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EPI/HYPO-CONVERGENCE: THE SLICE
TOPOLOGY AND SADDLE POINTS
APPROXIMATION

A. BAGH

Abstract. We show that the slice convergence of the convex parents of
saddle functions implies the epi/hypo—convergence of these saddle functions
and hence the convergence of their saddle points. We also obtain conditions
for the slice convergence of sums of convex functions. We then apply these
results to problems in convex programming, optimal control and Chebyshev
approximations.

e Introduction. The general idea behind duality theory in optimization
is to embed the optimization problem under consideration in a parametrized
family of problems and to study the solutions of the family of problems as
well as the solutions of their duals (see [9]). This approach allows us to
gain more insight into the nature of the solution of our original problem,
in particular about the stability of the solution with respect to certain per-
turbations. More specifically, we consider an abstract convex optimization
problem (P) over an arbitrary Banach space X. We are interested in the
minimum of fo(z) subject to the constraint x € C, where fj is a convex
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real-valued function and C is a convex subset of X. This problem can be
restated in the following form:

inf

Inf f(z),
where

folz) ifx e C;

x) = P
J(@) {+oo otherwise. (P)

We introduce a perturbation space Y with a dual Y*. We also introduce
a convex perturbation function F defined on X x Y with values in the

extended reals IR in such a way that

F(z,0) = f(z).

We then form the convex—concave Lagrangian K : X x Y* — IR,
K(:an*) = inf {F(x,y)— < yvy* >}a
yey

and consider the saddle points of this Lagrangian, i.e. points (Z,7*) in
X x Y* such that

Kz,y") < K(Z7) < K(z,7") ,Vxe X ,Vy" eY™

These points play a very important role in determining necessary and suf-
ficient optimality conditions. In many cases the Lagrangian K is quite
complicated and we need to approximate it with a sequence K, of La-
grangians of a simpler form in a way that guarantees the convergence of the
saddle points of K, to the saddle points of K. To that end, Attouch and
Wets [2] introduced the concept of epi/hypo convergence of Lagrangians
which preserves the convergence of their saddle points. These authors, and
later followed by Abdulfattah [1] and Soueycatt [15], studied the relation-
ship between the Mosco convergence of the perturbation functions F;, and
the epi/hypo—convergence of the Lagrangians induced by these functions.
Their results, however, were valid only for reflexive spaces, and a substantial
number of the applications in optimal control theory and convex optimiza-
tion involve nonreflexive spaces. In this paper, we use the notion of slice
convergence, introduced by Sonntag and Zalinescu [14] and later studied in
great detail by Beer [6], as an alternative to Mosco convergence in nonreflex-
ive spaces. We obtain results relating the slice convergence of perturbation
functions to the epi/hypo—convergence of the corresponding Lagrangians for
general Banach spaces X and Y. We also obtain results regarding the slice
convergence of sums of convex functions that are different from the existing
results due to Lahrache [10]. Finally, we apply our results to problems in
convex programming and optimal control.
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e Preliminaries. In this section we go through a brief introduction to
the slice topology and the concept of epi/hypo—convergence. Let (X, 7) be
a locally convex Hausdorff space and let (X*,7*) be the topological dual
of(X, 7). Let R = IRU {+0oc, —cc} be the set of extended reals. Let f be a
function defined on X and taking values in IR. We define the epigraph, the
strict epigraph, and the domain of f as follows

epi [ ={(z,0) € X x R| f(z) < o},
episf = {($7a) € X x B|f($) < Oé},
dom f = {x € X such that f(z) < +oco}.
The lower closure of a function f is defined as the function cl; f that sat-
isfies:
epicl; f=cl epi f,
where the right side of the above equality is the closure of the set epi f in the
topology 7. We say f is lower semicontinuous (Isc) if its epigraph is closed
in X x IR and we say f is proper if f #Z oo and does not assume the value
—00. We will use £(X) and £(X™) to denote the spaces of convex proper
Isc functions with values in IR that are defined on X and X* respectively.
We now define f*, the conjugate of f, as
Va* e X*, f*(2) = sup{(x,2") — f(x)}.
zeX

Clearly if f € £(X), then f* is a proper Isc convex function defined on X*.
For f* € £(X™), and following a standard abuse of notataion, we write

fo@) = f@) = sup {{a%,z) = f1(@"))

Therefore for functions in £(X™*), the conjugates will be understood to be
defined on X rather than X**. We also recall that for functions f and ¢ in
E(X), the epi-sum (inf-addition) f# g is define by the formula

f#g=mf{f(z) + gz~ 2)},
and we have (cf. [12])

(f+9) =clp(f"#g").
Furthermore, the strict epigraph of f4 g is epi, f + epi, g (the usual set
addition of epi, f and epi, g).

Now we follow Attouch and Wets [2] in defining the sequential epi/hypo—
convergence of saddle functions. We consider a second pair of locally convex
topological spaces (Y, o) and its topological dual (Y*,0*). A saddle function
K defined on X x Y* is a convex—concave bivariate function with values in
R. In general, we would like K to be lower semicontinuous in « and upper
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semicontinuous in y*. However, this is too much of a restriction since it
prohibits the use of saddle functions that take both of the values oo and
—o00, which is the case when we have constraints on both z and y*. There-
fore, we define the epi—closure, cl . K, of K to be the lower semicontinuous
regularization of K in z:

epi(cl; K(-,y%)) =cl (epi K(-,y")).

The extended lower closure is then defined as a function that for every y*
in Y*, satisfies

Similarly, we define the hypo—closure, cl ,« K, of K by
hypo (cl o« K(z,-) = cl 5+ (hypo K(z,-)),
and the extended upper closure of K by
ot 1) B
We say that two saddle functions K, L are equivalent if
c,K=c LandclgyK =cl,L

The saddle function K is called (7,0%)-closed if it is equivalent to cl K
and cl .« K. We also recall the definition of the domain of a saddle function
K:XxY*—= R:

dom K = {z|K(z,-) < +o0} x {y*|K(-,y") > —o0}.
The saddle function K is proper when dom K # (). We now define the
convex parent F' of K:

F(z,y): X xY — IR,

Fla.y) = sup {K(@y")+ (.97}

We also define the concave parent G of K:
Gx*,y"): X* xY* — IR,
Gla*y") = i {K(x,y7) (2],
We note that two equivalent saddle functions will have the same parents
(cf. [4]). Moreover, we have

c,K(z,y") = sup {G(2",y") + (x,27)},
rreX*
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and
o K(z,y") = inf {F(z,y) — (y,y") }.
yey

We also know that if K is (7,0*)—closed, then —G = F* and (—G)* = F,
where

Fr(a™y") = sup {{z,2%) + (y.y") — F(z,y)}.
rzeX,yeyY

We will use K(x,y*) and K (z,y*) to denote cl, K (x,y*) and cl ,« K (z,y*)
respectively.

Let K, (-,-) be a sequence of saddle functions defined on X x Y*. Let
ho+Jer-1i Kp(z,y*) = inf sup liminf K, (z,, y,),
* n
o T wyh Ty
where the infimum and the supremum are taken over all sequences converg-
ing to x and y* respectively. Let

er/ho+-1s K,(x,y")= sup inf  limsup K, (zy, ),
Yy ICANN y* Ty N "
where again the infimum and the supremum are taken over all sequences

converging to x, y* respectively. We say K, converges to K in the extended
epi/hypo-sense if

QT(BT/hO—*—IS Kn) S K S a(,* (h(,*/eT— li Kn)

We note that this definition of convergence is sequential only and we may
not be able to find a topology that is compatible with it. Also the epi/hypo
limit is not unique. The following theorem is the main connection between
epi/hypo—convergence and the convergence of saddle points.

Theorem 0.1. [4] Let (X, 7), (Y*,0%) be two linear topological spaces. Let
K, (-,-) be a sequence of saddle functions defined on X x Y* such that
QT(ST/hU—*— Is Kn> < K < C_la* (ho* /67— li Kn)
Let (T, ¥y, ) be a subsequence of saddle points of Ky such that T, 5 T
0_*

and gy, % y*. Then, (x,y") is a saddle point of K and
liin Ky, (Enk,yzk) = K(z,y").
In this paper we will use a result due to Steven Wright [16] that is slightly

more general than Theorem 0.1. Let 73 and 7o be two topologies on the
space X and let o and o5 be two topologies on the space Y*.



18 A. BAGH

Theorem 0.2. [16] Let K be a (19, 05)—closed bivariate function. Suppose
(2, 9%) is a saddle point of K, and that x,, sz and y’ Zisy*. Assume
that

o, (en/hoi-1s Kp) < K < clgs(hos fer,-1i Kp).
Then (xz,y*) is a saddle point of K and
liTILn Kn(zn,y,) = K(z,y").

Now we go through a short review of the definition and the main prop-
erties of the slice topology. We restrict ourselves to a normed linear space
X with a dual X*. Let C(X) be the space of nonempty closed convex sub-
sets of X. The slice topology on C(X) is defined as the weakest topology
such that for every closed convex and bounded subset B of X the “gap”
functionals

A inf a0
ac€A,beEB
are continuous. The slice topology on C'(X) can also be represented as a
hit and miss topology. We introduce the following subsets of C(X):

E-={AcC(X): ANE # 0},

EtT={A € C(X):3e > 0such that A +eB C E},

where B is the unit ball in X. The slice topology has as a subbase consisting
of all sets of the form V—, where V is a norm open subset of X, plus all sets
of the form W*+ where W is the complement of a closed, bounded, convex
subset of X. It is shown in chapter 8 of [7] that the following are equivalent:

1 - (C(X), slice) is metrizable;

2 — (C(X), slice ) has a countable base;

3 — (C(X), slice) has a countable local base;

4 — X* is strongly separable.

The slice convergence of nets of proper convex lIsc functions is defined as the
slice convergence of their epigraphs in C(X x IR). Moreover, if we let d4 be
the indicator function of the nonempty convex closed subset A of X:

5a(x) 0 if x € A;
xr) =
A +o00 otherwise.

Then § is an embedding of (C(X), slice) in (£(X), slice) (cf. [6]), and we
have the following theorem.
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Theorem 0.3. [6] Let A, be a collection of sets in C(X). Then the following
are equivalent:

(1) A, slice converges to A in C(X)

(i7) 04, slice converges to dain E(X).

v

We also define the dual slice topology on C*(X™), the space of nonempty,
weak* closed, convex subsets of X*. The dual slice topology is the weakest
topology on X* such that the gap functionals

A inf fa—b|
a€A,beEB

are continuous for every weak® closed, bounded, convex subset B of X*.
And the dual slice topology has as a subbase, all the sets of the form V—
where V' is norm open in X* plus all the sets of the form W'+ where W
is the complement of a weak® closed, bounded, convex subset of X*. Now
we list some of the most important properties of the slice and the dual slice
topology.

Theorem 0.4. [Ch.8 in [7]] Let f, be a net of proper lsc convex functions,
then

fu slice converges to [ <= [
converges in the dual slice topology to f*.

In this paper we will be dealing only with the slice convergence of sequences
of proper convex Isc functions and therefore will need the following results:

Theorem 0.5. [Ch.8 in [7]] A sequence { fn} of proper convex lsc functions
slice converges to [ if and only if the following conditions hold:

(1) YV bounded sequence x,,¥(x*,n) € epi, f*,
fn(xn) > (xn, ™) —n eventually,
and

(17) Ve e X, dx, — x such that limsup f(z,) < f(x).

Theorem 0.6. [Ch.8 in [7]] A sequence { fn} of proper convex lsc functions
slice converges to f if and only if the following hold:

(i) Vr e X, Jx, — = such that limsup f,(x,) < f(z),

(17) Va* € X*, Jx; — x* such that limsup f)(x)) < f*(z*).
n
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Theorem 0.7. [Ch.8 in [7]] If the unit ball in X* is weak™ sequentially
compact, then a sequence f,, of proper convex Isc functions slice converges
to f if and only if the following conditions hold:

(7) Vot € X*, Voi & 2, lim inf () > f*(2"),

(17) Vo* e X* 3z — x¥ such thatlimsup f(x)) < f*(z¥).

We remark here that due to the Banach Alaoglu theorem, the unit ball in
X* is always weak* compact but it may or may not be weak* sequentially
compact. For example, the unit ball in (I°°)* is not sequentially weak*
compact. In general, the separability of X is sufficient for the sequential
weak™® compactness of the unit ball in X™*.

1. Continuity results. In this section we relate the slice convergence

of F},, the perturbation functions of a general optimization problem, to the
epi/hypo—convergence of the corresponding Lagrangians K,. The results
that we will obtain can be thought of as results regarding the continuity
of the partial (with respect to one variable) Young—Fenchel transform that
maps F,, to K,,.
Throughout this section, X and Y are Banach spaces with duals X* and Y™*.
Furthemore, we assume that X has a predual (i.e. it is possible to define
a weak™ topology on X). We will use s and w* to denote the strong and
the weak* topologies and we will use —and %4~ to denote the convergence
in the strong and the weak™ topologies respectively. The functions F},,
F are proper, convex, lsc (with respect to the product norm topology on
X x Y) bivariate functions defined on X x Y and taking values in R. K,
K are the corresponding Lagrangians defined on X x Y*. Due to a result
by Rockafellar [13], K, and K are automatically closed (with repected to
the norm topologies on X and Y*). We start with three lemmas.

Lemma 1.1. Let X and Y be two Banach spaces as described in the be-
gining of this section. Let F,, and F be collection of proper, conver and
Isc functions defined on X x Y. Let K,, K be the corresponding closed
Lagrangians defined on X x Y*. Suppose that

V(z,y) e X xY, 3z, =,y — y
such that limsup Fy, (2, yn) < F(x,y).

Then,

Qs(es/hw*'ls Kn) < K.
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Proof. Let (zq,y;) € X x Y* be such that K(zg,y) < @ < +oc. Then by

the definition of K we get:
inf {F(z0,9) — {v.90)} = K(0,%5) <
Hence, there is a yg such that
F(zo,90) — {y0,yo) < o
By our assumption, 3z,, — x¢, 3y, — yo such that

limsup F, (2, yn) < F(zo,y0)-

Also Vyi 8" &, we have (yn,y:) — (yo,5) and thus
lim sup(Fn(@n, Yn) — (Yn, Yn)) < @.
n

However,

Kn(Inay:L) < Fn(xnayn) - <yn7y;;>'

Therefore, we get

lim Sup?n(xn,y;) < lim sup{Fn(xn,yn) - <ynay:>} <a.
n n

Taking the inf of the above inequality over all a such that a > K(zq,yg),
we get
limsup K, (zn,y,,) < K(x0,95)-
n
Hence,
inf limsup K, (z,,9;) < K(z0,5),
Tn—TQ n

and since y,, was an arbitrary sequence weak™ converging to yg;, we get

sup inf lim sup?n(xn,yn) < ?(x()ayS)a
n

vi L g on — @
which by definition means
es/hy-1s K, < K.
Since K is assumed to be closed, we get
cly(es/hy-1s K,) <l K =K,
and the proof is complete. O

The following two lemmas will provide the “dual” counterpart to Lemma
1.1.
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Lemma 1.2. Let X andY be two Banach spaces as described in the begin-
ing of this section. Let Fy, and F be proper, convez and lsc functions defined
on X xY. Consider ¢, : Y* x X* — IR, where o, (y*,z*) = F(z*,y*) and
LI are the conjugates of Fy,. Suppose that
V(y*,z*) e Y x X* Ja) — 2", y, —y*
such that
lm sup ¢n(yp,, z,) < (y" z7).
n

Also consider L, : X x Y* — IR, where
Ln(xay ) - I*lgg;.*{gon(y s L ) - <$,I >}
Then,
ew /hs-1s L, < L.

Proof. Let (zg,y;) € X xY* such that L(zg,y]) < o < +00. Then Jzj € X*
such that

¢y, o) — (20, 25) < a.
Hence, 3z} — z, y;, — y; such that
limsup @5 (yy,, 27,) < (Y5 75)
n
and Vo, % zo, we have
lim sup(n (Y, 27,) — (zn,27,)) < Lo, ¥7)
n
and thus
sip  inf  limsup Tn(zm,973) < Lo, 13),
Tn w_*) zVh — Y "
ew /hs-1s L, < L.
O

Lemma 1.3. Let F, G be respectively the convex and concave parents of
K. Let

K(z,y") = sup {Gn(z",y") + (z,27)}
ZE*E *

Ln(xay ) - I*lgg;.*{gon(y , L )_ <$,I >}
Then,

L,=-K,.
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Proof. Vo € X, Yy* € Y*, we have
Lo(z,y") = inf {pa(y",2") - (z,27)}
e X*
o ok kY *
—x*lél)f(*{Fn(l' 'Y ) <£E,£E >}

Since K, are proper and closed, we have F¥(z*, y*) = —Gy(z*, y*). Thus,
Ly(z,y*) = inf {~G.(z* y*) — (x,2")}
TreX*

= suwp {Gn(="y") + (z,27)} = —K,(2,9").
rreX*

O

Theorem 1.4. Let F, : X x Y — IR be a sequence of convex closed proper
bivariate functions that are the convex parents of a sequence K, of proper
closed convex—concave functions. Assume Fy, slice converges to F'. Then,

Qs(es/hw*‘ls Fn) <K

and o o
cls(hs/ew-1i K,,) > K.

Proof. The slice convergence of F,, implies that conditions of Lemmas 1.1
and 1.2 hold. Hence, o
cly(es/hy-1s K,,) < K

and since L,, = —K,, and L = —K, we get
es/hys-1s Ly, = —hg /e +-1i K,,,
K < hg/ey-1i K,,.
And, - o
K =cl K <cls(hs/en-1i K,,),
where the first equality follows from the fact that K is closed. O

Corollary 1.5. If F}, slice converge to F' and (Ty,,Y,,) is a subsequence
of saddle points of K,,, where K,, are the Lagrangians corresponding to Fj,
and Tp, %" T and Un, w7, then (Z,7) is a saddle point of K and

Proof. 1t is clear that K, < K, < K, and K < K < K. let 7, o} be
the norm topologies on X and Y™ respectively. Let 7, o] be the weak*
topologies on X and Y™ respectively. Then, Theorem 0.2 and Theorem 1.4
complete the proof. ]
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Corollary 1.6. If F, slice converge to F' and (Zy,,, Jy,,) 15 a bounded subse-
quence of saddle points of K,,, where K,, are the Lagrangians corresponding
to Fy,, then K ,the Lagrangian corresponding to F', has a saddle point. This
point is a w* cluster point of (Tn,, Y, )-

Under certain conditions on F;,, and F, it is possible to obtain a converse
to Theorem 1.4 and show that the epi/hypo convergence of K,, implies the
slice convergence of F},. The proof, however, is left for a subsequent paper.

We end this section by briefly discussing an alternative approach to the
problem of approxaimting saddle points. This approach involves the rela-
tionship between graph convergence and pointwise convergence of set valued
mappings. Recall that the graph of a set-valued mapping S : X = Y is a
subset of X x Y

gph S:={(z,y) e X xY [y € S(z) }.
We also can define the inverse of such a mapping by
S™Hy):={zx e X|yeS(x)}. (1.1)

One immediately has gph S™! = gph S. Recall also that for closed subsets
A, Ay, Ao,... of a Banach space X, Lim A4, = Aif Ls A, = Li A, = A,
where

LiA,={zr€eX: 3z, -z and z, € A, }.
Ls Ay ={r € X : In(1) <n(2) <n(3) <...Vk, 2 € Ay and z, — x}.

Given a sequence of set valued mappings S,, : X = Y we can define two
types of convergence. We say S, graph converges to S when

Lim gph S,, = gph S.
We say 5, pointwise converges to S if
Ve X Lim S,(z)= S(z).

Now the subgradient of a convex function is an example of a set—valued
mapping defined as follows: we say z* € X* is a subgradient of f € £(X)
at xp € X, and we write * € 9f(x¢) if for each 2 € X we have

f(@) = flzo) + (& — zo, 7).
The subdifferential of f is then the following subset of X x X*:
Of ={(z,2") e X x X" :z € X and z* € 0f(x)}

Similarly, for a function f* € £(X*), we say x € X is a subgradient of f*
at x5 € X* and we write x € df*(zj) if for each z* € X*

[ (@) = f*(xg) + (@ — wg, ).
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The subdifferential of f* is the following subset of X* x X:
off ={(z",z) e X* x X : 2" € X" and z € 9f"(z")}.
Let K : X x Y* — IR be a saddle function and let F: X x X — IR is the
convex parent of K. We define a subdifferential for K:
OK(z,y") = 0K (2, y") X (=0y~(=K)(x,y7)),
where

O K (z,y*) is the subgradient set of the convex function K(-,y*) at «,
Oy« (—K)(x,y*) is the subgradient set of the convex function —K(z,-)
at y*.

We note that
(@%,y) € 0K(z,y") <= (27.y") € OF(z,y) (1.2)
and
(0,0) € 0K (z,y*) <= (z,y") is a saddle point of K. (1.3)

It is known that the slice convergence of f,, in £(X) implies the Painlevé-
Kuratowski convergence of df, to df (see chapter 8 in [7]). Now we can
relate the slice convergence of Fj,, the convex parents a sequence K, of
saddle functions, to the graph convergence of 0K,,.

Proposition 1.7. If F,, slice converges to F, then
gph 0K = Lim gph 0K,.

Proof. The proof follows from the above remarks and from (1.2). O

Now (1.1) and (1.3) imply the following :
(Zn, 91) is a saddle point of K,, <= (&,,7}) € (0K,) *(0,0).

Therefore the question of the convergence of the saddle points of K, is a
question about the pointwise convergence of (9K,) ! at the point (0,0).
Since we already have Lim gph (0K,) ! = gph 0K, the concept of outer
semicontinuity of set valued maps studied by Bagh and Wets [5] can be
used to obtain results about the pointwise convergence of these mappings.
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2. More on the slice topology. Before we can proceed to apply the
results of the previous section to some classical optimization problems, we
need more results regarding the slice convergence of functions in £(X). We
start with a simple observation about the slice convergence of a sequence of
monotone functions.

Proposition 2.1. Let f, be a monotone decreasing sequence in E(X) that
converges pointwise to fo in E(X). Then f, slice converge to fo.

Proof. For any bounded sequence z,, in X and V(z*,1n) € epi, f* and Vn,
fn(mn) 2 f(mn) 2 <l'n,£E*> -7

Furthermore, we have pointwise convergence and thus we can apply Theo-
rem 0.5. ]

Now Proposition 2.2 provides a dual statement:

Proposition 2.2. Let f, be a monotone increasing sequence in E(X) that
converges pointwise to fo in E(X). Then, f, slice converge to fy.

Proof. The fact that f, is a monotone increasing sequence in £(X) implies
that f is a monotone decreasing sequence in £(X*). O

REMARK. The two propositions above can be used to prove slice conver-
gence of nested subsets in C(X) by appealing to the fact that the indicator
function is an embedding from (C(X), slice) into (£(X), slice).

Our next result is about the slice convergence of the sum of two sequences
in £(X). First we state a result by Lahrache [10] that is valid for any Banach
space X. Then we prove a result that is valid only for a separable Banach
space but under weaker assumptions on the sequences themselves.

Theorem 2.3. [10] Let f,, and gy, be two sequences in E(X) where X is a
normed linear space and assume

(i) fy slice converges to f and g, slice converges to g;
(ii) dz¢ € dom f,p > 0 such that sup,, g,(z) < M < 400 ,Vx € B(xg, p).

Then f, + gnslice converge to f + g.

We immediately get the following corollary.
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Corollary 2.4. Let A, be a sequence of sets in C(X) that slice converges
to A. Assume that int (AN B) # 0 for some set B € C(X) . Then A, N B
slice converge to AN B.

Proof. The proof follows from the fact that 04,np = 04, +dp, Theorem 0.1
and Propositon 2.1. O

For our applications, condition (ii) of Theorem 2.1 is too restrictive. We
therefore need the following theorem which is a generalization of Theorem
4.1 in [4] to nonreflexive Banach spaces:

Theorem 2.5. Let fy,, gn, [, g be functions in E(X) where X is a separable
Banach space X. Assume that f, slice converges to f, g, slice converges to
g and dom f Ndom g # 0. Furthermore, assume

Ar such that ¥z € B(0,r),
3 bounded x,, Yy, such that x, — y, = z,
limsup f,,(z,) < +o0c and limsup g, (y,) < +o0.
n n

Then, 3 N such that f, + gn is proper for n > N and fn+ gy slice converges
to f+g.

Proof. We shall prove this theorem in three steps.
Step 1: We show that (f, + g,) are proper for n > N. Clearly f + g is
proper by our assumptions. Now take z =0, z,, = y,,, then

limsup(fy, + gn)(zn) < +00.

Hence, f,, + g, are proper for large enough n.
Step 2: We show that condition (ii) of Theorem 0.7. holds.
Let V* be an open set in X*. Let 8 € IR be such that
{V* x (—00,8)} Nepi(f +9)" #0.
Then
{V* x (=00, B)} Nl epi(f +g") # 0,
where the closure is with respect to the norm topology on X*. Hence,
{V* x (—00.B)} Nepi (f*4g") # 0,
and
{V* x (=00,8)} Nel(epi f* +epi g*) # 0,
{V* x (=00, B)} N (epi [ +epi g*) # 0.
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Therefore, there is a (z*,1) € X* x IR such that
(z%,m) € {V* x (=00,8)} N (epi f* + epi g7),

and
(35*777) = (xia,rll) + (x§7772)7
where (z7,m1) € epi f* and (x3,72) € epi g*. By the continuity of addition
in a linear topological space, we know that there is V|* and V5" open in X*
and (1 and (2 in IR such that
(f{ﬂh) € ‘/1* X (_007/81)7
(23,m2) € V3 X (=00, B2)
and
{VI" x (=00, B1)} +{V3" x (=00, B2)} C V" x (=00, /).
Furthermore, f;: slice® converges to f* and g slice® converges to g*, which
imply that 4N; such that Yn > Ny, we have
Vi x (—o0,B1) Nepi fr#0

Vs x (—o0,B2) Nepi g # 0.
Hence,

({(V" x (=00, B1)} + {V5" x (=00, B2)}) ((epi £ + epi g5) # 0,
and thus,
{V* x (=00, 8)} N (epi [, + epi g,) # 0

{V* x (—00,8)} Nepi cl (fr+g,) # 0
and

{V* x (—00,8)} Nepi(fn+gn)" # 0.
Therefore, Vz* € epi (f + g)*, 3 2 € epi(fn + gn)* such that 2z} — 2z* and
condition (ii) of Theorem 0.7 follows immediately.
Step 3: We show that condition (i) of Theorem 0.7 hold.
Assume liminf,, f(z}) < +00. Otherwise there is nothing to prove. Then,
by passing through a subsequence if necessary, we can assume that (f, +

gn)*(z}) is bounded above. Now we know that

(fn + gn)* =cl (f:;# g’;kl)
Hence, there exists a sequence z;; such that
* * * * * 1
[fn# gn}(zn) S (fn +gn) (mn) + Ea

and
1

|2 — zpll < —.

3
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The definition of the epi-sum yields a sequence ¢; in X* such that

FalG) + 9n(zn = Go) < (fu + 90)"(27) + % (2.1)

Consider ¢ € B(0,r) with r > 0 and two bounded sequences y,, and w,, that
satisfy our assumption. Then,

(Grrwn) < frlwn) + fr(C),
<Z:7<, - Cr*wyn> < gn(yn) + g;(z; - CT*L)
Since & = w, — yp, We get
(Cr:€) < fnwn) + gn(yn) + 9n(zn — Co) + F2(G) — (20 Un)-
From the above inequality and our assumption, we get

lim sup(¢;. &) < +oo.
n

Since the above inequality holds for every £ € B(0,r), ¢ is bounded by the
Banach—Steinhaus theorem, and hence it must have a weak* cluster point
¢*. Now we use the continuity of the Young—Fenchel transform with respect
to the slice topology. We take the liminf of (2.1)

lm inf(fn + gn)" (2) = lim inf[£;(C) + g (25 — Gl

liH;Linf(fn + gn)" () > limninf (&) + limninf gn(zr — ().
The slice convergence of f and g implies

liminf £7(¢;) = f*(¢%)and lim inf g, (2, — () > g" (2" — 7).
Therefore,

lim inf(fn + gn)"(23,) > £7(C*) + ¢" (2" = C*) = f*4 g% (27)
and hence

limninf(fn +gn) () > (f +9)"(F).

Now from the three parts of our proof and Theorem 0.7, we obtain the slice
convergence of f,, + g, to f + g. O

REMARKS. The condition dom f N dom g # () in Theorem 2.5 can be
eliminated if we assume the existence of a sequence x,, contained in some
weakly compact set, such that limsup f,(z,) < 400 and limsup g, (z,) <
+o00. In this case, we can extract a weakly convergent subsequence x; X T
such that liminf, (f, + gn)(x,) > (f + ¢)(Z) and hence dom fNdom g # (.
We also note that if X is separable, then the condition of Theorem 2.3 is
stronger than the condition of Theorem 2.5. Let f,, be uniformly bounded
over a neighborhood V of xp in dom g. Clearly f + g is proper. Now let
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r > 0 be such that B(0,2r) C V. From the slice convergence of g, we know
that there exists a sequence z,, such that limsup,, g,(z,) < +o0c. For large
enough n, f,(z,) is bounded above and z, € B(0,r). For any ¢ € B(0,r),
set

Ty = zn + ¢ and y, = zj.
Then, z,, —y, = ¢, the sequences z,,, y,, are bounded, and lim sup,, g, (z,) <
+oo and limsup,, fn(2zn) < +o0.

Furthermore, for a separable X we can use Theorem 2.5 to obtain a result
about the slice convergence of the intersection of a collection of sets under
conditions weaker than those of Corollary 2.1.

Corollary 2.6. Let A,, B, be two sequences of sets in C(X) that slice
converge to A and B respectively and assume that AN B # (). Assume also
that 3r > 0 such that ¥¢ € B(0,r), 3 boundedzx,, € A,, y, € By, such that
Tpn — Yn =C. Then

A, N By, slice converges to AN B.

Proof. The proof is identical to the proof of Corollary 2.4 with the exception
of using Theorem 2.5 instead of Theorem 2.3. U

Furthermore, the separability of X was used only in part 3 to guarantee
that the unit ball in X™* was weak* sequentially compact. Therefore we can
still obtain some results for an nonseparable Banach Space X that cannot
be obtained directly from Theorem 2.3.

Corollary 2.7. If f, and g, converge in the slice topology to f and g re-
spectively where dom f N dom g # (). Suppose that Vo € X, dx,, — x such
that limsup,, (fn+9gn)(zn) < (f+9)(z), then fn+ gn slice converges to f+g.

Proof. Step 2 of the proof of Theorem 2.5 does not requir separability as-
sumption on X. This step shows that condition (ii) of Theorem 0.6 holds.
Furthemore, our assumption for f,, + g, is condition (i) of the same theo-
rem. ]

The following corollary is a direct result of the previous one.
Corollary 2.8. If f,, and g, converge in the slice topology and pointwise to

f and g respectively and dom f Ndom g # 0, then f,, + gn slice converges
to f+g.
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Finally, we recall the definition of weak equi-lower semicontinuity for convex
Isc functions: We say the collection f,, is equi-Isc at x if there exists e, > 0
such that Ve € (0,e,), there exists a weak neighborhood V' of = such that
for all n,

;g‘f/ fn(y) < min[f,(z) — 5,5_1].

If {f,} are equi lsc at every x, we say that f, is an equi lIsc collection.

Corollary 2.9. If f,, and g, are weak equi—lsc sequences that slice converge
to f, g respectively and dom fNdom g # 0, then f, + g, slice converges to

[+g

Proof. Slice convergence implies Mosco convergence (cf. [6]), and weak equi-
lower semicontinuity and Mosco convergence imply pointwise convergence
(cf. [8]). Hence the Corollary 2.8 will complete the proof. O

Our last result shows that slice convergence holds under rather restrictive
conditions. However, these conditions are satisfied in a number of applica-
tions as we shall see later. First we assume X is a Banach space with a
separable predual. L°°[0,1] with L'[0,1] as its predual, is an example of
such space. We start with a lemma.

Lemma 2.10. Let f be in E(X) such that w* —int epi f # 0. Let (z*,n) €
epi, f*. Then the graph of A :x — (x,z*) —n is w*—closed in X x R.

Proof. The graph of A is a hyperplane in X x IR. Therefore, it is either w*

closed or its w*—closure is the entire space (a hyperplane is a translate of a
maximal subspace). Let us denote the graph of A by K. Let K; be the graph
of functional < ., z* > —n—1. If K is not w*—closed, then K is also not w*—
closed. Hence K is w*~dense in X x IR. Therefore, w*-int epi f N Ky # ()
and w*-int epi f N K # (), which clearly is a contradiction. Thus K has to
be w*—closed. O

Now we are ready to prove our last result about slice convergence.

Proposition 2.11. Let f,, and f be elements in E(X) where X is a Banach
space with separable predual. Assume

(1) w*-int epi f# 0
(17) Vze X, Vz, ¥ =z, limninf fu(zn) > f(x)
(7i1) Ve € X, 3z, — x,limsup f,(x,) < f
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Then f, slice converges to f.

Proof. In order to use Theorem 0.5, we only need to show that V(z*,n) €
epi, f* and for all bounded z,,, we have

Jn(zn) > (xn, ") — 1 eventually.

Suppose not. Then, there exists a subsequence zj, such that z;, <z for
some x; and

VE, fulz) < (T, 2") — .
We take the liminf of the above inequality and keeping in mind that the
graph of (-,z*) — 7 is w*—closed due to Lemma 2.1 we obtain

limk_inf fr(zg) < limkinf<xk,x*) —n < (zg,x*) —n < f(z0),

which clearly contradicts assumption (ii). O

Corollary 2.12. Suppose f is weak® continuous at some point and condi-
tions (ii) and (iii) of Proposition 2.11 hold, then f, slice converge to f.

Proof. The weak® continuity of f at any point implies that w*-int epi f #
0. O

3. Applications. In general, the perturbation space and the perturba-
tion function for a given optimization problem are by no means unique. For
the applications that we will discuss in this section, we will choose the clas-
sical (i.e., the one most commonly used) perturbation space and function
associated with these problems (see [9]).

Convex programming
We consider the following minimization problem over a general Banach space

X.
(Fo)  min{fo(z) + dp, (z)},
reX
where fp is a real-valued continuous convex function on X. dp, is the

indicator function of a closed convex set Dy in X. Moreover, we assume
that Dy is given by the following constraints:

r €Dy <= gi(x)<0fori=1,..., m.

where gf) are real-valued, convex, continuous functions on X.
Following the general duality scheme, we perturb the problem (P) in the
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following manner: we consider the perturbation function F': X x R™ —
(—oc0, +o0]
F(z,u) = fo(z) + dpy(z),
where u € IR™ and
r €Dy <= gh(x) <uw;fori=l,..., m.

Clearly F' is a proper, convex, lsc function on X x IR". A Lagrangian
associated with £ is:

K(I,y) :{

Now we would like to approximate the saddle points of K with saddle points
of K,, which are associated with the perturbation functions of the following
problems:

f(@) =S yigh(z) ify; <0,
—00 otherwise.

(Fn)  min{fo(z) + dp, (2)},
zeX
where D,, are given by
reD, <= g.(z)<0fori=1,...,m,
where for every i, g¢ are assumed to increase monotonically to gg. For
example, for a fixed i, g!, can be linear functionals that pointwise increase
to gj. The fact that ¢* is convex, and hence is the supremum of a collection

of linear functionals, makes such approximations possible. The perturbation
functions associated with (P,) are

Fo(z,u) = fo(x) + dpu(z),
where
zeD! < gi(z)<u;fori=1, ..., m.
Clearly dpx monotonically decrease to dpg. If (/) is feasible, then dom F' #
(). Hence, as a result of Proposition 2.1 and Theorem 2.5, we get the slice
convergence of F,, to F. Now Theorem 1.4 and Corollary 1.5 can be used
to approximate the saddle points of K.

The above problem can be generalized to a case with infinitely many con-
straints: minimize fo(z) over C' C X, where C' is given by

reC <= h(z,s)<0 ,VseS,
where S is some indexing set (space) and h is real-valued convex lsc in the x
argument. The perturbation space is L>°(S) and the perturbation function
is
F(z,u) = fo(x) 4+ dp(z,u),
where

D = {(z,u)|h(x,s) <u(s) ,Vse S}
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We approximate h by a monotone sequence h, which in turn will generate
perturbation functions F;, that will slice converge to F. The results of the
previous section will then hold regarding the convergence of saddle points
of the associated Lagrangians.

Internal approximations

Let X, Y be two Banach spaces and let g and h be convex proper functions
defined on X and Y respectively with values in the extended reals. We
consider the following saddle function defined on X x Y™*:

K(z,y*) = g(z) = K" (y") + T'(z,y"), (3.1)

where h* is the conjugate of h and I' is a continuous biaffine functional on
X x Y*. This type of Lagrangian appears in convex problems in optimal
control and in multistage stochastic programming (see [16]). The idea of
internal approximation is to approximate X and Y by increasing sequences
X, and Y, of closed convex subsets of X and Y. The resulting Lagrangians
are

Kn(z,y") = gn(x) — hy, (y*) + Iz, y7), (3.2)
where g,(z) = g(v) + dx,(z) and h,(y) = h(y) + dy,(y). In [16], the
epi/hypo convergence of K, was studied in a reflexive setting using Mosco
convergence of the convex parents of K,. In this section we approximate
the saddle points of K,, when X and Y are not necessarly reflexive. In order
to use Corollary 1.5, we need to show that the convex parents of K, slice
converge to K.

Theorem 3.1. Let K,,, K be the saddle functions defined by equations (3.1)
and (3.2) . Let F,,, F' be the the convex parents of K, and K respectively.
Then F,, slice converge to F'.

Proof. From Proposition 2.1 and Corollary 2.8, we obtain the slice conver-
gence of g, and h, to g and h respectively. Furthermore, there exists a
continuous linear map D : X — Y, elements b* € X* a € Y and a real
number ¢ such that

[(z,y*) =< Dz,y* >+ < a,y* > + < b,z > +c.
Thus, F}, can be written as

E,(z,y) = gn(x)— < b* 2 > —ctsup{—h; (y*)— < Dz+a,y* > — < y*,y >},
y*
or

Fu(@,y) = ga(a)— < b, > —c+ ha(- Dz —a—y),
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and similarly
F(z,y) =g(x)— <b",2 > —c+h(—Dx —a—vy).

Since g and h are proper, dom F # (). For any (z,y) € X x Y, let z =
—Dx — a —y . Because of the slice convergence of g, and h,, we can find
sequences x,, — x and z, — z such that

lim sup gn(wn) < g(ﬂ?),

and
limsup A, (2,) < h(z).
n
If we let y, = —Dx,, — z,, — a, we get
limsup Fy, (2, yn) < F(z,y).
n
Hence, F, slice converges to F' by Corollary 2.7. ]

Optimal control

Let X, Y be two Banach spaces. Let A be a continuous linear map from X
to Y. Let C be a closed convex set in Y and let fy be a convex continuous
function on X. We are interested in the following optimization problem (see

[9]):

(Fo)  min fo(z) + damec(2),

where
0 if A(z) € C,
+o00 otherwise.

SA@x)ec(T) = {

Under the assumptions we have on C' and A, the set {z|A(z) € C} is convex
and closed in X. The standard perturbation function for this problem is

F(z,u) = fo(z) + 0p@@)—uec (T, u),
where u is in Y and
0 if A(z) —u e C,
9 —u ) =
Al@) co(@:) {+oo otherwise.
More specifically, we consider the following optimal control problem:
1
i t),t)dt
uegy[})’l]/o g(x(t),t)dt,

subject to
u(t) = D(z(t)),
x e C cCo,1].
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We assume that g is a convex continuous function from R? to R, and C' is
a closed convex subset of C[0,1]. We also assume that D is a differential
operator from to C[0,1] to L° with an inverse A given by:

Au(t)) = /0 Ll s)u(s)ds,

where the kernel H is continuous on [0,1] x [0,1]. This condition on D is
satisfied by a large class of differential operators and it guarantees that A
is weak™® continuous. Now we can rewrite the problem as

1
i [ o(A(®). 0t + nec(w).

We use Y = (C[0,1] as a perturbation space and we let the perturbation
function defined on L]0, 1] x C[0,1] be :

Pluvy) = [ g(A@(0),0dt + dngyec(n.v)

This time we are interested in approximating F' with:

Fulu,) = [ o(M@).0Pa(d) + 5500 yecly),

where P, is a sequence of discrete measures that approach the original
measure dt in the following sense:

1 1
/ h(t)P,(dt) — / h(t)dt, V h(t) continuous and bounded on [0, 1].
0 0

This type of convergence of measures is often called the weak convergence
of measures. An important property of weak convergence is the following
(see [11]): If g,, are such that V¢, — ¢, g,(t,) — ¢g(t), then

lim in /0 (D) Pa(dt) > /O L)t (3.3)

Our goal is to show that when P, converge weakly to the original measure
on [0,1], F,, slice converge to F. For every u in L*°[0, 1], we define I,,(u) =

o g(A(u(t)),t) Py (dt) and I(u) = [y g(A(u(t)),t)dt. We want to show first

that I, slice converges to I.

Lemma 3.2. Suppose u, % wu in L>=[0,1]. Then, Vt, — t, we have
Alun(tn)) — Alu(t)).
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Proof. The collection {u,} is norm bounded. Thus for all € > 0 there exists
0 such that for all ¢1,¢o such that [t — 2| < ¢ and for all n, we have

Alun(t) = Aun(12)] < | H (11, 8) — H(ts, ) Jun(5) ds < c.

Furthermore, A(u,(t)) pointwise converges to A(u(t)) because of the weak*
convergence of u,. Thus, for all ¢, € > 0, 3 a neighborhood W of ¢t and dng
such that for all n > ng V¢’ € W we have

[Aun(t) — Alu(t)| <e

and hence

YV t, — t, we have A(u,(t,)) — Au(t)).

Now from property (3.3) of weak convergence of measures, we get

1

Vu, % u, liminf /0 L (A un (1)), ) P (dt) > /0 g(A(u(t), D)dt.

Furthermore,

lim [ g(Au(t), 0Pa(a) = [ g(ACutt), .

The function I is weak™ continuous. Thus the conditions of Corollary 2.12
hold and 1, slice converges to I. If we assume that (Fp) is feasible, then
dom F' # (). By Theorem 2.5, F), slice converges to F. We now can apply
the continuity results of the previous sections to the Lagrangians and the
saddle points of the approximating problems.

Chebyshev approximations
Let h; : [0,1] — R be in L*°[0,1] for i =0,...,m. Consider

(P) min f(z) = |lho — ZiZyzihi|oc.

A classical perturbation function for this problem F', defined on IR™ x
L*>[0,1], is :

F(x,u) = ||ho — X2 zih; — ul|sc-
The approximations that we will use are

Eo(a,u) = |lhg — Bz — ulfeo,

where hj and h] are approximations that norm converge in L to hg, h;
(simple functions, for example). The perturbation function F' is convex,
finite and continuous but nondifferentiable. We also note that in this case
the space over which the original problem is defined is reflexive but the per-
turbation space is not and hence we still need to resort to slice convergence
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of the perturbation functions. It is a routine check to verify that F,, slice
converges to F' via Proposition 2.11 (the norm is w*~lsc). Again this will
allow us to use the results of Section 2 to approximate saddle points for this
problem.
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