L_{∞} – ESTIMATE FOR QUALITATIVELY BOUNDED WEAK SOLUTIONS OF NONLINEAR DEGENERATE DIAGONAL PARABOLIC SYSTEMS

W.M. ZAJĄCZKOWSKI

Abstract. The Dirichlet problem to nonlinear degenerate diagonal parabolic system with some special right—hand sides but still satisfying the maximal growth conditions is considered. Applying the idea of Stampacchia a L_{∞} – estimate in terms of data for a priori bounded weak solutions is found.

1. Introduction. In this paper we show only boundedness of qualitatively bounded weak solutions to the following Dirichlet problem for a diagonal parabolic system

¹⁹⁹¹ Mathematics Subject Classification. 35B50, 35D10, 35K50, 35K65.

 $Key\ words\ and\ phrases.$ Nonlinear degenerate diagonal parabolic system, boundedness of solutions.

where $i = 1, ..., m, \Omega \subset \mathbb{R}^n, \Omega^T = \Omega \times (0, T), S^T = S \times (0, T), S$ is the boundary of Ω , and dot denotes the scalar product in \mathbb{R}^n .

We assume the following growth conditions

$$a_i(x, t, u, \nabla u) \cdot \nabla u_i \cdot \nabla u_i \ge \alpha_0 |\nabla u|^{p-2} |\nabla u_i|^2 - \phi_{1i}(x, t), \quad (1.2)$$

$$b_i(x, t, u, \nabla u) \le \beta_0 |\nabla u|^{p-2} |\nabla u_i|^2 + \phi_{2i}(x, t),$$

where i = 1, ..., m, α_0 , β_0 are positive constants, and ϕ_{1i} , ϕ_{2i} are positive functions.

By a bounded weak solution of (1.1) we mean a function

$$u \in L_{\infty}(0,T;L_2(\Omega;\mathbb{R}^m)) \cap L_p(0,T;W_p^1(\Omega;\mathbb{R}^m)) \cap L_{\infty}(\Omega^T;\mathbb{R}^m)$$

satisfying the integral identity

$$\sum_{i=1}^{m} \int_{\Omega^{T-h}} (u_{iht}\phi_i + (a_i \nabla u_i)_h \cdot \nabla \phi_i - b_{ih}\phi_i) \, dx \, dt = 0, \qquad (1.3)$$

which holds for any $\phi \in L_p(0,T; \overset{\circ}{W^1_p}(\Omega; \mathbb{R}^m)) \cap L_{\infty}(\Omega^T; \mathbb{R}^m)$, where $u_h =$ $\frac{1}{h} \int_{t}^{t+h} u(x,\tau) d\tau$ is the Steklov average.

Applying the idea of Stampacchia for one equation (see [1, Ch.5, Sect.17]) an L_{∞} – estimate in terms of data is found for a priori qualitatively bounded weak solutions to nonlinear degenerate diagonal parabolic systems. For nondegenerate diagonal parabolic system such result is proved in [4], where additionally the Hölder continuity and global existence are proved.

By $W_p^1(Q, \mathbb{R}^m)$, $L_p(Q; \mathbb{R}^m)$ we denote the Sobolev spaces for functions with values in \mathbb{R}^m . We denote also $|u|_{p,Q} = ||u||_{L_n(Q)}$.

2. Boundedness of solutions. First we prove

Lemma 2.1. Assume that $u_0 \in L_{\infty}(\Omega; \mathbb{R}^m)$, $u_b \in L_{\infty}(S^T; \mathbb{R}^m)$, $u \in L_q(\Omega^T; \mathbb{R}^m), q \geq 1$. Assume that u is a qualitatively bounded weak solution of (1.3). Assume the growth conditions (1.2). Let $\phi_1 \in L_{p_1}(\Omega^T; \mathbb{R}^m)$, $\phi_2 \in L_{p_2}(\Omega^T; \mathbb{R}^m)$, $p_1 > \frac{n+p}{p}$, $p_2 > \frac{1}{1-\frac{n}{p(n+2)}-\frac{n}{2(n+p)}}$, $p \geq 2$.

Then there exists a positive increasing function F_1 such that

$$|u_i|_{\infty,\Omega^T} \le F_1\left(|\phi_{1i}|_{p_1,\Omega^T}, |\phi_{2i}|_{p_2,\Omega^T}\right) \max\left\{|u_{0i}|_{\infty,\Omega}, |u_{bi}|_{\infty,\Omega^T}, |u_i|_{q,\Omega^T}\right\}.$$

where $i = 1, \ldots, m, q \ge 1$.

Proof. Assume that M is the essential supremum of u_i in Ω^T , $i = 1, \ldots, m$, and u_i , $i = 1, \ldots, m$, are nonnegative. We put the testing function $(u_{ih} - k)_+$, $i = 1, \ldots, m$, where k < M into (1.3). Performing calculations in the first term and passing with h to zero we get

$$\int_{\Omega} \frac{1}{2} (u_{ih} - k)_{+}^{2} dx \Big|_{t=0}^{t=t} + \int_{\Omega^{t}} a_{i} \cdot \nabla (u_{ih} - k)_{+} \cdot \nabla (u_{ih} - k)_{+} dx dt (2.2)$$
$$- \int_{\Omega^{t}} b_{i} (u_{ih} - k)_{+} dx dt = 0, \quad i = 1, \dots, m,$$

where the sum was dropped because we took as testing functions

$$\phi = (\phi_i, \ldots, \phi_m)$$

such that $\phi_j = 0$, $j \neq i$, $\phi_i = (u_{ih} - k)_+$. Moreover, we used that $k > u_{bi}$, $i = 1, \ldots, m$.

In view of the growth conditions (1.2) we have

$$\frac{1}{2} \int_{\Omega} (u_{i} - k)_{+}^{2} dx + \alpha_{0} \int_{\Omega^{t}} |\nabla u|^{p-2} |\nabla (u_{i} - k)_{+}|^{2} dx dt \leq (2.3)$$

$$\leq \beta_{0} \int_{\Omega^{t}} |\nabla u|^{p-2} |\nabla (u_{i} - k)_{+}|^{2} (u_{i} - k)_{+} dx dt +$$

$$+ \int_{A_{k,i}^{+}} \phi_{1i} dx dt + \int_{\Omega^{t}} \phi_{2i} (u_{i} - k)_{+} dx dt, \quad i = 1, \dots, m,$$

where we used that $k > u_{0i}$, i = 1, ..., m, and

$$A_{k,i}^{+} = \left\{ (x,t) \in \Omega^{T} : u_{i}(x,t) > k \right\}. \tag{2.4}$$

In view of the Hölder inequality the second term on the r.h.s. of (2.3) is bounded by

$$|\phi_{1i}|_{p_1,\Omega^T}|A_{k,i}^+|^{1/p_1'},$$
 (2.5)

where $\frac{1}{p_1} + \frac{1}{p_1'} = 1$, $|A_{k,i}^+| = \text{meas } A_{k,i}^+$, and the last term on the r.h.s. of (2.3) is estimated by

$$|\phi_{2i}|_{p_2,\Omega^T} \left(\int_{\Omega^t} (u_{ih} - k)_+^{p_2'} \right)^{1/p_2'} \equiv I_1,$$

where $\frac{1}{p_2} + \frac{1}{p_2'} = 1$. Continuing, we have

$$I_1 \le |\phi_{2i}|_{p_2,\Omega^T} |A_{k,i}^+|^{1/\lambda_1 p_2'} \left(\int_{A_{k,i}^+} (u_i - k)^{\lambda_2 p_2'} dx dt \right)^{1/\lambda_2 p_2'} \equiv I_2,$$

where $\frac{1}{\lambda_1} + \frac{1}{\lambda_2} = 1$. Assuming that $\lambda_2 p_2' = p \frac{n+2}{n}$ and using the imbedding theorem for the parabolic norm (see [1, Ch.1, Sect.3]) we have

$$I_{2} \leq c_{1} |\phi_{2i}|_{p_{2},\Omega^{T}} |A_{k,i}^{+}|^{1/\lambda_{1}p_{2}'} \left[\left(\operatorname{ess sup}_{t} \int_{\Omega} (u_{i} - k)_{+}^{2} dx \right)^{1/2} + \left(\int_{\Omega^{t}} |\nabla(u_{i} - k)_{+}|^{p} dx dt \right)^{1/p} \right] \leq$$

$$\leq c_{1} |\phi_{2i}|_{p_{2},\Omega^{T}} \left[\frac{\varepsilon_{1}}{2} \operatorname{ess sup}_{t} \int_{\Omega} (u_{i} - k)_{+}^{2} dx + \frac{1}{2\varepsilon_{1}} |A_{k,i}^{+}|^{2/\lambda_{1}p_{2}'} \right] +$$

$$+ c_{1} |\phi_{2i}|_{p_{2},\Omega^{T}} \left[\frac{\varepsilon_{2}^{p}}{p} \int_{\Omega^{t}} |\nabla(u_{i} - k)_{+}|^{p} dx dt + \frac{1}{p'\varepsilon_{2}^{p'}} |A_{k,i}^{+}|^{p'/\lambda_{1}p_{2}'} \right] \equiv$$

$$\equiv I_{3},$$

where c_1 is the constant from the imbedding, $\frac{1}{p} + \frac{1}{p'} = 1$, ε_1 , $\varepsilon_2 \in (0, 1)$. Using (2.5) and (2.6) in (2.3) and assuming that

$$\varepsilon_1 = \frac{1}{c_1 |\phi_{2i}|_{p_2,\Omega^T}}, \quad \varepsilon_2 = \left(\frac{p}{2} \frac{\alpha_0}{c_1 |\phi_{2i}|_{p_2,\Omega^T}}\right)^{1/p}$$

we obtain

$$\frac{1}{4}\operatorname{ess sup}_{t} \int_{\Omega} (u_{i} - k)_{+}^{2} dx + \frac{\alpha_{0}}{2} \int_{\Omega^{t}} |\nabla u|^{p-2} |\nabla (u_{i} - k)_{+}|^{2} dx dt \leq 2.7$$

$$\leq \beta_{0} \int_{\Omega^{t}} |\nabla u|^{p-2} |\nabla (u_{i} - k)_{+}|^{2} (u_{i} - k)_{+} dx dt +$$

$$+ |\phi_{1i}|_{p_{1},\Omega^{T}} |A_{k,i}^{+}|^{\frac{1}{p'_{1}}} + \frac{c_{1}^{2}}{2} |\phi_{2i}|_{p_{2},\Omega^{T}}^{2} |A_{k,i}^{+}|^{\frac{2}{p'_{2}} - \frac{2n}{p(n+2)}} +$$

$$+ \left(c_{1} |\phi_{2i}|_{p_{2},\Omega^{T}} \right)^{\frac{p}{p-1}} \frac{p-1}{p} \left(\frac{2}{p\alpha_{0}} \right)^{\frac{1}{p-1}} |A_{k,i}^{+}|^{\frac{p}{(p-1)p'_{2}} - \frac{n}{(p-1)(n+2)}} .$$

Let

$$\frac{1}{4}c_2(p_1, p_2) = |\phi_{1i}|_{p_1, \Omega^T} + \frac{c_1^2}{2} |\phi_{2i}|_{p_2, \Omega^T}^2 +$$

$$+ \left(c_1 |\phi_{2i}|_{p_2, \Omega^T}\right)^{\frac{p}{p-1}} \frac{p-1}{p} \left(\frac{2}{p\alpha_0}\right)^{\frac{1}{p-1}},$$
(2.8)

and assume that $k = M - 2\varepsilon$ where $2\varepsilon \leq \frac{\alpha_0}{4\beta_0}$, and

$$M - 2\varepsilon \ge \sup_{i} \sup\{|u_{0i}|_{\infty,\Omega}, |u_{bi}|_{\infty,S^T}\}, \quad i = 1, \dots, m.$$

Then from (2.7) we obtain

ess
$$\sup_{t} \int_{\Omega} (u_i - k)_+^2 dx + \alpha_0 \int_{\Omega^t} |\nabla u|^{p-2} |\nabla (u_i - k)_+|^2 dx dt \le (2.9)$$

$$\leq c_2 \left(|A_{k,i}^+|^{\frac{1}{p_1'}} + |A_{k,i}^+|^{\frac{2}{p_2'} - \frac{2n}{p(n+2)}} + |A_{k,i}^+|^{\frac{p}{(p-1)p_2'} - \frac{n}{(p-1)(n+2)}} \right).$$

Consider the sequence of increasing levels

$$k_s = M - \varepsilon - \frac{\varepsilon}{2^s}, \quad s = 0, 1, 2, \dots,$$
 (2.10)

and corresponding family of sets

$$A_{k_s,i}^+ = \left\{ (x,t) \in \Omega^T : u_i(x,t) > k_s \right\}. \tag{2.11}$$

Using (2.10) and (2.11) we write (2.9) in the form

ess
$$\sup_{t} \int_{\Omega} (u_{i} - k_{s})_{+}^{2} dx + \alpha_{0} \int_{\Omega^{t}} |\nabla u|^{p-2} |\nabla (u_{i} - k_{s})_{+}|^{2} dx dt$$
 (2.12)

$$\leq c_2 \left(|A_{k_s,i}^+|^{\frac{1}{p_1'}} + |A_{k_s,i}^+|^{\frac{2}{p_2'} - \frac{2n}{p(n+2)}} + |A_{k_s,i}^+|^{\frac{p}{(p-1)p_2'} - \frac{n}{(p-1)(n+2)}} \right).$$

From the multiplicative inequality (see [1, Ch.1, Sect.3]) we get

$$\left(\frac{\varepsilon}{2^{s+1}}\right)^{p^{\frac{(n+2)}{n}}} |A_{k_{s+1},i}^+| \le \tag{2.13}$$

$$\leq \int_{A_{k-1,i}^+} (u_i - k_s)_+^{p\frac{(n+2)}{n}} dx dt \leq \int_{\Omega^T} (u_i - k_s)_+^{p\frac{(n+2)}{n}} dx dt \leq$$

$$\leq c_3 \left(\operatorname{ess sup}_t \int_{\Omega} (u_i - k_s)_+^2 dx\right)^{p/n} \int_{\Omega^T} |\nabla (u_i - k_s)_+|^p dx dt$$

where c_3 is the constant from the imbedding theorem.

Now from (2.12) and (2.13) we have

$$\left(\frac{\varepsilon}{2^{s+1}}\right)^{p\frac{n+2}{n}}|A_{k_{s+1},i}^{+}| \le c_4 \left(|A_{k_s,i}^{+}|^{\frac{1}{p_1'}\left(1+\frac{p}{n}\right)} + \right)$$
(2.14)

$$+ |A_{k_s,i}^+|^{\left(\frac{2}{p_2'} - \frac{2n}{p(n+2)}\right)\left(1 + \frac{p}{n}\right)} + |A_{k_s,i}^+|^{\left(\frac{p}{(p-1)p_2'} - \frac{n}{(p-1)(n+2)}\right)\left(1 + \frac{p}{n}\right)} \right)$$

To apply the standard technique (see [1, Ch.5]) we have to check that exponents in all terms on the r.h.s. of (2.14) are larger than 1. This implies some restrictions on p_1 and p_2 . Considering the first term we have to assume that $\frac{1}{p_1'}(1+\frac{p}{n})>1$, so

$$p_1 > \frac{n+p}{p} \,. \tag{2.15}$$

In the second term we get the restriction

$$\left(\frac{2}{p_2'} - \frac{2n}{p(n+2)}\right) \left(1 + \frac{p}{n}\right) > 1,$$
 (2.16)

which is satisfied if

$$0 < \frac{1}{p_2} < 1 - \frac{n}{p(n+2)} - \frac{n}{2(n+p)}. \tag{2.17}$$

The above inequality implies another restriction

$$f(p) := \frac{1}{p(n+2)} + \frac{1}{2(n+p)} < \frac{1}{n}.$$
 (2.18)

For p=2 we have that $f(2)=\frac{1}{n+2}$ so (2.18) holds. Moreover, f'(p)<0, so (2.18) is satisfied for $p\geq 2$.

However, we shall not consider the case p < 2, we examine the inequality (2.18) for $p \in [1, 2)$ also. Put p = 1 into (2.18). Then we get

$$\frac{1}{1+\frac{2}{n}} + \frac{1}{2\left(1+\frac{1}{n}\right)} < 1.$$

The above inequality is satisfied for $n \leq 3$. For $n \to \infty$ the l.h.s. tends to $\frac{3}{2}$. Therefore for n > 3 there exists $p = p(n) \in (1, 2)$ such that

$$\frac{1}{p(n+2)} + \frac{1}{2(n+p)} = \frac{1}{n}.$$

Hence (2.16) does not hold for $p \leq p(n)$.

Finally, we consider the exponent in the third term on the r.h.s. of (2.14). The necessary condition takes the form

$$\left(\frac{p}{(p-1)p_2'} - \frac{n}{(p-1)(n+2)}\right) \left(1 + \frac{p}{n}\right) > 1,$$
(2.19)

which is satisfied if

$$0 < \frac{1}{p_2} < 1 - \frac{n}{p(n+2)} - \frac{n(p-1)}{p(n+p)}, \tag{2.20}$$

so we have to have that

$$f_0(p) := \frac{1}{p(n+2)} + \frac{p-1}{p(n+p)} < \frac{1}{n}.$$
 (2.21)

Since $f_0(2) = \frac{1}{n+2} < \frac{1}{2}$ and $f_0'(p) < 0$ we see that (2.21) holds for $p \ge 2$, so (2.19) is also valid.

For $p \in (1, 2)$ the considerations are more complicated than in the previous case, so we omit them.

Since $|A_{k,i}^+| \leq |\Omega^T|$ instead of (2.14) we obtain

$$\left(\frac{\varepsilon}{2^{s+1}}\right)^{p\frac{n+2}{n}} |A_{k_{s+1},i}^+| \le c_4 c_5 \left(|\Omega^T|\right) |A_{k_s,i}^+|^{1+\kappa_0}, \qquad (2.22)$$

where c_5 is an increasing function of its argument, $\kappa_0 > 0$ and

$$1 + \kappa_0 = \min \left\{ \frac{1}{p_1'} \left(1 + \frac{p}{n} \right), \left(\frac{2}{p_2'} - \frac{2n}{p(n+2)} \right) \left(1 + \frac{p}{n} \right), (2.23) \right\}$$
$$\left(\frac{p}{(p-1)p_2'} - \frac{n}{(p-1)(n+2)} \right) \left(1 + \frac{p}{n} \right) \right\}.$$

Therefore, (2.22) implies

$$|A_{k_{s+1},i}^+| \le c_0 b^s \varepsilon^{-p\frac{n+2}{n}} |A_{k_s,i}^+|^{1+\kappa_0}, \qquad (2.24)$$

where $c_0 = c_4 c_5 2^{\frac{p(n+2)}{n}}$, $b = 2^{\frac{p(n+2)}{n}}$.

From (2.24) and either Lemma 4.1 from [1, Ch.1], or Lemma 5.6 from [2, Ch.2], or Lemma 4.7 from [3, Ch.2], it follows that $|A_{k_s,i}^+| \to 0$ as $s \to \infty$ if

$$|A_{k_0,i}^+| \le \gamma_* \equiv \left(\frac{\varepsilon^{p\frac{n+2}{n}}}{c_0}\right)^{1/\kappa_0} b^{-1/\kappa_0^2}.$$
 (2.25)

In this case we would have that

$$u \leq M - \varepsilon$$
 a.e. in Ω^T ,

with contradicts the definition of M.

Since $k_s = M - \varepsilon - \frac{\varepsilon}{2^s}$, $s \ge 0$, we have that $k_0 = M - 2\varepsilon$ and we can take ε so small that $k_0 > \frac{M}{2}$. Then we have

$$\left(\frac{M}{2}\right)^q |A_{k_0,i}^+| \le \left(\frac{M}{2}\right)^q |A_{\frac{M}{2},i}^+| \le \int_{\Omega^T} |u_i|^q \, dx \, dt \, .$$

Hence,

$$|A_{k_0,i}^+| \le \left(\frac{2}{M}\right)^q \int_{\Omega^T} |u_i|^q \, dx \, dt \,.$$
 (2.26)

If the r.h.s. is less than γ_* we have a contradiction. Thus,

ess
$$\sup_{\Omega^T} u_i \le 2\gamma_*^{-1/q} \left(\int_{\Omega^T} |u_i|^q \, dx \, dt \right)^{1/q},$$
 (2.27)
 $i = 1, \dots, m, \ q \ge 1.$

If $u_i < 0$ we have to introduce the cut-off function

$$(u_i - k)_- = \max\{-(u_i - k), 0\}, \quad k < 0.$$

Then we obtain a similar estimate from below. This concludes the proof. \Box

Finally we have to obtain an estimate for $|u_i|_{q,\Omega^T}$, $q \geq 1$. Therefore, we have

Lemma 2.2. Let $u_0 \in L_{\infty}(\Omega; \mathbb{R}^m)$, $u_b \in L_{\infty}(S^T; \mathbb{R}^m)$, $\phi_i \in L_q(\Omega^T; \mathbb{R}^m)$, where $q > \frac{n+2}{2}$, i = 1, 2. Then the following estimate holds

$$|u_i|_{\frac{n+2}{2},\Omega^T} \le F_2\left(|u_{0i}|_{\infty,\Omega}, |u_{bi}|_{\infty,S^T}, |\phi_{1i}|_{q,\Omega^T}, |\phi_{2i}|_{q,\Omega^T}\right), (2.28)$$

$$i = 1, \dots, m,$$

where F_2 is an increasing positive function of its arguments.

Proof. Let $k_* = \max_i \{ \operatorname{ess sup}_{\Omega} |u_{0i}|, \operatorname{ess sup}_{S^T} |u_{bi}| \}$, and let the test function in (1.3) be such that $\phi_j = 0$ for $j \neq i$, $\phi_i = (u_{ih} - k_*)_+ e^{\alpha(u_{ih} - k_*)_+}$. Then (1.3) takes the form

$$\int_{\Omega} u_{iht}(u_{ih} - k_*)_{+} e^{\alpha(u_{ih} - k_*)_{+}} dx +$$

$$+ \int_{\Omega} (a_i(x, t, u, \nabla u) \cdot \nabla u_i)_h \cdot \nabla \left((u_{ih} - k_*)_{+} e^{\alpha(u_{ih} - k_*)_{+}} \right) dx =$$

$$= \int_{\Omega} (b_{ih}(x, t, u, \nabla u))_h (u_{ih} - k_*)_{+} e^{\alpha(u_{ih} - k_*)_{+}} dx .$$
(2.29)

The first term in (2.29) we treat in the following way

$$\int_{\Omega} u_{iht}(u_{ih} - k_*)_{+} e^{\alpha(u_{ih} - k_*)_{+}} dx =$$

$$= \int_{A_{k_*,i}^{+}} u_{iht}(u_{ih} - k_*) e^{\alpha(u_{ih} - k_*)} dx = \frac{1}{\alpha} \int_{A_{k_*,i}^{+}} (u_{ih} - k_*) \partial_t e^{\alpha(u_{ih} - k_*)} dx =$$

$$= \frac{1}{\alpha} \int_{A_{k_*,i}^{+}} \left[\partial_t \left((u_{ih} - k_*) e^{\alpha(u_{ih} - k_*)} \right) - \partial_t (u_{ih} - k_*) e^{\alpha(u_{ih} - k_*)} \right] dx =$$

$$= \frac{1}{\alpha} \int_{\Omega} \left[\partial_t \left((u_{ih} - k_*)_{+} e^{\alpha(u_{ih} - k_*)_{+}} \right) - \frac{1}{\alpha} \partial_t e^{\alpha(u_{ih} - k_*)_{+}} \right] dx =$$

$$= \frac{1}{\alpha} \partial_t \int_{\Omega} \left[(u_{ih} - k_*)_{+} - \frac{1}{\alpha} \right] e^{\alpha(u_{ih} - k_*)_{+}} dx .$$

Now inserting (2.30) into (2.29), integrating the result with respect to time and passing with h to 0 yields

$$\frac{1}{\alpha} \int_{\Omega} \left[(u_{i} - k_{*})_{+} - \frac{1}{\alpha} \right] e^{\alpha(u_{i} - k_{*})_{+}} dx +$$

$$+ \int_{\Omega^{t}} a_{i} \cdot \nabla u_{i} \cdot \nabla u_{i} (1 + \alpha(u_{i} - k_{*})_{+}) e^{\alpha(u_{i} - k_{*})_{+}} dx dt \leq$$

$$\leq \int_{\Omega^{t}} b_{i} (u_{i} - k_{*})_{+} e^{\alpha(u_{i} - k_{*})_{+}} dx dt ,$$
(2.31)

where we performed calculations in the second term on the l.h.s. of (2.29) and used the fact that

$$\left[(u_i - k_*)_+ - \frac{1}{\alpha} \right] e^{\alpha (u_i - k_*)_+} \Big|_{t=0} = -\frac{1}{\alpha} < 0.$$

Using the structure condition (1.2) in (2.31), we obtain

$$\frac{1}{\alpha} \int_{\Omega} \left[(u_{i} - k_{*})_{+} - \frac{1}{\alpha} \right] e^{\alpha(u_{i} - k_{*})_{+}} dx +$$

$$+ \alpha_{0} \int_{\Omega^{t}} |\nabla u|^{p-2} |\nabla (u_{i} - k_{*})_{+}|^{2} (1 + \alpha(u_{i} - k_{*})_{+}) e^{\alpha(u_{i} - k_{*})_{+}} dx dt \leq$$

$$\leq \int_{\Omega^{t}} \left[\phi_{2i} (u_{i} - k_{*})_{+} + \beta_{0} |\nabla u|^{p-2} |\nabla (u_{i} - k_{*})_{+}|^{2} (u_{i} - k_{*})_{+} +$$

$$+ \phi_{1i} (1 + \alpha(u_{i} - k_{*})_{+}) \right] e^{\alpha(u_{i} - k_{*})_{+}} dx dt .$$
(2.32)

Assuming that $\alpha > \frac{2\beta_0}{\alpha_0}$ we obtain

$$\frac{1}{\alpha} \int_{\Omega} \left[(u_i - k_*)_+ - \frac{1}{\alpha} \right] e^{\alpha(u_i - k_*)_+} dx + \tag{2.33}$$

$$+\alpha_0 \int_{\Omega^t} |\nabla u|^{p-2} |\nabla (u_i - k_*)_+|^2 \left(1 + \frac{\alpha}{2} (u_i - k_*)_+ \right) e^{\alpha (u_i - k_*)_+} dx dt \le$$

$$\leq \int_{\Omega^t} \left[\phi_{1i} \left(1 + \alpha (u_i - k_*)_+ \right) + \phi_{2i} (u_i - k_*)_+ \right] e^{\alpha (u_i - k_*)_+} \, dx \, dt \, .$$

To simplify notation we introduce the functions $v_i = (u_i - k_*)_+ > 0$ and $\phi_{0i} = \max\{\phi_{1i}, \phi_{2i}\}, i = 1, ..., m$. Using also that $|\nabla u| \ge |\nabla u_i|$, we write (2.33) in the form

$$\operatorname{ess sup}_t \int_{\Omega} \left(v - \frac{1}{\alpha} \right) e^{\alpha v} \, dx + \int_{\Omega^T} |\nabla v|^p \left(1 + \frac{\alpha}{2} v \right) e^{\alpha v} \, dx \, dt \leq 2.34)$$

$$\leq c \int_{\Omega^T} (1+\phi_0)(1+v)e^{\alpha v} \, dx \, dt$$

where v > 0 and the index i was omitted for simplicity. Let

$$\omega = (v-1)_{+}^{1/p} e^{\frac{\alpha}{p}(v-1)_{+}}. \tag{2.35}$$

Let $\alpha > 1$ and v > 1. For $v \le 1$ we have the sup estimate for v so there is nothing to prove. Then we have

$$\int_{\Omega} \left(v - \frac{1}{\alpha} \right) e^{\alpha v} dx = \int_{\Omega} \left(v - 1 \right) e^{\alpha v} dx + \int_{\Omega} \left(1 - \frac{1}{\alpha} \right) e^{\alpha v} dx,$$

where

$$\int_{\Omega} (v-1) e^{\alpha v} dx \ge \int_{\Omega} (v-1) e^{\alpha (v-1)} dx = \int_{\Omega} \omega^{p} dx.$$

Therefore,

$$\int_{\Omega} \left(v - \frac{1}{\alpha} \right) e^{\alpha v} \, dx \ge \int_{\Omega} \omega^p \, dx \,. \tag{2.36}$$

Since v > 1 we have that $\omega = (v-1)^{1/p} e^{\frac{\alpha}{p}(v-1)}$, so

$$\nabla \omega = \left(\frac{1}{p}(v-1)^{\frac{1}{p}-1} + \frac{\alpha}{p}(v-1)^{1/p}\right) \nabla v e^{\frac{\alpha}{p}(v-1)},$$

and

$$|\nabla \omega|^p \le c \left[(v-1)^{1-p} + (v-1) \right] |\nabla v|^p e^{\alpha(v-1)} \le$$
 (2.37)

$$\leq c(1+v)|\nabla v|^p e^{\alpha(v-1)} \leq c(v+1)|\nabla v|^p e^{\alpha v}.$$

Finally, since $\omega^p = (v-1)e^{\alpha(v-1)} \ge (v-1)e^{\alpha v}e^{-\alpha} = c(v-1)e^{\alpha v} = cve^{\alpha v} - ce^{\alpha v}$. Independently, since v > 1 we have that $\omega^p \ge ce^{\alpha v}$. Hence, $ve^{\alpha v} < c\omega^p + ce^{\alpha v} < c\omega^p$. Therefore, we have

$$(1+v)e^{\alpha v} \le c\omega^p \,. \tag{2.38}$$

Using (2.36)–(2.38) in (2.34) implies

$$\operatorname{ess sup}_{t} \int_{\Omega} \omega^{p} \, dx + \int_{\Omega^{T}} |\nabla \omega|^{p} \, dx \, dt \leq \tag{2.39}$$

$$\leq c_1 \int_{\Omega^T} (1 + \phi_0)(1 + \omega^p) \, dx \, dt$$
.

Using the imbedding (3.1) from [1], Ch.1, Sect.3 for the space $V_0^{2,p}(\Omega^T) = L_{\infty}(0,T;L_2(\Omega)) \cap L_p(0,T;W_p^1(\Omega))$ and the Hölder inequality on the r.h.s. of (2.39) we get

$$|\omega|_{\frac{p(n+2)}{n},\Omega^T} \le c_2 + c_1^{1/p} \left(\int_{\Omega^T} (1+\phi_0)^{\lambda_1} dx dt \right)^{1/p\lambda_1}$$
 (2.40)

$$\left(\int_{\Omega^T} |\omega|^{p\lambda_2} \, dx \, dt \right)^{1/p\lambda_2} \le c_2 + c_3 |\Omega^T|^{\frac{1}{p\lambda_2} - \frac{n}{p(n+2)}} \, |\omega|_{\frac{p(n+2)}{n}, \Omega^T},$$

where $c_2 = c_1^{1/p} \left(\int_{\Omega^T} (1 + \phi_0) \, dx \, dt \right)^{1/p}$, $c_3 = c_1^{1/p} \left(\int_{\Omega^T} (1 + \phi_0)^{\lambda_1} \, dx \, dt \right)^{1/p\lambda_1}$, $\frac{1}{\lambda_1} + \frac{1}{\lambda_2} = 1$, $\lambda_2 < \frac{n+2}{n}$, $\lambda_1 > \frac{n+2}{n}$.

If T is so small that

$$c_3|\Omega^T|^{\frac{1}{p\lambda_2} - \frac{n}{p(n+2)}} \le \frac{1}{2}$$

we obtain the estimate

$$|\omega|_{\frac{p(n+2)}{2},\Omega^T} \le 2c_2. \tag{2.41}$$

For arbitrary T the argument can be repeated up to covering the whole [0, T] in a finite number of steps.

From the definition of v_i and (2.35) we have that

$$((u_i - k_*)_+ - 1)_+^{1/p} = \omega_i e^{-\frac{\alpha}{p}(v_i - 1)_+}.$$

Hence, either

$$u_i \le k_* + 1 \tag{2.42}$$

or $u_i > k_* + 1$. In the second case we have the inequality

$$u_i \le c_4 \left[(k_* + 1) + \omega_i^p \right]$$
.

Therefore,

$$|u_i|_{\frac{n+2}{n},\Omega^T} \le c_4(k_*+1)|\Omega^T|^{\frac{n}{n+2}} + c_4|\omega_i|_{\frac{p(n+2)}{n},\Omega^T}^p \le (2.43)$$

$$\leq c_4(k_*+1)|\Omega^T|^{\frac{n}{n+2}}+c_4(2c_2)^p$$
.

From (2.42) and (2.43) we obtain (2.28). This concludes the proof.

From Lemmas 2.1, 2.2, we have

Theorem 2.3. Let the assumptions of Lemmas 2.1, 2.2 be satisfied. Then a qualitatively bounded solution of (1.1) is bounded in terms of data (see the inequalities (2.1) and (2.28)).

References

- [1] DIBENEDETTO, E., Degenerate parabolic equations, Springer-Verlag (1993).
- [2] LADYZHENSKAYA, O.A., SOLONNIKOV, V.A., URALTSEVA, N.N., Linear and quasilinear equations of parabolic type, Providence, R. I. Amer. Math. Soc. (1968).
- [3] Ladyzhenskaya ,O.A., Uraltseva, N.N., Linear and quasilinear equations of elliptic type, Nauka, Moscow (1973), (in Russian).
- [4] Zajączkowski, W.M., Global existence of solutions for Dirichlet problem to nonlinear diagonal parabolic system with maximal growth conditions, (to be published).

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES UL. ŚNIADECKICH 8 00-950 WARSAW, POLAND E-MAIL: WMZAJACZ@IMPAN.GOV.PL