71)/7/ en tsmo1tI=t)sm-2) gy 4
0

+ (y = 1)Dyy_qe¥m2/7 /1 e”,y;l(tém1+(1t)5m2)dt> )
0

. V5m71} + v (3@ Vin-1,j00;Vm—1,i + Oz;Vm—2,j0x; mel,i) ;

_1

_/1 e~ 5 Wmo1+(1=0m—2) gy |
0

+ Sm_le—5m—2'YT_1 /1 e_%(tSm—l+(1_t)Sm_2) dt} ]
0

(Vm—1,iVm—1,jNiz; + [ -1)|s +
1
—= 5. o 2=l
+ AO Ve T O0m=2"5" oSm—2/y (Vm_l,ivm—l,jni,mj +

+ Um—2,iVm—1,jni,:rj> |sT -
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€, is a solution of the problem

Qmt + Vm—1 -V — Q- Vo +divog,—1 - Q=

— V-1 Vwm—1 +wm—1 - VVp_1 —divVy_1 w1 +
1
_ Ayl {_ D / o (thm 1+ m 2)/y gy 5m1/7 4
0
1
+ 676m72/75m_1/ e(t3m1+(1t)sm2)/7dt} X Ve§m72 +
0
_ AV (- tm-rbom-/rY
1
x V <Dm_1 / et5m1+(1_t)5m2dt> ,
0
Q=0 = 0.
Finally, we get for V,,, and S,,, the problems
rot Vip = Qum

1
divV,, = *;(mele + Vm71V5m71) +

11

ol m— Dm +Vm— V(Smf dx,

7|Q| Q(Q 1 1 1)
Vm-ﬁ|S:0

and
Sm,t +Um-1-VSn+ Vi 1-Vsy 1=0,
Smlt=0 =0.

Similarly as in Lemma 4.1 and Lemma 4.4 we obtain the estimates

%mmll,o,a < Clom-1l32,0/ml100 +

+ C (lwm=-1l2,1,0Vim=1l2,1,0 + f1 (|0m=-1l3,2,0,
|8m—13,2,0, [0m—2]3,2,0, [Sm—2[32.0) -
“(|Dm=1l2,1,0 + [Sm—-1l2,1,0))

and

d
E|S’m|2,1,ﬂ < C (lvm=1l32.0 |Sml2,1,0+

+ Vin-1l21,0 |sm-1l3,2,0) -

(6.1)

(6.2)
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From (C,,) follows the estimate

ml2,1,0(1+ || vm—1 [l2,0) + (6.3)

| Vi [l2.2<[| 2m
+ 1 Vin1 llnall 0m-

In order to get an estimate for V,; we differentiate (¢,,) with respect to

time and calculate 6,, 4 from (a.;,)1, i.e.

rot Um,t =Wmt

dlvvmt—__at(Qm 15 |Q‘/8t Qrm—10m )dI—

= —; {melém — Um—lv(Qm—lém)} +

11 ( 2 6 _vm_lv(Qm_lém))dx =

T

7 19[ Ja
eém—l

=—div|———-—-V6,, | +
Z(6m—173m—1)

1
Oz, Vm—1,j0r; Vm—1,i + div f + ;Um—lv(Qm—lfsm) +

|Q|/ ldlv (—m T 1)V5m> +

1
+ Or;0m-—1,j0r;Vm—1,; — div f — ;fUmlv(ledm)} dx

Um,t'ﬁ|5 :0

Then we obtain for V,,, ¢

rot Vm,t = Qm,t y
1
div Vyy = —Hyp, + T /Q H,,dz,

Vm,t "FL|S = 07

(6.4)
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where
Jmfl
H,, =div | ——VD,, | +
(z(ém—lasm—l) )
i1 . 5. =1 1 + 1t
+ Aa—dlv {(e m-17 Sm—l/ e( Sm—1+(1—t)sm—2)/v dt +
Y 0

1 _
+ esm72/7(,y _ I)Dm—l/ 6(771) (t0m—1+(1—t)dm—2) dt) Vaml} +
0

1
+ amivmfl,jamjvmfl,i + amivmfljamjvm—l,i - ; m—lv(Qm—lém)
1
- ?Um72v(mele + melv&nfl) .
The estimate for V;,; has the form
[ Vit e < 1 Qg llo +F2 (I dm-1 2,0 | Sm-1 ll2.0) - (6.5)

| D ll2,0 +f3 (Il om-1 l3,.2, | sm—1 lz.2s | om—2 3.0, [| sm—2 [[3,0) -
(I Sm—1 ll,e + [ Dm-1 [l1,0) +
+ | Vi1 llne (I vm-1 s, + | vm—2 [0 + 1+ | vm-1 3.0 +
+ [ vm—2 ll2,0) - | om—1 [l3.0) + || vm—2 |
(14 [ vm-1 [l2,0) [| Dm [l2,0 -

Finally, we obtain for D,,

|Dm|§717OO’QT S (66)

T
< PP [ (1 Pucs(5) IR0 +1Gn-1 ()3 1.0) ds.

2,0

where
| Fr—1 11,0 < ClVi—1l2,1,0 14+ || vm=-1 lI3,0 + || vm—2 [I3,0) -
(14 0m-1l3,2,0) + fa (|| dm=1 [0, | Sm—1 ll3,0, | sm—2
| 6m—2 [I3.0) (I Sm=1 ll2,0 + | D=1 [l2,0)

3,02

and
|Gm*1|2,1,2,QT < f5 (|Sm*1|3,2,oo,QTv |Sm*2|3,2,oo,QT’
[Om-tl32.0007 » [0m-2l32.0007) (IDm-1l21207 + [Sm-tla1207) -

- (lom1l3 1 oi0r + o1 0007) + (Iomms

2,1,00,07 T |Um—2|2,1,oo,QT) :

fo (‘5m*2|2,1,oo,QT7 |Sm*2|2,1,oo,QT) ‘Vm*1|2,1,2,QT'

Now we can prove
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LEMMA 6.1. Let the assumptions of Conclusion 5.3 hold. Let

Ym = |Diml2.1,00,07 + [Vinl21,00,07 + [Sml2,1,00,07 (6.7)
form > 1. Then

1
Ym < har (T, M) T2ym 1 (6.8)
and {ym} converges to zero, for sufficiently small T

Proof. In view of the result of Conclusion 5.3 we get from (6.1), (6.2), (6.3),
(6.5) and (6.6)

[Qnl1,000,07 < g1(T5 M) T [Vl g oo + (6.9)

+1Dm-1l21,000r + [Sm-1 2,1,oo,QT) ;
1Sml2.1,000r < g2(T, M) T [Vin—1la1 00 07 5 (6.10)

Vinlaas007 < 93(M) (19ml100007 + [Dmlat,cc.0r +

(6.11)
+ Vin-1li1,0007 + 1Sm-1l11 00,07 + [Dm—1 1,1,oo,QT) ;
Dl o007 < 04(T, M) T2 ([Vip il c ort (6.12)
+ [Dim-1l2,1,00,07 + [Sm-1 2,1,oo,QT) .
With
T
Upn—1 :/0 OtUpm—_1 dt
we have
[Ul1,1,00,07 < T|Ul21 00,07 (6.13)

and using (6.13) for Vi1, Sm—1,Dm—1 at the right-hand side of (6.11)
yields

Vinl2.1.00,0r < 93(M) ([2ml10.0007 + [Dmla1,0c.0r +
+ T Vi1l 0007 + [Sm-tla,1.0007 + 1Dm-tl21,000r)) - (6:14)

From (6.9), (6.10), (6.12) and (6.14) we obtain (6.7). This concludes the
proof. O

7. Existence and uniqueness. Finally, we present the main result of
this paper.
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THEOREM 7.1. Let sy € H*(Q), py € H3(Q), vy € H*(Q), f € II] (QF),
div f e 117 (7)., f(0) € HYQ) and vy - n|s = 0 where 9Q = S € C.
Assume the compatibility conditions

(00, 80) (vo,iv0,jNiz; + f(0) - 1)
660

0
(ln(Aoesopg))’S -

n

(—vo - Vsg — pl(vo -V po + podiv vo)
0

) <z((5, 5)(vivjni’xj + f- n)>

~ ot ed

9
a’I’L S

9

S,t=0
where 0;(0), s¢(0), v¢(0) are calculated from (2.7).

Then there exists a solution of problem (a)—(d) such that w € Hg,oo(QT),
v,8,p € H‘fioo(QT) for sufficiently small T'.

Proof. From Conclusion 5.3 follows that the sequence {0,,,wp, v, S;m} 1S
bounded in II§ _(Q%) x TI§ . (QF) x II§ (QF) x I} (1) = A, for suf-
ficiently small 7. Therefore there exists a subsequence which converges
weakly star in A to {6,w,v,s} € A.

Lemma 6.1 implies that for sufficiently small 7" the sequence {,,, Wy, Vs
Sm} converges strongly in H%’OO(QT) X H(lLOO(QT) X HiOO(QT) X H%’OO(QT),
i.e. also to {d,w,v,s} € A. Moreover, the sequence converges almost every-
where.

Let us show that {J,w,v,s} is a solution of (a,b,c,d). We consider the
problems (a,), (by,) in the following integral form

5m—1
2 : e
2 gm—div [—2 s, ) +
/;2T ( ! (Z(6m17 Smfl) >
— Y Oz Vm—1,jO0z;Vm—1,i + ydiv f) ~prdxdt =0,

/QT <wm,t 4+ Vm-1Vwy —wm - VU1 +divoy,_1 - wm +

+ V; x Vedm=1 — rot f) ¢odrdt =0,
2(5m—17 Sm—l)

where ¢1, ¢y € C<(QT). Since we proved the convergence of the sequence
{0m Wi Vs Sm } We can pass to the limit in the above identities. The limit
functions {J,w} are weak solutions of (a), (b).

Since sy, vp € I (Q7) and s,v € 11} (Q7) the embedding theorem
implies that s,,, v, s and v are continuous functions. On the other hand
we have strong convergence sy, ; — s; in H%VOO(QT), Smaz — Sy in H(l)’oo(QT),
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U,z — Vg i H(l)’oo(QT), Omz — Oy in H(l)’oo(QT) and d,, ¢ — 0 in H%’OO(QT),
i.e. all those sequences converge almost everywhere to their limits. From
the continuity of the functions it follows that we can pass to the limits in

(¢m), (dm) classically.
It remains to show that

1
t) = — ddx =0.
wlt) = g [ @3
From (2.16) and vp - 7 = 0 we have ¥(0) = 0. Relation (a); implies
1
=— [ 0(Q9)dx =
Wt |Q|/Q 1(Q0) d

1 1
:@/QQ%dx—@/QU-V(Q(S)dxz

1
:ﬁ/ﬂ{div (%V&) + (8%.1)]- Oz ;i —divf)} dr —
1
- @/QU-V(Qé)da:.

Performing integration by parts in the first term on the right hand side and
using (a)4 we have

¥ 2
(on :@ /Svivjni,xj ds + 19| /S 100y ;v; ds

y

) 1
o) QU-V(leU)dCE—@/QU-V(Q(S)dl'.

Finally, we obtain after integration by parts in the 2nd term and using
dive = —%Q(S + %l—gz‘ Jo Q5 dz, 1y = 0, ¥(0) = 0, that ¢ = 0.

Hence {d,w,v, s} is a solution of problem (a,b,c,d). This concludes the
proof. O

Let us show the equivalence of the problems (2.7) and (a,b,c,d,e).

LEMMA 7.2. Let v,p,s € I} (Q1). Then problem (2.7) is equivalent to
problem (a,b,c,d,e).

Proof. The proof in one direction follows from the construction of problem
(a,b,c,d,e).

From problem (c)s follows (2.7);. Relation (c¢)3 implies the boundary
condition (2.7)5. From (d); we have (2.7)s3. Equations (a)1, (b)1, (e) and
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(2.7)5 lead to

divd =0,
rot® =0,
<I’-’fl|s=0,

where & = 0,v +vVov + %Vp - f.
For simply connected domains it follows that ¢ = 0 [2]. This concludes
the proof. O

REMARK 7.3. By the presented method we proved existence of the weak-
est possible solutions. However, the solution {d,v, s} is Hélder continuous.
Therefore, the system (2.7) is satisfied in a weak sense only. To show higher
regularity we have to apply well-known regularization techniques.

REMARK 7.4. The uniqueness of the solution {J,w,v,s} follows in a
standard way.

REMARK 7.5. More general results for general state equations can be
shown in a similar way.
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