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OSCILLATION CRITERIA FOR SECOND
ORDER LINEAR DIFFERENTIAL
EQUATIONS WITH DAMPING

WEI-LING LIU AND HORNG-JAAN LI

Abstract. Some oscillation criteria are given for the second order linear
differential equation with damping

[r(®)2' (&))" + p(t)2’(t) + q(t)z(t) =0, ¢ > to,

where p(t) and ¢(t) are allowed to change sign on [tp,00), and r(t) > 0.
These results generalize and improve some known results for the differential
equations

2"(t) +q(t)z(t) =0,
and
" (t) + p(t)a'(t) + q(t)z(t) = 0.
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1. Introduction. Consider the second order linear differential equation
with damping

(&) [r(O)' ()] + p(t)2'(t) + q(t)x(t) =0, ¢ >to,

where r,p,q € C([tg,00);R), 7 > 0 ,and p and ¢ are allowed to take on
negative values for arbitrarily large ¢.

A solution of equation (E) is called oscillatory if it has arbitrarily large
zeros, and otherwise it is nonoscillatory. Equation (E) is oscillatory if all its
solutions are oscillatory.

In the absence of damping, there is a very large body of literature devoted
to the corresponding equations

(Er) a"(t) + q(t)z(t) =0,
and
(E2) (r@)z' (1)) + q(t)z(t) = 0.

Although (E) can be easily transformed to the forms (#;) and (Es) by
multiplication by an integrating factor, there are advantages in obtaining
direct oscillation theorems for (E): besides the obvious practical advantage
of eliminating the need for the integrating factor, there is an incentive in
developing methods which will generalize to more general equations.

Averaging function method is one of the most important techniques in the
study of oscillation. By using this technique, many oscillation criteria have
been found which involve the behavior of the integrals of the coeflicients,
see [7,7,2,7,2,7].

In this article, by using general Riccati technique due to Yu [?] and
averaging functions method and following the results of Yan [?] and Philos
[?], we establish some oscillation criteria for equation (E).

For other results, we refer to [?, 7, 7, ?7].

2. Main results. Throughout this section, we assume that a(t) €
C*([ty, %0); (0,00)) is a given function, f () = — 5 and (t) = a(t){q(t) -
p()f(t) + () f2(t) = [r() f(B)]'}-

The following theorem provides sufficient conditions for the oscillation of
the equation (E).

Theorem 1. Assume D = {(t,s)|t > s > tg}. Let H € C(D;R) satisfy the
following two conditions:
(i) H(t,t) =0 fort > to, H(t,s) >0 fort>s>ty;
(i1) H has a continuous and nonpositive partial derivative on D with respect
to the second variable.
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Let h: D — R be a continuous function with

—aa—lj(t, s) = h(t,s)\/H(t,s) for all (t,s) € D.
If
. 1 ¢
lim sup T to) /tO{H(t )Y (s)
1 p(s) .o
~ Za(s)r(s) (h(t,s) + 28 H(t,s)) }ds — oo, (CY)

then equation (E) is oscillatory.

Proof. Let z(t) be a nonoscillatory solution of equation (E). Without loss
of generality, we may assume that z(¢) > 0 on [Ty, 00), for some Ty > .
Define

z'(t)
x(t)

w(®) = (o (o)
Then it follows from (E) that

iy wit)  p(t)
W) =~ e v, 12T 2)

Hence, for all ¢ > T > T, we have

HI0). 2 (1)

/ “H(t $)0(s)ds
T

_ t s)w'(s)ds — ' s w2(8) H(t’s)p(s)’ws S
_ /TH(t,) (s)d /T<H(t7 Vot T s ()>d

w(s
= H(t,T)w(T) /;{H(t’ S)a(s)i(l)
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Then, for all t > T > Tj

¢ 1 p(s) 2
/T {H(t,s)w(s)—za(s)r(s) (h(t,s)—i—@ H(t,s)) }ds (3)
— H(,T)w(T) — /; { afé()t;fg)w(@

This implies that for every ¢ > Tj

t s 2
/TO {H(t, S)(s) — %a(s)r(s) (h(t, 5+ % H(t, s)) }ds

< H(t,To)w(To) < H(t, To)|w(To)| < H(t,to)|w(To)|-

Therefore,

; 1 p(s) 2
/to {H(t, $yb(s) — gals)r(s) (h(t, )+ 25\, s)> }ds

To
< H(t.ty) / [o(s)lds + H{(t,to) e (To)

To
= H(t.t) { | hewlas + |w<To>|}
0
for all ¢ > Ty. This gives

lim sup H(tl, to) /tot {H(t’ )(s)

&a(s)r(s) (h(t, 9+ 29 i, s))Q}ds

To
< / [0 (s)[ds + [w(Tp)],

which contradicts (C4). This completes the proof of the Theorem 1. O
Remark 1. If p(t) = 0, then Theorem 1 reduces to a result in [?].

Remark 2. 1If p(t) = 0 and a(t) = 1, then Theorem 1 reduces to Theorem 1
in [?].
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Theorem 2. Let H(t,s) and h(t,s) be as in Theorem 1, and let

oy Ht,s)
<
(Cq) 0< Sléltf;){hgg)lf (. to) }_ o0
Suppose that there ezists a function A € Clty,o0) satisfying
(C3)  limsu ! /t a(s)r(s) (h(t s) + p(s) H(t s)>2ds < 00
s el H(t t0) Jio T Gs) ’ ’

oo A2
(Cy) |7 s~ o

to a(s)r(s)

and for every T > tg

h?iilolp %/;{H(tvsﬁﬂs) -

1 p(s) ?
Tals)r(s) (h(t,s) + 28, s)) }ds > A(T), (Cs)

where Ay (s) = mazx{A(s),0}. Then equation (E) is oscillatory.

Proof. Without loss of generality, we may assume that there exists a solution
z(t) of equation (E) such that x(¢) > 0 on [Tp, 00), for some Ty > ty. As in
the proof of Theorem 1, (3) holds for all t > T" > Ty. Hence, for t > T > Ty,
we have

1 ! 1 p(s) 2
m/ {H(t, s)(s) — 7a(s)r(s) (h(t, s) + o) Hit, 3)) }@4;)

T

B 1 t H(t,s)
= @)~ H(t,T)/T{ alsyr(z) )

Consequently,

liiri)solip H(;’T)/Tt{H(taS)T/’(S)
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1 t H(t,s)
<w(T) - htrggjlf it T)/ { mw(s)

1 |a(s)r(s) H(t,s)p(s)\*
31 s (h(t,s) H(t,8) + =0 )} ds.

for all T' > Tp. Thus, by (Cs),

w(T) > A(T) + lim inf At s)

1 t
R T>/T{ G

% ‘gs()tfis)) (h(t, s)y/H(ts) + H(t;z)p (S)) } ds
for all T' > Ty. This shows that
w(T) = A(T) (5)
and

L 1 t H(t,s)
llggf H(t,T) /T { a(s)r(s)w(s)

2
+% aggi’? (h(t,s) H(t,s) + 2L (8)>} ds < o

for all T > Ty. Then

t H(t,s)
hm 1nf{ 1 a(3)r( ) (6)
1 (t,s)p(s)
@ To) /To (h(t s (5) )w(s)ds}
H( t,s)
= htrggolf H(t, T() { a(s) r(s
2
) H(t, s)p(s)
+2 H Alt. o)y H(ts) + — 75 )} ds < o0
Define
u(t) ! /t At s) w?(s)ds
H(t,Ty) Jz, a(s)r(s)

and
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for all t > Tj. Then (6) implies that
litm influ(t) + v(t)] < oo.

Now, we claim that

o 2
/ w(s) ds < .

7o a(s)r(s)
Suppose to the contrary that

/OO w’(s) ds = oo.

7y a(s)r(s)

By (C3), there is a positive constant M; satisfying

t—oo H (t to)

s>to

H
inf {hmlnf (t,5) } > M; > 0.

9)

(10)

Let My be any arbitrary positive number. Then it follows from (9) that

there exists a 17 > Tj such that

t 2 M-
/ w(s) ds > =2 for all t > T7.

T a(s)r(s)  — M
Therefore,

u(t) =

{ / w?(§)
a(§)r(€)

dg

}

_ / ( ) / w?(§)
t TO To a( )T(€

- ( > / w2(£)

o t TO To a(g)

>

= MlH ; o) / ( )ds

_ My H (t,Ty)

N MIH(taTO)

for all t > T1. By (10), there is a 7> > T} such that
H(taTl)
> >

H(t,to) = M1 for all ¢ = TQ,

this implies

u(t) > My for all ¢t > Ts.

Since My is arbitrary,

tlim u(t) = oo.

ief i
e s

(11)
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Next, consider a sequence {t,,}2>; in (7p, 00) with lim ¢, = oo satisfying
n—oo
lim [u(t,) + v(ty)] = liminf [u(t) 4+ v(t)].
n—00 t—o0
It follows from (7) that there exists a number M such that
u(ty) +v(tn) <M forn=1,2,3,---. (12)
It follows from (11) that

Jim u(t,) = oc. (13)
This and (12) give
Jim v(t,) = —oc. (14)

Then, by (12) and (13),

v(ty) M 1
wtn) = ut) <2

1+ for n large enough.

Thus,
v(ty)
u(ty)
This and (14) imply that

1
< —3 for all large n.

0% (tn) _
n—00 u(tn) o

On the other hand, by the Schwarz inequality, we have

V(ty) = {ﬁ/t” (h(tn,s) H(tn,s)—kw) w(s)ds}2

tnaTO) To T(S)
L i H(tns)
= {H@n,To) /T a(s)r(s) " (S)ds}
1 tn p(s) ?
< {H(tmTo) /TO a(s)r(s) (h(tn,s)—k@ H(tn,s)) ds}

tn s 2
< u(tn){m/to a(s)r(s) <h(tn,s)+% H(tn,s)> ds}

for any positive integer n. Consequently,
v (tn) 1 / tn ( p(s) ?
< a(s)r(s) | h(t,,s) + —= th,s> ds
wty) = HETy) o (s)r(s) { h(tn; s) 0s) (tn, s)
for all large n. But, (10) guarantees that

P H(taTO)
1 f
TR H(t to)
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This means that there exists a T3 > Tj such that
H(ta TO)
H(t,ty)

Z M1 for all ¢ Z Tg.

Thus,
H(t,, T
ﬁ > M, for n large enough

and therefore

0% (tn) 1 tn p(s) ?
o < /to a(s)r(s) (h(tn,s)+@ H(tn,5)> ds

for all large n. It follows from (15) that

Lt p(s) ’
lim 7/ a(s)r(s) (h(tn, 8) + ==/ H{(tn, s)) ds = oc.
n=20 H(tn,t0) Jio r(s) (16)
This gives
. Lo p(s) ’
limsu 7/asr (hts + —= Ht,s)ds:oo,
mswp s [ a(eir(s) (o) + 2 ()
which contradicts (C’3) Then ( ) holds. Hence, by (5),
o *_wi(s
ds < o0,
To a( /To a(s)r(s)
which contradicts (Cy). This Completes our proof. O

Theorem 3. Let H(t,s) and h(t,s) be as in Theorem 1, and let (C3) hold.
Suppose that there exists a function A € C[tg,00) such that (Cs) and the
following conditions hold:

1 t
(Cs) ligg(i)glf m/ H(t,s)y(s)ds < o0,

and for every T > tg

. 1 ¢
htrg(l)gf W/T{H(tas)w(s)_
1 p(s)

Tals)r(s) (h(t, )+ B2 e s))2}ds > A(T), (Cy)

where Ay (s) = mazx{A(s),0}. Then equation (E) is oscillatory.
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Proof. Without loss of generality, we may assume that there exists a solution
z(t) of equation (E) such that z(t) > 0 on [Ty, co) for some Ty > ty. As in
the proof of Theorem 2, (4) holds for all ¢ > T > Tj. Then

lig(i;lf ﬁ /Tt{H(t, s)(s) — ia(s)r(s) (h(t, s) + % H(t, s))Q}dS

< w(T) — limsup ! /Tt{ H(t 5) w(s)

t—s00 H(t,T) a(s)r(s)
a(s)r(s) H(t, s)p(s)\
+ iow <h(t /(s + =2 )} ds.
for all T' > Tp. It follows from (C7) that
w(T) > A(T) +li£1isogp H(tl, T /Tt{ ai()t;z)w(s)
2
+% a;f()tfg) (h(t, H (s + 2 (t;(ss))p(s)» ds
for all T'> Tj. Hence, (5) holds and
) 1 t H(t,s) w(s
e 57575 ol amr
2
% IEI() is)) (h(t, s)\/ H(t,s) + H(tréss))p(s)>} ds < 00
for all T' > Ty. This implies that
limsup [u(t) + v(t)] (17)

t—o00

= limsu 1 LALs) w?(s
= lwmsw moTs TO)/ {a(s)r(s) ()

+ (h(t, s)\/ H(t,s)+ H(t; 8)p(8)> w(s)} ds

lim sup ! /T:{ At s) w(s)

IN

t—oo H(t,Tp) a(s)r(s)

2
+% % (h(t, s)\ H(t,s) + Ht S)p(8)>} ds < o0,
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where u(t) and v(t) are defined as in the proof of Theorem 2. By (C7),

Alto) < liminf — (;’ = /t:{H(t, $)(s)

~a(s)r(s) (it +

~—

S

r(s)

=

i, s)>2}ds

t
§litrgirolf ) e H{(t,s)y(s)ds
1. I p(s) :
_legggfm/to a(s)r(s) (h(t,s)—&—@ H(t,s)> ds

This and (Cg) imply that

o L/ p(s) :
htrgg)lf i) /to a(s)r(s) <h(t, s) + (s) H(t, s)> ds < oc.

Then there exists a sequence {t,,}>2; in (tp, 00) with lim ¢, = oo satisfying
n—oo

lim é/tna(s)r(s) (h(tn,sw@ H(tn,s)>2ds (18)

n—oc H(tn, 1) Ji 7(s)

liminf ——— /t (s)r( )(h(t RN ))2d <
= limin a(s)r(s s .8 s < 00.
n—oc H(t,to) Jio Cr(s) '

Now, suppose that (9) holds. Using the procedure of the proof of The-
orem 2, we conclude that (11) is satisfied. It follows from (17) that there
exists a constant M such that (12) is fulfilled. Then, as in the proof of The-
orem 2, we see that (16) holds, which contradicts (18). This contradiction
proves that (9) fails. Since the remainder of the proof is similar to that of
Theorem 2, so we omit the detail. Now, let the function H(¢,s) be defined
by

H(t,s)=(t—s)", t>s>t,
where n > 2 is a constant. Then H is continuous on D = {(t,s) : t > s > tp}
and satisfies
H(t,t)=0 fort > tp, H(t,s) >0 fort>s>tp.

Moreover, H has a continuous and nonpositive partial derivative on D with
respect to the second variable. Clearly, the function

h(t,s)=n(t—s)2"L,  t>s>t

is continuous and satisfies

0H
—g(t,s):h(t,s)\/H(t,s), t>s> 1.
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We see that (C3) holds because for every s > ¢

. H(t,s) ) (t—s)™
1im = I1m ———— =
t—o00 H(t, to) t—o0 (t — to)n
Then, by Theorems 1 and 2, we have following two corollaries. ]

Corollary 1. Let n > 2 be a constant. If
t

lim sup ti" {(t—s)nzp(s)—wa(s)r(s) (n—}—l&(t—s))Q}ds = 00,

00 to 4

Then equation (E) is oscillatory.

Corollary 2. Letn > 2 be a constant and suppose that there exists a func-
tion A € Cltg,00) satisfying (Cs) and
t

lim sup in (t — s)"2a(s)r(s) (n + iLz)(t - 8))2}d8 < oo

t—o00 to

and for every T > tg

: L n (t—s)"? p(s) ’

limsup — (t—s)"p(s)—————a(s)r(s) |[n+—=(t—s)| pds > A(T).
tosoo U JT 4 7(s)

Then equation (E) is oscillatory.

FEzample 1. Consider the equation

() 2" (t) + %x’(t) n t%x(t) —0, t>1,

where a and 3 are two constants with > 0. Let a(t) =t and n = 2. Then

f(t) = —%, h(t,s) =2 and

0(t) = a(t)fa(t) — () F(0) + r(0)0) — ()7 ()} = P2
This implies
— §)n2 s 2

hﬂigp in . t: {(t —s)"h(s) — %a(s)r(s) <n + ‘:%(t — s)) } ds

t a— « 2
:liirisoliptlz/to {(t—s)Q ) % - is <2—|—;(t—s)) }ds

t —(a—1)2 alt—s
:liﬂsogpt%/to {(t—s)2_4,3 (48 1) —5— (ts )}ds

=00, ifl1—2VB<a<1+2V5.
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It follows from Corollary 1 that equation (FE3) is oscillatory if 1—2v/3 < a <
1 + 2v/B. Moerover, we note that equation (E3) has a solution z(t) = "

if (v —1)% =40,
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