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Lo — ESTIMATE FOR QUALITATIVELY
BOUNDED WEAK SOLUTIONS OF
NONLINEAR DEGENERATE DIAGONAL
PARABOLIC SYSTEMS

W.M. ZAJACZKOWSKI

Abstract. The Dirichlet problem to nonlinear degenerate diagonal parabo-
lic system with some special right—hand sides but still satisfying the maximal
growth conditions is considered. Applying the idea of Stampacchia a Lo, —
estimate in terms of data for a priori bounded weak solutions is found.

1. Introduction. In this paper we show only boundedness of qualita-
tively bounded weak solutions to the following Dirichlet problem for a di-
agonal parabolic system

uip — div (ai(z,t,u, Vu) - Vu;) = bi(x, t,u, Vu) (1.1)
in QT

Uilt=0 = uo; in Q,

W; = Up; on ST,
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where i = 1,... ,m, Q C R", QT = Q x (0,7), ST = S x (0,T), S is the
boundary of €2, and dot denotes the scalar product in IR"™.
We assume the following growth conditions

ai(z,t,u,Vu) - Vu; - Vu; > a0|Vu|p72|Vui|2 — ¢1i(z,t), (1.2)

bi(I,t,U, VU) < /80|vu‘p72|vui‘2 + ¢2z(x7t) )

where i = 1,... ,m, ag, By are positive constants, and ¢1;, ¢o; are positive
functions.
By a bounded weak solution of (1.1) we mean a function

u € Log(0,7 Ly(€; R™)) N Ly (0. 75 W,y (€ R™)) N Lo ("5 R™)

satisfying the integral identity

Z AT—h (uiht¢i + (aiVui)h . ngﬁz — bthbl) drdt=0, (13)
=1

(o}
which holds for any ¢ € L, (0, T3 W, (€;R™)) N Lo (275 R™), where u), =
. tt+h u(zx, T)dr is the Steklov average.

Applying the idea of Stampacchia for one equation (see [1, Ch.5, Sect.17])
an L, — estimate in terms of data is found for a priori qualitatively bounded
weak solutions to nonlinear degenerate diagonal parabolic systems. For
nondegenerate diagonal parabolic system such result is proved in [4], where
additionally the Holder continuity and global existence are proved.

By WI}(Q, R™), L,(Q; R™) we denote the Sobolev spaces for functions

with values in IR™. We denote also |u|p,Q =l u HLp(Q)'

2. Boundedness of solutions. First we prove

Lemma 2.1. Assume that ug € Loo(€2; R™), uy € Loo(ST; R™),

u € Lq(QT; R™), g > 1. Assume that u is a qualitatively bounded weak so-
lution of (1.3). Assume the growth conditions (1.2). Let ¢y € Ly, (0F; R™),
$2 € Ly, (QT; R™), pr > 22, po > =t p>2.

_ poe P2 2nip)
Then there exists a positive increasing function Fy such that

[uiloc.or < F1 (161:lp, 07 [ 82,0 ) max {Juosl oo, s il 07 » il 0r(p-1)

wheret=1,... ,m, g > 1.
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Proof. Assume that M is the essential supremum of u; in Q, i =1,... ,m,
and u;, ¢ = 1,... ,m, are nonnegative. We put the testing function (u;, —
k)y,i=1,... ,m, where k < M into (1.3). Performing calculations in the

first term and passing with h to zero we get

1 t=t
/Q Sl =B} de] ~ + /Q ai -V (i — k)4 - Vugn — k)y dadt 2.2)

—/ bi(up, — k)ydxdt =0, i=1,...,m,
Qt

where the sum was dropped because we took as testing functions

¢:(¢7n 7¢m)

such that ¢; = 0, j # i, ¢; = (usn, — k). Moreover, we used that k > uy,,
i=1,...,m.
In view of the growth conditions (1.2) we have

1
—/ (ui — k)2 d:v+oz0/ VulP~? |V (s — k), 2dedt < (2.3)
2 Q Ot
< o [ 190729 (s — k)4 (s — k) dede +
Q

+/ ¢1id$dt+/ ¢2i(ui—/€)+ dedt, i=1,...,m,
AL, o

where we used that k > ug;, 1 =1,... ,m, and
A ={@n e uit) > k} . (2.4)

In view of the Holder inequality the second term on the r.h.s. of (2.3) is
bounded by

|B1ilpy o [ AL [VP (2.5)

where p% + p—l, =1, |A},| = meas A, and the last term on the r.h.s. of
1 ’ ’
(2.3) is estimated by

p/ 1/p2
|}2il . QT (/Qt(uih - k)f) =1,

where p% + pi, = 1. Continuing, we have
2

1/Xapy
L < |¢2i|p2’QT|AZ’i 1/2apy (/,4+ (u; — k) P2 dx dt) =1,

ki
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where )\ + )\2 = 1. Assuming that \op) = p™t2 and using the imbedding
theorem for the parabolic norm (see [1, Ch.1, Sect 3]) we have

1/2
Iy < 1l or A7 [(up fi-ptde) 4 20

1/p
+ (/ V(s — k)+|pd:cdt)
Qt

€1 1 ,
< c1]92ilpy a7 {— ess Supt/Q(ui — k)2 dz + E‘Azi‘z/,\lpﬂ n

<

2
eh 1 .
+cl|¢2i|p2,QT [E /Qt \V(ul - kJ)+ p’gg ki =
= 13,

where ¢; is the constant from the imbedding, % + % =1,¢e1,e2 € (0,1).
Using (2.5) and (2.6) in (2.3) and assuming that

1/p
1 p Qo
8 =——" =\ =
61|¢2i|p279T ’ (2 Cl|¢2i|p2,QT>

we obtain

1
;o supt/(u k)2 d:v—l——/ VulP 2V (i — k)4 2 de dt <2.7)
JQ

< | VPV s = k)P — k) drd +

iy, or AL |p1+ |¢22|p29T\A \Pz TR

1
f — 1 2 p—1 P —— n
+ <Cl|¢2i|p2,QT)P 1 pp <pa ) |Ak+,z (p—1pl  (pP—1)(n+2) )
0

Let

1
ZCQ(phPQ) D13l py 07 + 2 \¢2z p0f T (2.8)

1
p -
Ep—1/ 2 \p1
(Cl|¢2i|p2’QT)p 1 p <pao> ’
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and assume that k = M — 2¢ where 2¢ < fé’ , and
M —2e > supsup{|u01|oo,g, [upiloo 57}, T=1,...,m.
K2
Then from (2.7) we obtain

ess supt/ (wi — k)3 dx + ao/ |VulP=2|V (u; — k)1 |? dz dt <(2.9)
Q o

< e (AL + AL P57 4 T T )

Consider the sequence of increasing levels

g
ky=M—c—, s=012..., (2.10)

and corresponding family of sets
Al =) e 0" cuia,t) > b} (2.11)
Using (2.10) and (2.11) we write (2.9) in the form
esssup, [ (ui = k) do o [ Va7V (s~ k) dodt ©212)

2 2n

+ |A ‘p_/ m + |A'k‘l' Z| (Ppi)pé(pl)‘n(nJrQ)) ‘
Sy

1
Y
1

<er (\A,js I

From the multiplicative inequality (see [1, Ch.1, Sect.3]) we get

(n+2)
e \P = A+ -
9s+1 | ks+1,i| = (2.13)

pnt2) pnt2)
</A+ (i — ks)" dxdtg/m(ui—ks)Jr drdt <

s+1 )i

p/n
<ecs <ess supt/ (ui — ks)2 dz) /T IV (u; — ks)y [P dxdt,
Q Q

where c3 is the constant from the imbedding theorem.
Now from (2.12) and (2.13) we have

n+2 1
7

-\ 5042)
<_) af [ <e <|A,js,i|p1 N (2.14)

2s+1

2 __2n__ (4P ( p _ n > 1+2
cpar FrE) 000 e (G et (m)_
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To apply the standard technique (see [1, Ch.5]) we have to check that expo-
nents in all terms on the r.h.s. of (2.14) are larger than 1. This implies some
restrictions on p; and ps. Considering the first term we have to assume that
pi,l (1+2)>1,s0

p> P (2.15)
In the second term we get the restriction
2 2n p
— - —— 1+—)>1, 2.16
(5 srm) (15 (219
which is satisfied if
1 n n
0<—<1-— — . 2.17
P2 p(n+2)  2(n+p) (217
The above inequality implies another restriction
1 1 1
f(p) :== + < —. (2.18)

Cp(n+2) 2n+p) n
For p = 2 we have that f(2) = ni” so (2.18) holds. Moreover, f’(p) < 0, so
(2.18) is satisfied for p > 2.

However, we shall not consider the case p < 2, we examine the inequality
(2.18) for p € [1,2) also. Put p =1 into (2.18). Then we get
1 n 1
2
EEREIEY
The above inequality is satisfied for n < 3. For n — oo the Lh.s. tends to
3. Therefore for n > 3 there exists p = p(n) € (1,2) such that
1 1 1
+ = —.
p(n+2) 2(n+p) n
Hence (2.16) does not hold for p < p(n).
Finally, we consider the exponent in the third term on the r.h.s. of (2.14).
The necessary condition takes the form

((p —pl)p’z (- 1)Tzn + 2)) (1 + %) >1, (2.19)

which is satisfied if

<1.

1 -1
0<tcpo_n__ne=b (2.20)
P2 p(n+2) p(n+p)
so we have to have that
1 —1 1
folp) == + P <= (2.21)

Cp(n+2)  pn+p) n
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Since fp(2) = n—iQ < L and f{(p) < 0 we see that (2.21) holds for p > 2, so
(2.19) is also valid.
For p € (1,2) the considerations are more complicated than in the previ-

ous case, so we omit them.
Since |A} | < |Q7] instead of (2.14) we obtain

n+2

e N 4 T + (l4ro
25+1 |Ak5+1,i| S C4C5 (‘Q ‘) ‘Aks,l‘ 9 (222)

where c¢5 is an increasing function of its argument, ko > 0 and

1+ i {1<1+p) (2 2n ><1+p) (2.23)
Ko = minq§ — ), 5= =], (2
0 P n Py p(n+2) n

(<pp1>p'2 - <p152n+2>> (“g)} '

Therefore, (2.22) implies

_pnt2
|A;sw.\ < cob®eTPn \A£7i|1+“0, (2.24)

p(n+2) p(n+2)

where cg = c4c52 " n ,b=2"n .
From (2.24) and either Lemma 4.1 from [1, Ch.1], or Lemma 5.6 from [2,
Ch.2], or Lemma 4.7 from [3, Ch.2], it follows that |A,js | —0ass— o0 if

n 1/k
+ 8p%2 / 0 71/’{2
A <= bY/s5 (2.25)

o
In this case we would have that
u<M—e ae in QF,

with contradicts the definition of M.

Since ks = M — e — 55, s > 0, we have that kg = M — 2¢ and we can take

¢ so small that kg > % Then we have

M\ M\
(—) AF | < (-) AL, .|§/ a9 it
2 0,2 2 St QT

Hence,

2 q
A% < (M) /QT g9 da it (2.26)
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If the r.h.s. is less than v, we have a contradiction. Thus,

1/q
ess supqr u; < 27;1/(1 (/T |u;|? dx dt) , (2.27)
Q

1=1,... m, g>1.
If u; < 0 we have to introduce the cut—off function
(u; — k) = max{—(u; — k),0}, k<O.
Then we obtain a similar estimate from below. This concludes the proof. [

Finally we have to obtain an estimate for |u;|, or, ¢ > 1. Therefore, we
have

Lemma 2.2. Let up € Loo( R™), up € Loo(ST; R™), ¢i € Ly(QF; R™),

where q > "T"'z, i1=1,2.

Then the following estimate holds
il nsz gr < Fo ([toiloo,2 s [siloc 57 s [81lg.07 s [d2ilg.0r) + (2:28)

i=1,...,m,

where Fy is an increasing positive function of its arguments.

Proof. Let k. = max;{ess supq |uo;i|,ess supgr |up;|}, and let the test func-
tion in (1.3) be such that ¢; = 0 for j # i, ¢; = (up — ki) p e Win =R+
Then (1.3) takes the form

/ wing (win — k) e =R+ gy 4 (2.29)
Q
+/ (ai(z,t,u, Vu) - Vu),, - V ((uih - k*)+€a(uirk*)+) dr =

Q

N / (bih(l‘v t,u, vu))h (uih - k*)+€a(uih_k*)+ dz.
Q



Leo — ESTIMATE FOR QUALITATIVELY BOUNDED WEAK SOLUTIONS 9

The first term in (2.29) we treat in the following way

/Quiht(uih — k) petuin=hs gy = (2.30)

+
@ Ak*,z’

1
= /+ Wing(win — k) etin =R d = —/ (wip, — ko) Bpein=he) dz —
Ak*,i
1

«

T a /A+ [6t ((u"h - k*)ea(u"rk*)) — Op(uin, — k*)ea(”irk*)] dr =
Kox i

1 1
_ - o o(usp—k«) - a(usp—kx) _
= oz/g {& ((uzh k)4 ettt +) a&ge h ﬁ dx =

(6% 0 a

Now inserting (2.30) into (2.29), integrating the result with respect to time
and passing with h to 0 yields

l/ [(ui —ky)y — l} etk )+ g 4 (2.31)
Q [e%

(%

+ [ a;- V- V(14 a(u; — k)4 )e® @50+ de dt <
Qt

S / bl(uz — k*)+6a(uiik*)+ dx dt,
Ot

where we performed calculations in the second term on the Lh.s. of (2.29)
and used the fact that

kwmplyﬁwﬂ%\ = ——<0.

1
a =0  «

Using the structure condition (1.2) in (2.31), we obtain

é/g [(“i — k)t — ﬂ i) da + (2.32)

+%/|WM”W@—@%PU+MW—mMMWWM”Mﬁg
Ot

= /Q 021 (s = ) 4 + Bl VulP 2|V (i = k) (i — ko) +

+ 1i (14 aus — k) )] e ™R+ da de .
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Assuming that o > iﬁ we obtain
0
1 1
~ /Q [(ui )y — E} eOli—k)s g (2.33)

+a0/ VP 2|V (g — k) |2 (1+
Qt

|9

(u; — k*)+> Wik )+ o dt <

< / (b1 (1 + a(u; — k) 4) + dos(u; — ki) 4] e F)+ da dt
Qt

To simplify notation we introduce the functions v; = (u; — k)4 > 0 and
¢0; = max{¢1;, P2}, i = 1,... ,m. Using also that |Vu| > |Vu;|, we write
(2.33) in the form

1
ess supt/ (v — —> e*dx + /T |Vol? (1 + %v) e dx dt 42.34)
Q « Q

< c/T(l + ¢0)(1 +v)e* dzxdt,
Q
where v > 0 and the index i was omitted for simplicity. Let
w=(v—1)Per D (2.35)

Let a > 1 and v > 1. For v < 1 we have the sup estimate for v so there is
nothing to prove. Then we have

1 1
/ (v——)eavdmz/(v—l)eavdfc—i—/ (1——>ea”dx,
Q «Q Q Q a
/(vfl)eavda:Z/ (v—1) e dx:/wpdac.
Q Q Q

1
/ (v - —) e dxr > / wP dx . (2.36)
Q a Q

Since v > 1 we have that w = (v — 1)1/7’3%(”*1)’ SO

where

Therefore,

1 1_
Vo = <—(v— 1)t 4

Yy 1)1/p> Toes D)
p p

and

VP < ef(=1)'7+ (v =1)] [VolPerD < (2.37)

< (1 +0)|VoPe?® ™D < ¢(v + 1)|VulPe .
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Finally, since w? = (v — 1)e®@ D > (v — 1)e®e * = ¢(v — 1)e® =
= cve™ — ce™. Independently, since v > 1 we have that w? > ce®. Hence,
ve® < cwP 4 ce® < cwP. Therefore, we have

(1 +v)e™ <cwb. (2.38)
Using (2.36)—(2.38) in (2.34) implies

ess supt/ wP dx + /T |Vw|P dzxdt < (2.39)
Q Q

<o /QT(1 + o)1+ wP) dedt.

Using the imbedding (3.1) from [1], Ch.1, Sect.3 for the space V02’p(QT) =

Lo(0,T75 La(€2)) N Ly(0, T VVP1 (Q)) and the Holder inequality on the r.h.s.
of (2.39) we get

1/pM1
Wlatnen or < o ) < /Q (1t o) da dt) (2.40)

1/pA2 1 __ n
(/ |w‘P)\2 dx dt) < co+ CS'QT‘P)\Q p(n+2) |w|p(n+2) or s
QT n 3
1/pA
where cp = c}/p (Jeyr (14 o) d dt) /P, c3 = c}/p (fQT(l + ¢o)M dx dt) & "
/\_11+>\_12:1’>\2<n7—|—2’A1>nT+2.

If T is so small that

e QT |72 7 <

DO | =

we obtain the estimate
|| pnt2) or < 2¢. (2.41)

For arbitrary T the argument can be repeated up to covering the whole
[0,77] in a finite number of steps.
From the definition of v; and (2.35) we have that

(i = )y — DY = wie #0705
Hence, either
u; < ke +1 (2.42)
or u; > k. + 1. In the second case we have the inequality

ui <cg (ke +1)+uf] .
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Therefore,
[uilnzz gr < ealhe + DIQTT 4 ealwilfiniy (r € (243)
< ea(ky + D)|QT |77 + cq(2e2)P.

From (2.42) and (2.43) we obtain (2.28). This concludes the proof. O

From Lemmas 2.1, 2.2, we have

Theorem 2.3. Let the assumptions of Lemmas 2.1, 2.2 be satisfied. Then
a qualitatively bounded solution of (1.1) is bounded in terms of data (see the
inequalities (2.1) and (2.28)).
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